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1. Introduction     

Miniature rotorcraft-based Unmanned Aerial Vehicles (UAVs) have received a growing 
interest in both industrial and academic research. Thanks to their hover and vertical take-off 
and landing (VTOL) capabilities, they are indeed particularly well suited for many civil 
missions such as video supervision of road traffic, surveillance of urban districts, victims 
localization after natural disasters, fire detection or building inspection for maintenance.  
Design of guidance navigation and control algorithms for the autonomous flight of small 
rotorcraft-based UAVs is a challenging research area because of their nonlinear dynamics 
and their high sensitivity to aerodynamic perturbations. Various control strategies such as 
backstepping (Bouabdallah & Siegwart, 2005), (Frazzoli et al., 2000), (Mahony & Hamel, 
2004), nonlinear model predictive control (Kim et al., 2002), (Bertrand et al., 2007a) or sliding 
modes (Bouabdallah & Siegwart, 2005) have been successfully applied to stabilization or 
trajectory tracking of UAV models. Nevertheless most of them require full state knowledge 
for feedback control design.  
For robotic systems it may be useful, for cost or payload reasons, to limit the number of 
embedded sensors. For a miniature UAV, the nature of the mission itself may also directly 
impact the choice of the sensors that will be used, and therefore the type of measurements 
that will be available for the vehicle control. 
In constrained environments, for example, the use of a vision based sensor may be preferred 
to a GPS to estimate the relative position of the vehicle with respect to its environment. In 
that case, linear velocity measurements may not be available. Another example is the case of 
a test bench design, where a “ready-to-use” radio controlled vehicle is used along with 
external sensors that do not require structural modifications of the vehicle. Such external 
sensors are for example motion capture systems (Kondak et al., 2007), (Kundak & Mettler, 
2007), (Valenti et al., 2006), or magnetic field based sensors (Castillo et al., 2004). With such 
equipments, only the position and the attitude angles of the vehicle can be directly 
measured.  
Nevertheless, knowledge of the vehicle state components (positions, linear velocities, 
attitude angles and angular velocities) is required for control.  
A practical approach may consist in computing the velocities from the position 
measurements by finite differentiations. This method is used in (Kondak et al., 2007) to 
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compute the linear velocity of rotorcraft-based miniature UAVs, and in (Castillo et al., 2004) 
to compute both linear and angular velocities to control a four-rotors vehicle. However, no 
theoretical stability guarantee is provided.  
One way to theoretically deal with partial state measurement is to define an observer. In (Do 
et al., 2003) the problem of trajectory tracking for a planar Vertical Take-Off and Landing 
(VTOL) aircraft with only position and attitude angle measurements is solved by designing 
a full-order observer. Changes of coordinates are then used to put the system in a triangular 
form so that a backstepping technique can be used to develop a velocity-independent 
stabilizing controller.  
However, the use of an observer may introduce additional computational burden in the 
control loop. It is also necessary to prove firstly its own convergence.  In addition, 
compatibility between the frequency of the observer and the frequency of the controller 
must be checked to ensure the closed loop stability of the complete observer-based 
controlled system.  
Another approach that can be used to avoid computational burden or complexity due to the 
introduction of an observer is partial state feedback: the controller is designed directly from 
the available measurements.  
Early work on partial state feedback has been done in the context of rigid-link robot 
manipulators when no velocity measurement is available. In (Burg et al., 1996) and (Burg et 
al., 1997) the velocity measurement is replaced by a velocity-related signal generated by a 
linear filter based only on link position measurement. An extension of this work, using a 
nonlinear filter, can be found in (Dixon et al., 2000). The same method has been applied to 
solve the problem of attitude tracking of rigid bodies. A velocity-related signal generated by 
a linear filter is indeed employed in (Wong et al., 2000), where a kinematic representation 
using modified Rodrigues parameters has been chosen. In (Costic et al., 2000), a unit-
quaternion-based representation is adopted and a nonlinear filter generates a signal 
replacing the angular velocity measurement in the feedback controller.  
First-order dynamic attitude feedback controllers have been proposed in (Arkella, 2001) and 
(Astolfi & Lovera, 2002) to respectively solve the attitude tracking problem for rigid bodies 
and spacecrafts with magnetic actuators.  The kinematic representations that are used in 
these two works are respectively based on modified Rodrigues parameters and quaternions. 
A unit-quaternion representation is also used in (Tayebi, 2007) where a feedback controller 
depending on an estimation error quaternion is designed to solve the problem of a rigid 
spacecraft attitude tracking.  
Attitude control of rigid bodies without angular velocity measurement is also addressed in 
(Lizarralde & Wen, 1996) and (Tsiotras, 1998) where a passivity-like property of the system 
is used to design feedback controllers for kinematic representations respectively based on 
unit-quaternions and Rodrigues parameters. Both of them use a filtering technique to avoid 
the use of velocity measurement.  
In this chapter, we deal with the problem of position and attitude stabilization of a six 
degrees of freedom VTOL UAV model when no measurement of the linear velocity nor of 
the angular velocity is available. Contrary to the previous works, the kinematic 

