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Abstract

Water soluble polymers are widely used as mobility control agents for enhanced oil 
recovery (EOR). Yet, in harsh reservoir environments (i.e., elevated temperatures and 
high ionic strength), the applicability of conventional polymers is limited. This issue has 
been somewhat resolved through the chemical synthesis of polymers having functional 
moieties such as sulfonic acid groups and/or n-vinylpyrrolidone. Another approach to cir-
cumvent expensive chemical syntheses, it is the formulation of supramolecular polymers 
built via non-covalent and β-cyclodextrin (β-CD) host-guest interactions. In this study, 
an advanced polymer-surfactant (SAP-AP1) system formulated via the self-assembling of 
an associative polymer with an anionic surfactant and β-CD was evaluated as a mobility 
control agent to displace and recover heavy oil (i.e., 2560 cP at 25°C). Displacement tests 
employing unconsolidated sand-pack systems were carried out at simulated heavy oil 
reservoir conditions. The experimental results demonstrate that the SAP-AP1 produces 
a stable viscous displacement front that results in more efficient volumetric sweep, faster 
reduction of the water/oil ratio (WOR), and incremental oil recovery (e.g., 19% higher 
incremental oil recovery relative to the baseline polymer). The SAP-AP1 system shows 
potential for EOR applications at economically favorable conditions.

Keywords: β-CD host-guest complexations, noncovalent bonding, associating 
polymers, supramolecular systems, enhanced oil recovery, mobility control, resistance 
factor, residual resistance factor, water-oil ratio

1. Introduction

Worldwide, polymer flooding is extensively applied as a mobility control agent to increase 
the sweep efficiency of the displacing fluid during enhanced oil recovery (EOR). As stated by 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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Perttamo, “[Compared] to conventional waterfloods on a timescale, polymer floods will accel-
erate the recovery process due to rapid viscosity build-up…. [that] will contribute to a faster 
and higher oil production. An incremental recovery factor of 5% [of the] original oil in place 
(OOIP) or more is regarded as a successful polymer application” [1]. Polymer flooding has 
been historically applied in light and medium gravity oil reservoirs. More recently, it has also 

been applied successfully in heavy oil reservoirs with oil viscosities ≥1200 cP, which expands 
the practical applicability of this EOR technique [2–11].

Incremental oil recovery by polymer flooding is induced by the following mechanisms: reduc-

tion of the water-oil mobility ratio by means of the increased viscosity of the displacing phase 

(i.e., injected water) and reduction of viscous fingering, decrease of the water relative perme-

ability due to polymer retention within the formation rock, diversion of the injected water to 

unswept reservoir regions, improvement of the water-injection profile (i.e., preventing cross-
flow between vertical heterogeneous layers), and the increase of oil fractional flow [4, 5, 12–21].

Field polymer-flood projects carry high chemical operating expenditures [5, 22]. Therefore, it 
is vital to carefully select the appropriate polymer chemistry for the specific reservoir charac-

teristics. For instance, the practical applicability of polymer flooding is limited to reservoirs 
with moderate temperatures (i.e., <90°C) and formation brines containing low concentrations 
of divalent cations (e.g., Ca2+, Mg2+) to avoid the chemical degradation of the polymer guaran-

teeing the technical success of the process in a cost-effective fashion [12–17, 19, 23].

Divalent cations (i.e., Ca2+, Mg2+) significantly affect the viscosity of polymer solutions. The bridg-

ing effect of divalent cations with the negatively charged moieties (i.e., carboxyl groups) causes 
viscosity loss due to polymer coiling [12, 13, 15, 16, 23, 24]. Furthermore, the reaction of the 
carboxyl group with divalent cations causes polymer precipitation and phase separation [14]. 
Therefore, to compensate for the loss of viscosity, it is necessary to add higher polymer concen-

trations to the brine solution [12]. Alternatively, the reservoir could be conditioned before poly-

mer flooding by injecting low-salinity water to prevent the mixing of the polymer slug with the 
high-salinity reservoir brine [16].

