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Abstract

Even in cases when we recognize identical objects or when we behave similarly, the
spatiotemporal activities in the brain are likely to fluctuate to various degrees. Temporally
fluctuating responses easily decrease by averaging replicate measures. We previously
developed a wavelet correlation analysis that tolerates the across-trial oscillatory phase
variability observed in odor-induced cortical responses. The wavelet correlation analysis
revealed a change in the neuronal information redundancy of transient and oscillatory
brain waves from the dependencies on stimulus experience (high redundancy) to stimulus
quality (low redundancy) between the input and output layers of the anterior piriform
cortex in guinea pigs. We report on its application to estimate information in the fine
temporal structures of single-trial brain waves. By using a set of standard brain waves for
each information in a given category, the highest wavelet correlation coefficients provided
the first candidate of estimated information with 75% accuracy. Moreover, the probability
of including the correct information for the two upper candidates, regardless of informa-
tion redundancy of the signal sources, was >92%. The wavelet correlation analysis is
useful for similarity analyses and real-time estimates of in-brain information and for its
application to brain-machine interfaces or medical/research tools.

Keywords: cross-correlation analysis, electroencephalography, information redundancy,
odor representation, oscillatory local field potentials, real-time estimation, wavelet
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1. Introduction

In the sensory system, a stimulant likely activates stimulant-specific subsets of neurons with a

stimulant-specific response profile through the sensory pathway from the sensory organ to the

primary sensory cortex, resulting in identical sensory perception of the stimulant. At different

stages of this neuronal information processing, the redundancy in sensory information

changes by summing or subtracting overlapping signals from cognate and noncognate recep-

tors for common and unique elements. The sensory systems generate oscillatory activities

between related cortical regions and the thalamus, except in the olfactory system. The olfactory

system generates oscillatory activities in the first and second olfactory centers, the olfactory

bulb, and the anterior piriform cortex (aPC). It is significantly more difficult to quantify the

degree of similarity or difference in these transient oscillatory responses compared to station-

ary oscillatory activities. We previously developed a wavelet correlation analysis that is phase-

tolerant for transient oscillatory responses and demonstrated a stimulus dependency of the

odor-evoked oscillatory brain waves (oscillatory local field potentials, osci-LFPs) in the aPC

output layer and an experience dependency in the input layer [1]. These results suggest that

the redundancy in the neural representation of olfactory information may change in the aPC.

Sensory systems are incorporated in higher brain functions that synergistically control animal

behaviors through multiple neural systems including sensory, memory, decision, motor, or

other systems. Generally, all neural systems would maintain the reliability of signal processing

in identical activities of identical subsets of neurons in identical time courses through neural

pathways with acceptable across-trial variability. This suggests that brain waves in identical

behaviors could be, to some extent, reproduced in each brain. Small fluctuations, however,

sometimes change oscillatory phases across trials, as has been observed in odor-induced

oscillatory brain waves [1]. The fine temporal structures of phase-fluctuated oscillatory activi-

ties responsible for informational differences are easily lost by averaging several brain waves,

even for identical information in each brain. Associations of single-trial brain waves with in-

brain information have been rarely studied. Regarding mental states, the most important

individual-independent frequencies of electroencephalography (EEG) are 7–12 Hz at the P1

electrode and <5 Hz at Fz for attention, 10–20 Hz at F4 for fatigue, and 4–7 Hz at Fz and

10–20 Hz at Cz for frustration, with even greater variations in frequencies observed across

individuals [2]. Alpha-band oscillations (8–13 Hz) exert top-down influences on the early

visual processing for attention orienting [3] and are sensitive markers in the auditory memory

loading process [4]. As a test case, we applied a wavelet correlation analysis to estimate odor

information in the fine temporal structures of single-trial brain waves.