representation we use exploits the (3)SO  group and its manifold. The method we present is 

based on the introduction of virtual states in the system dynamics; no observer design is 
required. 
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The rest of the chapter is organized as follows. Section 2 introduces the notations and the 
mathematical identities that will be used in the chapter. Section 3 presents the VTOL UAV 
model dynamics and the cascaded structure of the controller. The design of the position 
controller is detailed in Section 4 whereas the attitude controller is presented in Section 5. In 
Section 6, the closed loop stability of the system is analyzed, and simulations results are 
provided in Section 7. Concluding remarks are finally given in the last part of this chapter. 

2. Notations and Mathematical Background 

Let (3)SO  denote the special orthogonal group of 
3 3×R  and (3)so  the group of 

antisymmetric matrices of 
3 3×R . We define by (.)×  the operator from 

3
(3)→ soR  such that 

 

0 3 2
3
, = 03 1

02 1

b b

b b b b

b b

⎡ ⎤−
⎢ ⎥

∀ ∈ −⎢ ⎥×
⎢ ⎥−⎣ ⎦

R  (1) 

where bi  denotes the thi  component of the vector b .  

Let (.)V  be the inverse operator of (.)× , defined from 
3

(3) →so R , such that 

 
3
, ( ) = (3), ( ) =b V b b B V B B∀ ∈ ∀ ∈

× ×
soR  (2) 

For a given vector 
3

b∈ R  and a given matrix 3 3M ×∈R , let us consider the following 

notations and identities: 

 ( )= ( )=
2 2

T TM M M M
P M P Ma s

− +
 (3) 

 tr( ( ) ( )) = 0P M P M
a s

 (4) 

 
1
tr( )= ( ( ))

2

Tb M b V P Ma−×  (5) 

The following identity will also be used:  

 
12

( , ) (3) , tr( ) = ( ) ( )
2

T T
A B A B V A V B
a a a a a a

∀ ∈ so  (6) 

Denote by ( , )nR Rγ  the angular-axis coordinates of a given matrix (3)R SO∈ , and by Id  the 

identity matrix of 3 3×R . One has:  

 (3), tr( ) = 2(1 cos( ))R SO I R
d R

γ∀ ∈ − −  (7) 
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3. UAV Model and Control Strategy 

3.1 VTOL UAV Model 

The VTOL UAV is represented by a rigid body of mass m  and of tensor of inertia 

= ( , , )1 2 3I diag I I I  with 1I , 2I  and 3I  strictly positive. To describe the motion of the UAV, 

two reference frames are introduced: an inertial reference frame ( )I  associated with the 

vector basis ( , , )1 2 3e e e  and a body frame ( )B  attached to the UAV and associated with the 

vector basis ( , , )
1 2 3
b b be e e  (see Figure 1).  

 

Figure 1. Reference frames 

The position and the linear velocity of the UAV in ( )I  are respectively denoted 

=
T

x y zχ χ χ χ⎡ ⎤
⎣ ⎦  and =

T
v v v vx y z⎡ ⎤⎣ ⎦ . The orientation of the UAV is given by the 

orientation matrix (3)R SO∈  from ( )I  to ( )B , usually parameterized by Euler's pseudo 

angles ψ , θ , φ  (yaw, pitch, roll):  

 =

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

⎡ ⎤− +
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (8) 

with the trigonometric shorthand notations =cos( )c αα  and =sin( )s αα , α∀ ∈ R .  

Let =
T

p q rω ω ω⎡ ⎤Ω ⎣ ⎦  be the angular velocity of the UAV defined in ( )B .  