Several approaches have been taken to improve the chemistry of polymers to ensure their 

stability and functionality at elevated temperatures and in reservoir brine containing high 

salinity and hardness concentration. These polymeric systems have been customized by incor-

porating specific functional moieties that are covalently grafted onto the polymer structure. 
The attachment of sulfonic acid groups like allyl sulfonic acid, 2-acrylamido-2-methylpropane 
sulfonate (AMPS) and/or n-vinylpyrrolidone (n-VP) monomers increases the polymer resis-

tance to hydrolysis and tolerance to high salinity and hardness. Shear stability and viscosify-

ing power of polymers have been advanced by the introduction of hydrophobic groups like 

n-alkyl (i.e., ≥C
6
 carbon numbers) acrylamide, styrene, ring structures, large and rigid side 

groups such as styrene sulfonic acid, n-alkyl maleimide, acrylamide-base long-chain alkyl 

acid, and 3-acrylamide-3-methyl butyric acid, among others [3, 13, 14, 17, 23, 24].

EOR polymers are shear sensitive, which is a downside for EOR applications. According to 

Zaitoun et al. [23] and Sheng et al. [17], shearing occurs within several devices during the dif-
ferent phases of polymer handling and injection process in the high flow rate region close to the 
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injection well such as in shearing devices during polymer dissolution, during recirculation of 

the polymer solution through centrifugal pumps, polymer flow through chokes and downhole 
valves under high differential pressure, and during the flow of polymers at high flow rates 
through the perforations of the reservoir rock and sand face [25]. The shear degradation of the 
polymer structure consists of the breakage of the macromolecule chain reducing its molecular 

weight, size, and viscosifying power. Thus, shear degradation is irreversible [17, 23, 26].

The shear degradability of EOR polymers is directly related to the polymer molecular struc-

ture, molecular weight, and chain flexibility. The physics of polymer mechanical degradation 
is reported in [26]. As indicated by Jouenne et al., “flexible polymer chains have the ability to 
be extended under elongational flow fields [and the] … stretching of the polymer chains can 
lead to chain rupture” [27]. For example, xanthan gum, which is a rigid rod-like biopolymer 
with a double-strand helical structure that aligns in the direction of the flow [26], displays 
a very high shear resistance because it does not stretch under shearing/elongations forces, 

which reduces the friction forces on the carbon/carbon backbone. On the contrary, the linear 

polyacrylamide homopolymer is highly flexible and therefore very sensitive to shear degra-

dation. The shear stability of polyacrylamide is commonly improved by introducing negative 

acrylate groups to the backbone, since it provides rigidity by means of electrostatic repulsion. 

Nevertheless, the presence of electrolytes (e.g., Na+, Ca2+, Mg2+) shelters the negative charges 

of the acrylate groups inducing the coiling and folding of the polymer chain, which becomes 

less rigid and more flexible [17, 23]. Then, the stretching of the coiled (i.e., coiled-stretch tran-

sition) polymer chain under the influence of shear and elongational forces makes it vulner-

able to chain breakage and irreversible shear degradation. Thus, the shear sensitivity of EOR 

polymers increases with brine salinity [23].

The shear stability of acrylamide copolymers can also be increased by introducing the poly-

mer chain large functional hydrophobic groups such as the acrylamide tert-butyl sulfonate 

(ATBS) and the n-vinylpyrrolidone (n-VP) as they impart rigidity to the polymer structure 

[23]. The attachment of hydrophobic groups to the macromolecular backbone of EOR poly-

mers to improve the shear and thermal stability, as well as the tolerance to brines with high 

salinity and hardness concentration, has been widely recognized. The main benefit of the 
incorporation of hydrophobic groups is as explained by Perttamo [1]: “the reorientation of 
the macromolecules due to polar and non-polar, results in [the] formation of hydrophobic 
associations between de incorporated hydrophobic groups,” generating intramolecular and 
intermolecular associations forming supramolecular aggregates. These polymers are called 

associating hydrophobic polymers or hydrophobically modified polymers or for short associ-
ating polymers [1, 17, 19, 28, 29]. Under shear, these supramolecular aggregates can disassem-

ble due to the reversible disruption of the hydrophobic bonds; therefore, at high shear rates, 

these systems show a remarkable shear-thinning behavior. As indicated by Dupuis et al. [19], 
these systems offer several benefits for field applications: “…reduced polymer concentration 
to achieve a required mobility ratio, extend the range of suitable reservoirs in terms of salin-

ity, and facilitate the mixing, pumping, and injection procedures.”