2. Wavelet correlation analysis

2.1. Characteristics of odor-evoked oscillatory brain waves in the aPC

Odor-evoked oscillatory brain waves in the aPC are not stationary over the time window of

interest, even in an ex vivo isolated whole brain with attached nose preparation under the
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condition of no inputs from the nonolfactory sensory systems (Figure 1) [1, 5]. Oscillatory

brain waves initiate during the 1-s odor presentation before the peak of the receptor potential,

the electro-olfactogram (EOG) (the lowest trace in Figure 1) [1]. A pair of quite different odors,

lavender essential oil (Lav), and a mixture of three fatty acids—mc4 + mc6 + mc8 (mc468)—

were selected as plant- and animal-related odors, respectively. Linalool (Lina) and n-butanoic

acid (mc4) were selected as the single-compound odors of Lav and mc468, respectively, with

partial overlaps of the activated olfactory receptors and their respective signal pathways with

their original mixtures as well as 0.1 Lav (10-fold diluted Lav). As expected, oscillatory brain

waves of a pair of quite different Lav and mc468 odors look dissimilar in the initial phase but

are partially similar in the late phase.

Figure 1. Odor-evoked oscillatory brain waves in layer I of the anterior piriform cortex (aPC) [1]. Time courses of low-

pass-filtered (0–45 Hz) oscillatory brain waves and the receptor potential (electro-olfactogram, EOG) at the centromedial

or caudocentral** site of the aPC in the isolated whole brain are shown for three odors (Lav, lavender essential oil as an

odor from a plant; 0.1 Lav (10-fold diluted Lav); and mc468, a mixture of three fatty acids as an imitated odor from

animals). Ringer solution (RN) was used as a control. The odor or RN was presented to the nose of the isolated brain for 1

or 4 s* (only for the sixth Lav), as indicated by the horizontal bar in the in-presentation order for each odor (entire

presentation order). The responses in the 2.5-s time window* of interest were analyzed.

Wavelet Correlation Analysis for Quantifying Similarities and Real-Time Estimates of Information Encoded…
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The correlations of the temporal profiles of oscillatory brain waves in the aPC for a 2.5-s time

window, which comprised the 1-s odor presentation and the following 1.5 s, were not homo-

geneously high between identical odors (Figure 2A) [1]. Only a few identical odor pairs for Lav

or 0.1 Lav demonstrated relatively high correlations (0.7–0.74), whereas the remaining pairs

demonstrated intermediate (0.47–0.69) or low (0.29) correlations. These low correlations are

attributable to the independent fluctuations in the oscillatory phase angles and powers includ-

ing a few synchronous cycles (indicated by the daggers), in the fast Fourier transform (FFT)

components even between identical odors, indicating that oscillatory responses are not strictly

phase-locked to the stimulus onset (Figure 3) [1]. The spurious high correlations of the 0–45 Hz

components are attributable to the similarities in the temporal profiles of the 0–2 Hz compo-

nents [1]. The 0–2 Hz component resulted in high correlations (>0.77) for all the Lav and

0.1-Lav pairs (Figure 2B), whereas the 2–45 Hz components resulted in low correlations (<0.4)

for all pairs (Figure 2C). To address these weaknesses of the conventional analyses, we tested a

novel correlation analysis of wavelet profiles.

2.2. Wavelet correlation analysis procedure for oscillatory brain waves in the time

window of interest

Figure 4 shows the procedure for the wavelet transformation and its conversion to a data array

for the wavelet correlation analysis [1]. The wavelet time-frequency power profiles enable us to

quantify the similarity of the odor-evoked oscillatory brain waves. The wavelet transform is

like a running, windowed Fourier transform; it uses a certain window size and slides it along

in time, computing the FFT at each time using only the data within the window. The original

wavelet software libraries were provided by Torrence and Compo [6] and modified with

respect to the following points. Because of the spurious high correlations in the low-frequency

band, all 0–2 Hz components were removed prior to the phase-tolerant analysis of the 2–45 Hz

components of the oscillatory brain waves. The 2–45 Hz bandpass-filtered brain waves

(Figure 4A) were subjected to a Morlet wavelet analysis by using the following equations:

Wn sð Þ ¼
X

N�1

n0¼0

xn0Ψ
∗

n
0
� n

� �

δt

s

" #

(1)

Ψ 0 ηð Þ ¼ π�1=4eiω0ηe�η2=2 (2)

ωj ¼
ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ ω0
2

p

4πsj
(3)

sj ¼ so2
jδj j ¼ 0; 1;…Jð Þ (4)