The dynamics of a rigid body can be described as:  

 =

=

=

=

v

mv F

R R

I I

χ⎧
⎪
⎪
⎨

Ω×⎪
⎪ Ω −Ω× Ω+Γ⎩

&

&

&

&

 (9) 

where the inputs are a translational force 
3

F ∈ R  and a control torque 
3

Γ ∈ R . 
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For the VTOL UAV, the translational force F  combines thrust, lift, drag and gravity 
components. In quasi-stationary flight we can reasonably assume that the aerodynamic 

forces are always in direction ( )
3 3
b
e Re= , since the lift force predominates the other 

components (Hamel & Mahony, 2004).  

By separating the gravity component 3mge  from the combined aerodynamic forces, the 

dynamics of the VTOL UAV are rewritten as: 

 

=

= 3 3

=

=

v

mv Re mge

R R

I I

χ⎧
⎪

− +⎪
⎨

Ω×⎪
⎪ Ω −Ω× Ω+Γ⎩

&

&

&

&

T
 (10) 

where the inputs are the scalar ∈T R  representing the magnitude of the external forces 

applied in direction 
3
be , and the control torque [ ]= 1 2 3

TΓ Γ Γ Γ  defined in ( )B . 

3.2 Control Strategy 

In this chapter, we consider the problem of the vehicle stabilization around a desired 

position 
d

χ assumed to be constant ( )0dχ =& . 

For control design, let us define the position error ( )dξ χ χ= − . The system (10) becomes:  

 

=

= 3 3

=

=

v

mv Re mge

R R

I I

ξ⎧
⎪
⎪ − +
⎨

Ω⎪ ×
⎪ Ω −Ω× Ω+Γ⎩

&

&

&

&

T
 (11) 

Designing a controller for the model (11) can be realized by a classical backstepping 

approach applied to the whole dynamical system. In that case, the input vector ( / ) 3m Re− T  

must be dynamically extended (Frazzoli et al., 2000), (Mahony et al., 1999). To avoid such a 
dynamical extension, the singular perturbation theory can be used to split the system 
dynamics into two reduced order subsystems (Khalil, 2002), (Calise, 1976). This approach 
leads to a time-scale separation between the translational dynamics (slow time-scale) and 
the orientation dynamics (fast time-scale). Reduced order controllers can therefore be 
designed to stabilize the system dynamics (Njaka et al., 1994).  

We introduce the scaling parameter (0,1]ε ∈  such that:  

 
=

= 3 3

v

v Re ge
m

ξ⎧⎪
⎨

− +⎪
⎩

&

&
T  (12) 

 
-

R R

I I

ε

ε

⎧ = Ω⎪ ×⎨
Ω= Ω× Ω+Γ⎪⎩

&

&
 (13) 
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For =1ε , we obtain the full order system. Setting =0ε  leads to the slow time-scale reduced-

order system, where the orientation dynamics satisfy a quasi steady state condition =0Ω .  

For the translational dynamics (12), we will define the full vectorial term 3ReT  as the 

position control input. We will assign its desired value 

 ( ) = ( , )3
d

Re f vξT  (14) 

Assuming that the actuator dynamics can be neglected with respect to the rigid body 

dynamics of the UAV, the value dT is considered to be instantaneously reached by T . 

Therefore, we have ( ) =3 3
d dRe R eT T , where 

d
R is the desired orientation of the vehicle. The 

vector 
3

d
R eT will then be split into its magnitude 

 = ( , )f vξT  (15) 

representing the first control input, and its direction 

 
1

= ( , )3
dR e f vξ

T
 (16) 

representing the desired orientation.  

Remark 1: The desired orientation dR  can then be deduced from the given direction 

1
= ( , )3

dR e f vξ
T

, solving for (ψ , θ , φ ) for a given specified yaw value dψ  and using (8) (Hamel, 

2002). 

Since 1ε 2  for the considered system, the design of the position controller can be done in 

the slow time-scale, i.e. for 
d

R R≡ .  
For the orientation dynamics (13), we will assign the control torque Γ  such that the 

orientation R  of the UAV converges asymptotically to the desired orientation dR , and 

such that the angular velocity Ω  converges to dΩ  defined by:  

 =d d dR R Ω×
&  (17) 

Therefore, the assigned control law will be of the form 

 = ( , , , )
d d

h R RΓ Ω Ω  (18) 

The design of the attitude controller can be done in the fast time-scale, assuming 0dΩ = . 

Indeed, defining = dR RΛ −  and using the singular perturbation theory, we get 

 = d dR Rε εΛ Ω − Ω× ×
&  (19) 
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Since 1ε 2  for the considered system (the translational dynamics are characterized by a 

slow time-scale with respect to the orientation dynamics), the term d dRε Ω×  can therefore be 

ignored.  
The structure of the controller we will develop is summarized in Figure 2. It is defined as a 
cascaded combination of the position controller and the attitude controller.  