In this chapter, we evaluated the effectiveness of a supramolecular polymer-surfactant 
(SA-AP1) system as a mobility control agent for displacing heavy oil in high salinity and 
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hardness concentration. The SAP-AP1 system was formulated via self-assembling driven 

by β-CD host-guest complexation, divalent cation bridges (i.e., Ca2+ or Mg2+), hydrophobic 

interactions, and hydrogen bonding, among others. The SAP-AP1 system contains 0.75 wt% 

of an associating polymer (AP1), 0.007 wt% (70 ppm) of an anionic surfactant, and 0.007 wt% 

(70 ppm) of β-CD prepared in saline solution. Detailed information on the formulation and 
properties of the SAP-AP1 system is provided in the preceding chapter of this book.

In this chapter, we begin by describing the sand-pack core-flooding displacement test and the 

properties of the unconsolidated porous media and fluids (i.e., heavy oil and brine) employed. 
Next, we discuss the viscosifying power of the baseline AP1 polymer and the SAP-AP1 system 

during flow through porous media by means of the resistance factor (RF). Polymer retention 
in porous media is also analyzed through the residual resistance factor (RRF). The effective-

ness of both polymer AP1 and the SAP-AP1 system in recovering heavy oil is analyzed next. 

Finally, we discuss the effect of AP1 and SAP-AP1 on the water to oil production ratio (WOR).

2. Sand-pack flooding displacement tests

The performance of the polymer AP1 and the SAP-AP1 system as a mobility control agent for 

heavy oil recovery was determined through routine oil sand-pack displacement tests at simu-

lated reservoir conditions. The heavy oil used in these flooding tests was provided by Husky 
Energy Inc. (Calgary, AB, Canada) with a viscosity of 68,728 cP at 25°C that was adjusted to a 
viscosity of 2560 cP at 25°C by dilution with natural condensate produced from the McCully 
field, Corridor Resources Inc. (Sussex, NB, Canada). The density of the diluted crude oil 
was 0.954 g/ml at 25°C, the API corrected to 60°F was 15.27, and the interfacial tension (IFT) 
between the crude oil and the SAP-AP1 system was 0.032 dynes/cm at 25°C. The IFT was 
determined using a M6500 Spinning Drop Tensiometer manufactured by Grace Instrument 
(Houston, TX, USA). QUIKRETE® Premium Play Sand® (No. 1113), which is 100% quartz [30], 
was employed to prepare the unconsolidated sand packs. The sand-grain size distribution 

was determined by sieve analysis following the procedure described in [31], which conforms 
to ASTM C136/C136M-14. The sieve analysis indicated that the effective size of the sand, D10, 
and the uniformity coefficients, D60/D10, were 240 and 2.02 μm, respectively.

A total of four displacement tests were conducted at a temperature of 25°C using a brine con-

centration of 8.4 wt%. The synthetic brine composition was 6.9 wt% of NaCl, 0.18 wt% of MgCl
2
, 

1.3 wt% of CaCl
2
, and 0.04 wt% of Na

2
SO

4
. Two displacement tests were conducted using the 

baseline polymer AP1 at the optimum concentration of 0.75 wt% (control tests) and two dis-

placement tests were carried out using the optimum SAP-AP1 system which also contained a 

polymer concentration of 0.75 wt%. Displacement tests were carried out using a DCHH series 
core holder (pressure-tapped, biaxial-type loading) manufactured by Temco, Inc. (Tulsa, OK, 
USA). Two CFR series transfer vessels (Temco, Inc., Tulsa, OK, USA) were employed to displace 
brine, polymer, and crude oil through the sand pack. A Teledyne ISCO Syringe pump, model 
100DX manufactured by Teledyne Isco, Inc. (Lincoln, NE, USA), was used to pump the fluids 
through the transfer vessels. Several PGT-30 series/stainless steel pressure gauges manufac-

tured by Omega (Laval, Quebec, Canada) with an accuracy of 0.5% as a percent of full scale 
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(FS) were installed at the inlet of the core holder (P1), at the inlet cap to monitor the overburden 

pressure (P
OP

), and two pressure gauges along the core holder (P2 and P3). Figure 1 shows a 

simplified schematic of the experimental set-up used during the sand-pack displacement tests.