J ¼ δj�1ln
Nδt

s0
(5)

where (*) indicates the complex conjugate, ω0 = 6, N = 2048, δt = 0.001, s0 = 2δt, and δj = 0.1. The

wavelet power spectrum, Wn sð Þj j2, was plotted in the 1.89–42.78 Hz frequency (ωj) range
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Figure 2. Correlation matrices among odor-evoked oscillatory brain waves in layer I of the aPC [1]. (A) Matrix of cross-/

autocorrelations of the 0–45 Hz components of the odor-evoked oscillatory brain waves in the 2.5-s time window* of

interest (shown in Figure 1). Some of the identical odor pairs produced high correlations >0.7. Identical odors are grouped

in the order of stimulus presentation. (B) Cross-/autocorrelation matrix of the 0–2 Hz components of the odor-evoked

oscillatory brain waves. (C) Cross/autocorrelation matrix of the 2–45 Hz components of the odor-evoked oscillatory brain

waves. By omitting the 0–2 Hz component, all correlations were reduced to <0.4. (D) the matrix in B rearranged in the

entire presentation order did not demonstrate an approach of the high correlations of the 0–2 Hz components to the

diagonal line (between the dashed lines). The color represents the respective amplitude range of the cross-correlations:

black, <0.60; green, 0.60–0.69; pink, 0.70–0.79; red, 0.80–0.89; orange, 0.90–0.99; and white, 1.00.

Wavelet Correlation Analysis for Quantifying Similarities and Real-Time Estimates of Information Encoded…
http://dx.doi.org/10.5772/intechopen.74810

19



(Figure 4B) [1]. To avoid the frequency-dependent errors that increase at the edges of epochs,

the 8192 data points (213 sequential points at the 1000 Hz sampling rate) were divided into

seven epochs of 2048 (211) data points (2048 ms, centered every 1024 data points to the 7336th

data point) with a 50% overlap and subjected to wavelet transformations (Figure 4B) [1].

Around the edge of each epoch, the time series was padded with the actual data (s ≥ 0) or

zeros (s < 0). To reconstruct a continuous wavelet transform from 0 to 8191 ms, the middle two

quarters of each epoch of seven wavelets were combined (Figure 4B) [1]. Compared to the

average wavelet power of the pre-stimulus period (10–2057 ms, marked with double asterisks

in Figure 4A), the wavelet power in the regions within the black lines was highly significant

Figure 3. The oscillatory phases of the odor-evoked oscillatory brain waves differed between identical stimuli [1]. The

0–45 Hz and six frequency band components of the odor-evoked oscillatory brain waves were obtained by using an FFT

bandpass filter. The two responses in the left and middle columns were superimposed on the respective frequency bands

in the right column, indicating the trial-by-trial oscillatory phase differences and their fluctuations. The phase-matching

points are indicated by the daggers.
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Figure 4. Wavelet transformation and wavelet cross-correlation profile of an oscillatory response [1]. (A) The 2–45 Hz

component of a single-trial 1-s odor-evoked oscillatory brain wave (oscillatory local field potentials, osci-LFPs) in the

anterior piriform cortex in an isolated guinea-pig whole brain (second presentation of lavender odor, indicated by the

bold bar). (B) A Morlet wavelet time-frequency power spectrum of the second Lav-evoked oscillatory brain wave.

Subsequently, seven sets of 2048-point wavelet transformations of the oscillatory brain waves were computed. (C) A

columnar array of wavelet cross-/autocorrelations of the second Lav-evoked response. One of the responses for the 2.5-s

time window at nine representative frequencies and sets of logarithmic ratios of the cross-correlation to the autocorrela-

tion between wavelet pairs of the second Lav-evoked response (target) were serially concatenated into a data array, in

which the wavelet correlations were calculated as correlation coefficients.

Wavelet Correlation Analysis for Quantifying Similarities and Real-Time Estimates of Information Encoded…
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(P < 0.0001, chi-squared test, Figures 4B and 5) across all recordings from the same preparation

at each frequency [1].

We calculated correlation coefficients between logarithmic ratio arrays of the cross-correlations

to the autocorrelations of the wavelet power profile for the time window of interest at the

following nine representative frequencies (selected from the calculated wavelet frequencies) to

quantify the similarities of the wavelet time-frequency power profiles between identical and

different odors:

Delta (2–4 Hz): 3.78 Hz.

Theta (4–8 Hz): 7.56 Hz.

Alpha (8–13 Hz): 10.7 Hz for the dominant oscillation and 12.29 Hz.