 

Figure 2. Cascaded structure of the controller 

Remark 2: Note that in the considered case where no velocity measurements are available, the 

functions f and h defining the control laws will not depend on v  nor on Ω . 

4. Position Controller 

Consider the translational dynamics. According to the above discussion of Section 3.2, we 

assume, for control design, that 
3 3

d
Re R e≡T T  is the control input of the translational 

dynamics.  

Let 
3

,q w∈ R  be two virtual states and let 
3

δ ∈ R  be a virtual control such that: 

 

=

= 3 3

=

=

v

dv R e ge
m

q w

w

ξ

δ

⎧
⎪
⎪⎪ − +
⎨
⎪ −⎪
⎪⎩

&

&

&

&

T
 (20) 

Lemma 1: Consider the system dynamics (20). Let us define the control vector  

 { }( ) ( )1 23 3

md
R e k k q k q w mgexkv

ξ ξ ξ= + − + − + +T  (21) 

and the virtual control  
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 { }1
= ( ) ( )2 1 2

2
k w k q k q w

k
δ ξ ξ− + − + − +  (22) 

where kx , kv , 1k  and 2k  are strictly positive gains.  

Consider the Lyapunov function candidate  

 
1 1 1 12 2 2 2
= 1 2
2 2 2 2
k k v k q k q wx vξ ξ ξ+ + − + − +S  (23) 

Define min( , , , )min 1 2k k k k kx v=  and =max( , , )1 2k k k kmax x .  

Then, for any initial conditions (0)ξ , (0)v , and (0)= (0)q ξ  and (0)=0w  verifying  

 
2 21

(0)<
218

g k kv min

kmax

S  (24) 

the control vector (21) along with the virtual control (22) exponentially stabilizes the translational 

dynamics (20), and the input T  is strictly positive and bounded.  
Proof:  

The time derivative of the Lyapunov function candidate S  is 

 = ( ) ( ) ( ) ( ) ( )
3 3 1 2

T T d T T
k v k v R e ge k q v w k q w v w
x v m
ξ ξ ξ δ+ − + + − + + − + + +& T

S  (25) 

which can be expressed as:  

 = ( ) ( ) ( ) ( ) ( )3 3 1 2 1 2
T d T Tv k k R e k ge k q k q w k w q k q w wx v v

m
ξ ξ ξ ξ ξ δ

⎧ ⎫
− + + − + − + + − + − + +⎨ ⎬

⎩ ⎭
& TS  (26) 

Taking the control vector 3
dR eT  as defined in (21), we get:  

 = ( ) ( ) ( )1 2
T Tk w q k q w wξ ξ δ− + − + +&S  (27) 

We introduce ( )qξ −  in the first term to obtain: 

 = ( ( ) ( )) ( ) ( ) ( )1 2
T Tk w q q q k q w wξ ξ ξ ξ δ+ − − − − + − + +&S  (28) 

which leads to:  

 2
= ( ) ( ( ) ( ))1 1 2

Tk q q w k q k wξ ξ ξ δ− − + − + − + +&S  (29) 

Choosing the virtual control δ  according to (22) makes &S  become: 

 2 2
= 1 2k q k q wξ ξ− − − − +&S  (30) 

The application of La Salle’s principle leads to qξ →  and ( )w qξ→− − , i.e. 0w→ . By 

continuity, we get qξ →& & , that is v w→− . Since 0w→ , it yields 0v→  and 0ξ →& , and by 
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continuity 0v→& . Combining the second equation of system (20) with (21) and the fact that 

0v→&  leads to:  

 ( )( ) ( ) 01 2k k q k q wxξ ξ ξ+ − + − + →  (31) 

Using ( ) 0qξ − →  and 0w→ , we finally get 0ξ →  and 0q→ . Therefore, the closed-loop 

system (20) is asymptotically stable, and since it is linear, we can conclude that it is 
exponentially stable.  