The sand-pack properties, such as pore volume (PV), porosity (ϕ), and permeability to brine 

(k) were determined following routine procedures as outlined in [32, 33]. Table 1 presents the 

sand-pack properties for each of the displacement tests.

Heavy oil sand-pack displacement tests were carried out following a fluid injection scheme 
of four stages: heavy oil injection, waterflooding, polymer flooding, and post-polymer water-

flooding. All the fluids were injected at a flow rate of 0.98 cm3/min, which is equivalent to a 

flow velocity of 0.0116 m/s (0.91 ft./day). During the heavy oil injection stage, oil was continu-

ously injected until the production of brine stopped, which corresponds to a volume of oil 

equivalent to three pore volumes (3 PV).

Afterward, the oil-saturated sand packs were waterflooding to displace oil by injecting brine 
(8.4 wt%) at a flow rate of 0.98 cm3/min until no more oil was produced, which corresponds to 

a volume of brine equivalent to 6 pore volumes (6 PV). Right after the waterflooding stage was 
completed, 1 pore volume of AP1 or SAP-AP1 polymer solution was injected at a flow rate of 
0.98 cm3/min to displace the unrecovered or “remaining” oil that was bypassed during the pre-

vious waterflooding stage [34]. Finally, a post-polymer waterflooding step was immediately 
initiated at the end of the polymer flooding stage. A total volume of 6.5 pore volumes of brine 
(8.4 wt%) was injected at a flow rate of 0.98 cm3/min. In each of the injection stages, the injection 
time, pressure readings, and the corresponding volumes of the fluids (brine and oil) produced 

Figure 1. Experimental set-up for sand-pack displacement tests.
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were monitored. Material balance was applied to determine oil and water saturations, as well 

as the percentage of oil recovered from each injection stage. More details of the experimental 

procedure employed during the sand-pack displacement tests are provided in [35].

The results obtained from the displacement tests were analyzed by plotting the resistance 
factor (RF), the residual resistance factor (RRF), percentage of cumulative oil recovery, ratio 

of remaining oil saturation over initial oil saturation (S
ro

/S
oi
), and water oil ratio (WOR) as 

a function of volume of fluid injected. The volume of fluid injected was expressed as a frac-

tion of pore volume normalized by porosity and permeability using the capillary bundle 

parameter [36–39] to compare the displacement tests at the same porosity and permeability 
reference.

3. Resistance factor and residual resistance factor

Resistance factor (RF) provides information on the effective viscosity of the polymer solution 
during flow in porous media relative to water before polymer flooding [38]; therefore, RF 
indicates the effectiveness of the polymer system as a mobility control agent during enhanced 
oil recovery (EOR) [6, 19, 29, 40, 41]. While, the residual resistance factor (RRF) measures 

the increased pressure drop across the porous media due to polymer retention (mechanical 

entrapment and polymer adsorption) [5, 6, 19, 29, 37–44].

Figure 2(a) and (b) plots RF as a function of volume of fluid injected expressed as a fraction 
of pore volume (PV) normalized for permeability and porosity for tests—Baseline # 1.1 and 

SAP-AP1 # 1.2 and Baseline # 2.1 and SAP-AP1 # 2.2 respectively.

Figure 2 demonstrates that the RF curves of the AP1 polymer and the SAP-AP1 network have 

similar flow behavior. After the injection of 0.013 PV, the RF values increase continuously 
with increasing volume of fluid injected until a maximum RF value was reached at about 

0.02 PV. Then, the RF values decreased with increased throughput in the sand packs until the 

RF values leveled off. The RF value plateaued out at an average value of 5.6 for the SAP-AP1 
system, while for the baseline AP1 polymer, the RF value plateaued out at an average value 

of 2.0. Therefore, the SAP-AP1 system offered on average 3.6 times higher effective viscosity 
within the porous media relative to the effective viscosity achieved by polymer AP1.