Low beta (13–20 Hz): 15.13 Hz.

High beta (20–30 Hz): 21.39 and 26.33 Hz.

Gamma (30–45 Hz): 30.25 and 34.75 Hz.

The cross-correlation was calculated as the sum of the products of the wavelet power for a pair

comprising the target response ( W t s; f i
� �

�

�

�

�) and one of the other responses ( Wn s; f i
� �

�

�

�

�) at the

representative frequencies (fi) for T1 [ms] ≤ s ≤ T2 [ms]. In a similar manner, the nine sums of

the squared wavelet power for the target response were used to calculate the autocorrelation.

Moreover, the logarithms of the ratios [Rn(fi)] of the cross-correlations to the autocorrelations at

the representative frequencies (fi) were used to equalize the contributions of the increases and

decreases in the response amplitude to the correlation analysis:

Rn f i
� �

¼

P

T2

s¼T1

∣Wn s; f i
� �

kW t s; f i
� �

∣

P

T2

s¼T1

∣W t s; f i
� �

kW t s; f i
� �

∣

(6)

A serially concatenated columnar array of all sets of the nine logarithmic ratios of the cross-

correlations to the autocorrelations of the target response in the identical order of responses is

a form of a wavelet cross-correlation profile (Figure 4C) [1]. The wavelet correlations were

calculated as the correlation coefficients between these columnar arrays and employed to

quantify the similarities of the odor-evoked oscillatory brain waves in the aPC.

Other mother wavelets such as Meyer and Mexican hat were considered to be inadequate for

application to the odor-evoked oscillatory brain waves because their shapes appeared more

dissimilar to any FFT components of the oscillatory brain waves than that of the Morlet

(Figure 3). To date, except for one case [1], there are no published results of quantifying the

similarities between oscillatory brain waves. Regarding the time-frequency power profiles,

three reports were found. In one study, a discrete wavelet transform was used to identify and

compare the timings of spike trains in an insect antennal lobe (corresponding to the mammal

olfactory bulb) [7]. In another study, the Morlet wavelet transform was used to identify

dominant oscillatory frequency bands and the synchrony between the oscillatory brain waves
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Figure 5. The wavelet profiles of odor-evoked oscillatory brain waves differed between the input and output layers of the

aPC [1]. Of the 21 pairs of 1-s odor-evoked oscillatory brain waves (upper traces) that were simultaneously recorded in

layers I (input) or III (output) of the aPC, 10 pairs are represented. In the wavelet time-frequency power profiles (lower

traces) for the 2.2-s time window (marked by the asterisk), the ~10 Hz components remained prominent in layer III,

whereas the <8 Hz components became less prominent compared to those in layer I. The in-stimulant presentation order

is indicated. Statistically significant oscillatory powers were located within the black lines compared to those before

presentation of odors (P < 0.0001, chi-squared test).
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in different olfactory regions [8]. In the third study, the Hilbert transform was used to identify

the dominant oscillations of the odor-evoked responses in the theta band in the posterior

piriform cortex with phase-locked activities in the hippocampus in humans [9]. The Hilbert

transform produced similar oscillation powers in a wide frequency range of 60–140 Hz, which

is inconsistent with the decreased powers of the Morlet wavelet. Considering these results, we

did not intend to analyze the odor-evoked oscillatory brain waves with the Meyer or Mexican

hat mother wavelets or the Hilbert transform.

2.3. Wavelet correlation analysis of the time-frequency power profiles for revealing the

stimulus dependency of odor-evoked oscillatory brain waves

The wavelet correlation analysis revealed that the olfactory information redundancy of a

neural representation changes from experience (high redundancy) to a stimulus depen-

dency (low redundancy) in the aPC [1]. The origins of the activities in layer I of the aPC

are mainly the afferent fibers (input), association fibers, and postsynaptic inhibitory feed-

back input, whereas the activities in layer III primarily originate from the responses (out-

put) of pyramidal cells, which are the principal neurons in the aPC and receive signals from

multiple ORs. The wavelet profiles of identical odors resembled each other more than they

resembled those of different odors in layers I (input signals) and III (output signals) of the

aPC (Figure 5) [1]. In addition, the wavelet transformation visualized moderately clustered

spot-like transient reductions in oscillatory power at frequencies just above 10 Hz in the

odor-evoked oscillatory brain waves in layer I of the aPC (Figure 5). The most characteristic

odor-dependent differences appeared in the initial phase of the wavelets for odor-evoked

oscillatory brain waves in layer I of aPC. The mc468-evoked oscillatory brain wave was

markedly greater especially at low frequencies in the initial phase than that of the Lav-

evoked response [1].