It remains to show that the input T  is strictly positive and bounded.  
From (21), we have:  

 { }= ( ) ( )1 2 3
m
k k q k q w mgex

kv
ξ ξ ξ+ − + − + +T฀  (32) 

By triangular inequality, we get:  

 { }m
mg k q q w

maxkv
ξ ξ ξ≥ − + − + − +T  (33) 

 { }
1

22 2 2 2
3
m

mg k v q q w
maxkv

ξ ξ ξ≥ − + + − + − +T  (34) 

Using the definition of S  and kmin , we have:  

 { }1 2 2 2 2

2
k v q q wmin ξ ξ ξ+ + − + − + ≤S  (35) 

Since S  is decreasing, we have:  

 (0)≤S S  (36) 

 where, taking (0)= (0)q ξ  and (0)=0w , the initial value (0)S  is defined by:  

 
1 12 2

(0)= (0) (0)
2 2
k k vx vξ +S  (37) 

Using (34) along with (35) and (36), we get:  

 
2 (0)

3
m

mg kmax
k kv min

≥ −
S

T  (38) 

Using condition (24), we obtain >0T .  

Let us finally show that T  is bounded.  
From equation (32) and by triangular inequality, we also get:  

 { }m
mg k q q wmax

kv
ξ ξ ξ≤ + + − + − +T  (39) 
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 { }
1

2 2 2 2 23
m

mg k v q q w
maxkv

ξ ξ ξ≤ + + + − + − +T  (40) 

Using (35) and (36) leads to:  

 
2 (0)

3
m

mg kmax
k kv min

≤ +
ST  (41) 

and, therefore, the input T  is bounded. ■  
Lemma 1 ensures that the control vector (21) along with the virtual control (22) 
exponentially stabilizes the translational dynamics (20) without using any measurement of 
the linear velocity.  
Remark 3: From our previous discussion, Section 3.2, equation (32) can be directly used to provide 

the control input T . Furthermore, since T  is strictly positive, the direction given by 

 { }
1

( ) ( )3 1 23

md
R e mge k k q k q wx

kv
ξ ξ ξ

⎛ ⎞
= + + − + − +⎜ ⎟⎜ ⎟

⎝ ⎠T
 (42) 

is well defined and can be used to compute the desired orientation dR . 
Due to the position controller we developed, the closed-loop translational dynamics are 

exponentially stable for = dR R . However, since the orientation R  will not converge 

instantaneously to the desired value dR , an orientation error term is introduced in the 
translational dynamics: 

 = ( )3 3 3
d dmv R e mge R R e− + − −& T T  (43) 

Therefore an attitude controller must be designed to allow, at least, asymptotic convergence 

of R  to dR . 

5. Attitude Controller 

Consider the orientation dynamics (13) and assume that measurements on the angular 

velocity Ω  are not available. Let us introduce = /tτ ε . In the fast time-scale, the time 

derivative of a given function g  will be denoted by  

 = =
d d

g g g
d dt

ε
τ

o
 (44) 

Similarly to the translational dynamics, we introduce two virtual states (3)Q SO∈ , 3W∈R  

and a virtual control 
3

∆∈ R  for the orientation dynamics, such that:  
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=

=

=

=

R R

I I

Q QW

W

⎧
⎪ Ω×
⎪
⎪

Ω −Ω× Ω+Γ⎪
⎨
⎪

−⎪ ×
⎪
⎪

∆⎩

o

o

o

o

 (45) 

For a given desired orientation dR  we define 

 =( )d TR R R%  (46) 

 = TQ Q R% %  (47) 

According to the previous discussion of Section 3.2, we assume 0dΩ =  for control design, 

i. e. R 0d =

o

.  

Using (46) and (47), we rewrite (45) as:  

 

R R

I I

Q W Q Q

W

⎧
⎪ = Ω×⎪
⎪

Ω=−Ω× Ω+Γ⎪
⎨
⎪

= + Ω⎪ × ×
⎪
⎪ =∆⎩

o
% %

o

o
% % %

o

 (48) 

Lemma 2: Consider the orientation dynamics (48). 
Define the control torque 

 { }1
= ( ( )) ( ( )) ( ( )) ( ( ))3 4 4k V P R k V P Q k V P M k V P Nr a a a a
kω

Γ − − + +%%  (49) 

and the virtual control 

 
1 1 1 1

= ( ) ( ) ( ( ))3 4 5
2 2 24

TV k P Q k W Q Q W k W P Qa ak

⎛ ⎞
∆ − + + + +⎜ ⎟× × ×⎝ ⎠

% % % %  (50) 

where  

 =( ( ))TM W P Q Qa+×
% %  (51) 

 = ( ( ))T TN Q W P Qa+×
% %  (52) 

and kr , kω , 3k , 4k  and 5k  are strictly positive gains with 
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 < 3k kr  (53) 