The RF-curves eventually reached plateau values for both systems: the SAP-AP1 and the base-

line. This may occur due to the dynamic disassembling and reassembling of the non-covalent 

Displacement test # Pore volume [cm3] Porosity [%] Permeability [mD]

Baseline # 1.1 173 24 3085

SAP AP1 # 1.2 177 25 2812

Baseline # 2.1 169 24 2746

SAP AP1 # 2.2 185 26 1758

Table 1. Sand-pack properties.
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intra- and intermolecular interactions (i.e., decomplexation and complexation of host-guest 

interactions, breaking and reforming of hydrophobic interactions, and hydrogen bonds, among 

others) under the influence of the shear forces imposed during the flow process. Eventually, 
equilibrium of the shear forces and the flow resistance forces of the network structures are 
reached, and the RF curves leveled off. The stabilization of the RF curves also suggests that 
propagation of the SAP-AP1 systems and the baseline polymers took place along the sand-pack 

systems. These observations agree with previous research on flow behavior of associating poly-

mers through porous media [28, 38, 44]. Overall, the optimum SAP-AP1 formulation consis-

tently provides higher resistance factors and consequently a better mobility control than the 
baseline polymer AP1.

The performance of both polymers AP1 and SAP-AP1 in terms of the residual resistance factor, 

RRF, is presented in Figure 3(a) and 3(b), which plots RRF values as a function of volume of brine 

injected for tests Baseline # 1.1 and SAP-AP1 # 1.2 and Baseline # 2.1 and SAP-AP1 # 2.2, respectively.

Figure 3 indicates that the RRF curves for both systems decrease continuously as the vol-

ume of brine injected increases that eventually stabilize. The average end RRF value for the 

Figure 2. RF versus volume of fluid injected: (a) Baseline # 1.1 and SAP-AP1 # 1.2 and (b) Baseline # 2.1 and SAP-AP1 # 2.2.

Figure 3. RRF versus volume of fluid injected: (a) Baseline # 1.1 and SAP-AP1 # 1.2 and (b) Baseline # 2.1 and SAP-AP1 # 2.2.
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AP1 was 0.5, while the average end RRF value for the SAP-AP1 system was 0.02, suggesting 

insignificant pore plugging and/or permeability reduction due to polymer retention, which is 
expected in unconsolidated and/or high permeability porous media [37, 42].

4. Heavy oil recovery

The performance of the SAP-AP1 system and baseline AP1 polymer as mobility control agents 

for the displacement and recovery of heavy oil is displayed in Figure 4, which plots the per-

cent of cumulative oil recovery as a function of volume of fluid injected and flooding stage.

Figure 4 reveals that the average oil recovery during the waterflooding stage was about 30% 
for all the displacement tests. The combined average cumulative oil recovery produced by 

polymer flooding and post-polymer waterflooding for the Baseline tests # 1.1 and # 2.1 was 
37%, respectively, after subtracting the average oil recovery attributed to the initial water-

flooding stage. Whereas, the combined average cumulative oil recovery produced by flooding 
and post-polymer waterflooding for the SAP-AP1 tests # 1.1 and # 2.1 was 56%, respectively, 
after subtracting the average oil recovery attributed to the initial waterflooding stage. These 
experimental observations demonstrate that the SAP-AP1 system produced an additional 

incremental oil recovery of 19% relative to the baseline AP1 polymer. In this analysis, aver-

age values of cumulative oil recovery were used as an alternative to the individual results 

from each of the displacement tests to provide a conservative assessment of the experimental 

results in terms of heavy oil recovery. This approach was necessary to avoid the overestima-

tion of oil recovery from polymer flooding and the post-polymer waterflooding stage, because 
the oil and water separation process after polymer flooding was found to be a difficult and 
lengthy process, even though several experimental steps were carried out to achieve the most 

effective separation of water from the produced oil.

The ratio of remaining to initial oil saturation as a function of volume of fluid injected and 
injection step is presented in Figure 5 for the baseline polymer and SAP-AP1 system.

Figure 4. Percentage of cumulative oil recovery versus volume of fluid injected and flooding stage: (a) Baseline # 1.1 and 
SAP-AP1 # 1.2 and (b) Baseline # 2.1 and SAP-AP1 # 2.2.
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Figure 5 clearly shows the effect of each of the flooding stages on oil recovery. The polymer 
flooding stage produced a dramatic decrease of the S

ro
/S

oi
 ratio that rapidly stabilized during 

the post-polymer waterflooding stage. The average S
ro

/S
oi
 ratio obtained from the Baseline 

tests # 1.1 and # 2.1 was 0.33, while the average S
ro

/S
oi
 ratio attained from the SAP-AP1 tests # 

1.2 and # 2.2 was 0.14.