Consider the control Lyapunov function candidate  

 { }1 1 1 1
= tr( ) tr( ) tr ( ( )) ( ( ))3 4
2 2 2 2

T Tk I R k I k I Q k W P Q W P Qr d d a aω− + Ω Ω+ − + + +× ×
% % %%L  (54) 

Then, for any initial condition (0)R% , (0)Ω , with (0)= (0)Q R%  and (0)=0W , such that  

 (0)<2krL  (55) 

the control torque (49) along with the virtual control (50) asymptotically stabilizes the orientation 
dynamics (48).  
Proof : 

Consider the Lyapunov function candidate L  defined by (54). It's time derivative along the 

trajectories of (48) is given by:  

 { }
1 1

= tr( ) tr( ) tr ( ( )) ( ( ))3 4
2 2

T Tk R k I k Q k W P Q P Qr a aω

⎧ ⎫
⎪ ⎪

− + Ω −Ω× Ω+Γ − + + ∆ +⎨ ⎬× ×
⎪ ⎪
⎩ ⎭

o678ooo
% % %%L  (56) 

where  

 { }1
( )=

2

T TP Q W Q Q Q W Qa + Ω + +Ω× × × ×

o678
% % % % %  (57) 

Using (57) and the fact that ( )=0T IΩ Ω× Ω , it yields:  

 

{ }

1 1
= tr( ) tr( )3

2 2
1

tr ( ( ))4
2

Tk R k k W Q Qr

T T Tk W P Q W Q Q Q W Qa

ω− Ω + Ω Γ− + Ω× × ×

⎧ ⎫⎛ ⎞
+ + ∆ + + Ω + +Ω⎨ ⎬× × × × × ×⎜ ⎟

⎝ ⎠⎩ ⎭

o
% %%

% % % % %

L
 (58) 

Using identity (4) we get:  

 

{ }

1 1 1
= tr( ( )) tr( ( )) tr( ( ))3 3

2 2 2
1

tr ( ( ))4
2

Tk P R k k W P Q k P Qr a a a

T T Tk W P Q W Q Q Q W Qa

ω− Ω + Ω Γ− − Ω× × ×

⎧ ⎫⎛ ⎞
+ + ∆ + + Ω + +Ω⎨ ⎬× × × × × ×⎜ ⎟

⎝ ⎠⎩ ⎭

o
% %%

% % % % %

L
 (59) 

Also using (6) we obtain: 

 
{ } { }

{ }

1 1
( ( )) ( ( )) tr( ( )) tr ( ( ))3 3 4

2 2
1 1

tr ( ( )) tr ( ( )) ( ( ))4 4
2 2

T Tk V P R k k V P Q k W P Q k W P Q Qr a a a a

T T T Tk W P Q Q k W P Q W Q Q Wa a

ω= Ω + Γ+ − + + Ω× × ×

⎧ ⎫
+ + Ω + + ∆ + +⎨ ⎬× × × × × ×

⎩ ⎭

o
% % % %%

% % % % %

L
 (60) 

Using (51) we have:  
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 { } { }1 1
tr ( ( )) = tr = ( ( ))
4 4 42 2

TTk W P Q Q k M k V P Ma a
+ Ω Ω − Ω× × ×

% %  (61) 

In the same way, we use (52) to get:  

 { }1
tr ( ( )) = ( ( ))4 4

2

T T Tk W P Q Q k V P Na a+ Ω − Ω× ×
% %  (62) 

Therefore, the time derivative of L  can be simplified:  

 
{ } 1

( ( )) ( ( )) ( ( )) ( ( )) tr( ( ))3 4 4 3
2

1
tr ( ( )) ( ( ))4

2

T k V P R k k V P Q k V P M k V P N k W P Qr a a a a a

T Tk W P Q W Q Q Wa

ω= Ω + Γ+ − − − ×

⎧ ⎫
+ + ∆ + +⎨ ⎬× × × ×

⎩ ⎭

o
% %%

% % %

L
 (63) 

Choosing Γ  according to (49) leads to:  

 
1 1

tr( ( )) tr ( ( )) ( ( ))3 4
2 2

T Tk W P Q k W P Q W Q Q Wa a
⎧ ⎫

=− + + ∆ + +⎨ ⎬× × × × ×
⎩ ⎭

o
% % % %L  (64) 

As =TW W−× × , and introducing ( )P Qa
%  in the first term:  

 ( )1 1
tr ( ) ( ) ( ) tr ( ( )) ( ( ))3 4

2 2

T T Tk W P Q P Q P Q k W P Q W Q Q Wa a a a
⎧ ⎫ ⎧ ⎫

= − + + + ∆ + +⎨ ⎬ ⎨ ⎬× × × × ×
⎩ ⎭⎩ ⎭

o
% % % % % %L  (65) 

 
1 1 1

tr( ( ) ( )) tr ( ( )) ( ) ( )3 3 4 4
2 2 2

T T Tk P Q P Q W P Q k P Q k k W Q Q Wa a a a
⎧ ⎫⎛ ⎞

=− + + + ∆ + +⎨ ⎬× × × ×⎜ ⎟
⎝ ⎠⎩ ⎭

o
% % % % % %L  (66) 

Taking ∆  as defined in (50), one has: 

 { } { }1 1
tr ( ) ( ) tr ( ( )) ( ( ))3 5

2 2

T Tk P Q P Q k W P Q W P Qa a a a=− − + +× ×
o

% % % %L   (67) 

Using again identity (6), we finally have:  

 
2 2

= ( ( )) ( ( ))3 5k V P Q k V W P Qa a− − +×
o

% %L  (68) 

ensuring that L  is strictly decreasing until ( ) 0P Qa →%  and ( )W P Qa→−×
% , i.e. 0W →× .  

Denote by ( , )nQ Qγ % %  the angle-axis coordinates of Q% . Using (7), one has:  

 
1

(1 cos( ))= tr( )3 3
2

k k I QQ dγ− − ≤%% L  (69) 

Since L  is decreasing, we have (0)≤L L . Using (55) it yields:  

 (1 cos( )) (0) < 2
3
k k

rQ
γ− ≤ ≤% L L  (70) 
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Using (53), we get:  

 1 cos( )<2 <2
3

kr
Q

k
γ− %  (71) 

From ( ) 0P Qa →% , we have =0Qγ %  or =Qγ π±% . The second possibility is excluded by (71). 

Therefore we have Q Id→% . By (47), it yields R Q→% . By continuity and using La Salle's 

principle, we get R Q→
o o
% . Using the first equation of (48) and the third equation of (45), one 

has R QWΩ →−× ×
% . Since R%  is orthogonal, we get TR QWΩ →−× ×

% . Using 0W →×  it yields 

0Ω →×  and then 0Ω→ . Therefore, using the first equation of (48), we get 0R→
o
% . By 

continuity 0Ω→
o

 and then, by the second equation of system (48), 0Γ→ . Knowing that 

( )P Qa
%  and W×  converge to zero, one can ensure that, respectively from (51) and (52), M  

and N  converge to zero. Combining the above discussion with the fact that 0Γ→ , equation 

(49) ensures that ( ) 0P Ra →% .  

Similarly to the previous analysis on Q% , let us denote ( , )nR Rγ % %  the angle-axis coordinates of 

R% . One has:  

 
1

(1 cos( ))= tr( ) (0)<2
2

k k I R kr R r d rγ− − ≤ ≤%% L L  (72) 

It yields 

 1 cos( )<2Rγ− %  (73) 

From ( ) 0P Ra →% , we have =0Rγ %  or =Rγ π±% . The second possibility is excluded by (73). 

Therefore, we finally have R Id→%  and 
d

R R→% .  ■  

Lemma 2 ensures that the control (49) along with the virtual control (50) asymptotically 
stabilizes the orientation dynamics (48) without using any measurement of the angular 
velocity. 

Remark 4: The time-scale parameter 0ε >  is chosen such that the deviation R%  converges to I
d

 

faster than the translational dynamics ( 1ε 2 ). 

Remark 5: The condition (55) is not very conservative. Choosing (0)=0W  and (0)= (0)Q R% , the 

condition (55) can be simplified:  

 
(0)

>
(2 (0))

k Er
k Er

ω

ω −
 (74) 
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with 
1

(0)= tr( (0))
2

E I Rr d − %  and 
1

(0) = (0) (0)
2

T
E Iω Ω Ω . 

6. Stability Analysis 

We consider the full dynamics of the system along with virtual states and with the 
orientation error term in the translational dynamics:  

 

=

= ( )3 3 3

=

=

v

d dv R e ge R R e
m m

q w

w

R R

I I

Q W Q Q

W

ξ

δ

⎧
⎪
⎪ − + − −⎪
⎪

−⎪
⎪
⎪
⎪⎪
⎨ = Ω×⎪
⎪
⎪ Ω =−Ω× Ω+Γ
⎪
⎪

= + Ω⎪ × ×
⎪
⎪

=∆⎪⎩

&

&

&

&

o
% %

o

o
% % %

o

T T

 (75) 

with R%  and Q%  respectively defined by (46) and (47).  