These experimental results demonstrate that the optimum SAP-AP1 system provided a more 

efficient mobility control compared to the baseline AP1, which resulted in a more stable viscous 

displacement and accelerated heavy oil recovery. Furthermore, the low concentration of anionic 

surfactant contained in the SAP-AP1 formulation reduces the interfacial tension (IFT) of the oil-
brine system from 30 [45] to 0.032 dynes/cm. This remarkable reduction in IFT decreases capillary 

forces, which facilitates  the detachment and mobilization of oil during SAP-AP1 flooding [46, 47].  
Therefore, the SAP-AP1 system produces incremental oil recovery by the synergistic effect of 
greater mobility control functionality and by decreasing the IFT of the oil-brine system.

5. Water-to-oil ratio

During waterflooding of heavy oil, “the adverse mobility ratio between the viscous oil and the 
water induces high-water-cut production and poor sweep efficiency” [2]. Polymer flooding 
decreases the mobility of the injected water (i.e., augmented water viscosity) reducing the water-

cut production levels. Figure 6 presents the water/oil ratio (WOR) as a function of volume of fluid 
injected and the flooding stage for the baseline polymer and the SAP-AP1 system tests.

Figure 6 indicates that the average WOR at the end of the initial waterflooding stage for the 
displacement tests was about 10. As soon as the polymer flooding stage (i.e., baseline polymer 
AP1 and/or SAP-AP1 system) was initiated, WOR continuously decreased as the volume of 

polymer injection increased, reaching a minimum WOR value at the end of the polymer flood-

ing stage. The WOR curves in Figure 6 show that the SAP-AP1 system was more efficient in 
reducing and controlling the water-oil ratio by providing a faster response and lower average 

Figure 5. S
ro

/S
oi
 versus volume of fluid injected and flooding stage: (a) Baseline # 1.1 and SAP-AP1 # 1.2 and (b) Baseline 

# 2.1 and SAP-AP1 # 2.2.
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WOR value of 1.9. Whereas, the baseline AP1 polymer rendered a minimum average WOR 

value of 3.9 at the end of the polymer flooding stage. The WOR curves also show that immedi-
ately after the post-polymer waterflooding stage was initiated, an abrupt increase of the water 

to oil ratio took place that continued until the end of the post-polymer waterflooding stage. As 
explained by Seright “once brine injection [post-polymer flooding] begins, viscous fingering 
and [porous media] heterogeneities will quickly lead to severe channeling” [of the water to 
the production end] [6]. These results demonstrate that the optimum SAP-AP1 system offers 
superior mobility control functionality relative to the baseline AP1 polymer. The structural 

strength of the SAP-AP1 system is more effective in generating a stable viscous displacement 
that promotes a more efficient volumetric heavy oil sweep, a faster WOR reduction, and accel-
erated heavy oil recovery.

6. Conclusions

We discussed the performance of an advanced supramolecular polymer-surfactant system, 

SAP-AP1, driven by β-cyclodextrin host-guest complexations as mobility control agent to dis-

place heavy oil (i.e., 2560 cP at 25°C).

Heavy oil recovery displacement tests demonstrated that the SAP-AP1 system shows suitable 
propagation and low retention in unconsolidated sand-pack systems. The SAP-AP1 system 

displays superior mobility control efficiency when compared to the baseline AP1 polymer. 
The higher structural strength of the SAP-AP1 system makes it more effective in generating 
a stable viscous displacement front that results in a more efficient volumetric sweep, a faster 
WOR reduction, and accelerated heavy oil recovery. An average additional incremental oil 

recovery of 19% was achieved relative to the baseline AP1 polymer.

The important incremental oil recovery achieved by the supramolecular polymer-surfactant 

system is also attributed to the synergistic effect of greater mobility control functionality 
and decreased interfacial tension (IFT) between the oil-brine system offered by the SAP-AP1 
system.

Figure 6. WOR versus volume of fluid injected and flooding stage: (a) Baseline # 1.1 and SAP-AP1 # 1.2 and (b) Baseline 
# 2.1 and SAP-AP1 # 2.2.
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Overall, the SAP-AP1 system offers the potential for increasing heavy oil recovery at eco-

nomically favorable conditions.
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