Proposition 1: Consider the system dynamics (75). Under the conditions (24), (53) and (55), the 
control laws (21) and (49), along with the virtual controls (22) and (50), asymptotically stabilize the 
system (75).  
Sketch of the proof: 

By Lemma 2, under the conditions (53) and (55), the closed loop orientation dynamics are 
asymptotically stable when (49) and (50) are respectively used as control and virtual control. 

By Lemma 1, under the condition (24), the input T  is bounded. Therefore, the orientation 

error term ( ) 3
dR R e

m
− −
T

 asymptotically converges to zero.  

Since, from Lemma 1, the control of the translational dynamics is exponentially stabilizing 

for 
d

R R≡ , we can use (Khalil, 2002) to conclude that the control of the translational 
dynamics is asymptotically stabilizing in presence of the orientation error term.  
Therefore, the system (75) is asymptotically stable when the control laws (21) and (49) are 

used along with the virtual control laws (22) and (50).  ■  
By introducing virtual states, we have been able to design stabilizing controllers for the 
position and attitude of the VTOL UAV model using no measurement of the linear velocity 

v  nor of the angular velocity Ω . 

Remark 6: In the case where only the linear velocity v of the vehicle is not measured, a detailed proof 
using the singular perturbation theory can be found in (Bertrand et al., 2008). 
Remark 7: Control laws for trajectory tracking, in the case where the linear and angular velocities 
are not measured, have been proposed in (Bertrand et al., 2007b). 
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7. Simulation Results 

The VTOL UAV is described by the following parameters: = 2.5 kgm , 2= = 0.13 kg.m1 2I I  

and 2= 0.16 kg.m3I . The gravitational acceleration is -2= 9.81m.sg .  

Simulation results are provided for stabilization at hover around the desired position 

[3 1 1]
d T

χ = − (m), starting from the initial condition = 5 3 4
0

T
χ ⎡ ⎤−⎣ ⎦ (m), 

= 0 8 100 0 0
T

ψ θ φ⎡ ⎤ ⎡ ⎤− −⎣ ⎦⎣ ⎦ (deg), =00v  and =00Ω . The desired yaw dψ  was chosen to be 

equal to zero.  

The values of the gains are: kx  = 0.2, kv  = 3.0, 1k  = 0.8, 2k  = 0.8, kr  = 0.74, kω  = 3.3, 3k  = 

12, 4k  = 0.25, 5k  = 6.1.  

Figure 3 presents the coordinates of the position error [ ]
T

x y zξ =  and attitude angles. 

Stabilization of the UAV model is achieved from the given initial condition with satisfying 

behaviour performances. The input T  and the components of the control torque Γ  are 
plotted in Figure 4. 

The evolution of the angular deviation terms = dφ φ φ−% , = dθ θ θ−%  and = dψ ψ ψ−%  are 

presented in Figure 5. It can be verified that these terms converge faster than the closed loop 
translation, hence validating the time scale separation approach used for the design of the 
controllers. 

 

Figure 3. Position error and attitude angles 

www.intechopen.com



Stabilization of Scale Model Vertical Take-Off and Landing Vehicles  
without Velocity Measurements 

 

123 

 

Figure 4. Control inputs 

 

Figure 5. Angular deviation terms 

www.intechopen.com



Aerial Vehicles 

 

124 

8. Conclusion 

In this chapter, we have presented a method to design guidance and control laws for the 
stabilization of a scale-model VTOL UAV when no measurements of the linear velocity nor 
of the angular velocity are available.  
Motivated by the cascade structure of the model and by the singular perturbation approach, 
the controller is designed in two steps by considering a time-scale separation between 
translational and orientation dynamics. The position controller computes the magnitude of 
external forces, considered as a control input for the translational dynamics, and the desired 
orientation of the UAV. The attitude controller delivers the control torque ensuring 
asymptotic convergence of the actual orientation to the desired one. 
By the proposed approach, these two feedback controllers have been designed by 
introducing virtual states in the system dynamics, and without using any observer. It is also 

worth noticing that this work is based on a kinematic representation exploiting the (3)SO  

group and its manifold. 
Elements for stability analysis have been given and simulation results have been provided 
to illustrate the good performances of the proposed approach.  
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