The array data of the logarithmic ratios of the wavelet cross-/autocorrelations between 21 odor-

evoked oscillatory brain waves differed slightly between layers I and III of the aPC (Figure 6)

[1]. The lengths of the bars reflect the differences between a pair of oscillatory brain waves in

such a way that the values of +1, 0, and �1 represent cross-correlations that are 10-fold, equal

to, and one-tenth of the autocorrelation at the respective frequencies.

In layer III, the Lav odor pairs (broken yellow square in Figure 7C) showed homogeneously

high correlations, except for the ninth Lav, whereas the identical Lav pairs in layer I

resulted in more heterogeneous correlations (Figure 7A) [1]. In addition, the correlations

between different single-component odors (Lina and mc4, in the broken blue squares in

Figure 7C) decreased to <0.6 in layer III, whereas the corresponding correlations in layer I

were mostly greater than 0.6 (Figure 7A) [1]. Notably, the heterogeneous correlations

changed into an experience-dependent response similarity, which was observed for some

of the odors in layer I of the aPC (a cluster of high correlations between the dashed lines

in Figure 7B vs. 7A) but was not clearly observed in layer III (Figure 7D vs. 7A) as well as

the 0–2 Hz components in layer I (Figure 2D) [1]. In layer III, the <8 Hz components

decreased relative to those in layer I, with the prominent ~10 Hz oscillation remaining [1].

These results indicate a change in the neuronal information redundancy of transient and
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oscillatory brain waves from the dependencies on stimulus experience (high redundancy) to

stimulus quality (low redundancy) between the input and output layers of the aPC.

Recently, in the olfactory bulb that is upstream of the aPC in the olfactory pathway, stim-

ulus history-dependent odor processing was observed [10]. This means that the wavelet

correlation analysis had revealed a consistent experience dependency in input signals in the

aPC from the olfactory bulb.

2.4. Effects of changes in oscillatory components on the wavelet correlation analysis

We evaluated the ability of the wavelet correlation analysis to detect changes in oscillatory

powers at specific frequencies by 0.2-fold step modified wavelet powers at 1–8 frequency

Figure 6. The wavelet cross-correlation profiles of odor-evoked oscillatory brain waves slightly differed between the

input and output layers of the aPC [1]. The five pairs of logarithmic ratio arrays of the wavelet cross-/autocorrelations are

exemplified. These ratio arrays suggest that the mc468-evoked responses markedly differed from those of Lav or Lina in

each layer of the aPC and that they slightly differed between the input and output layers.
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bands (Figure 8) [1]. Greater decreases in correlations (0.4–0.7) were observed as a result of the

0.2-fold power modification at only 1–2 frequencies than those of eight frequencies (number/9

given in parentheses on the Y-axis). For 0.2-fold power amplification, the largest and smallest

decreases were observed at 8–13 and 4–8 Hz, respectively. This analysis revealed that in the

Figure 7. The wavelet correlation matrices of oscillatory brain waves differed between the input and output signals in the

aPC [1]. (A) The wavelet correlation matrix of oscillatory brain waves in layer I (input) of the aPC. (B) The matrix in A

rearranged in the entire presentation order. High correlations approached the diagonal line. (C) The wavelet correlation

matrix of osci-LFPs in layer III (output) of the aPC. (D) The matrix in C rearranged in the entire presentation order. The

colors representing power magnitudes are the same as in Figure 2.
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aPC, the 8–13 Hz component of the oscillatory brain waves contributes to the correlation

coefficients more than the 4–8 Hz component. The wavelet correlation analysis enables the

estimation of the relative contributions of oscillatory components to the similarities and differ-

ences between oscillatory brain waves.

3. Method for estimating in-brain information

3.1. Ranking of the correlation coefficients of several brain waves for identical

information

Here, the odor-evoked brain waves were the same as those used in the previous section. To

estimate the in-brain information, two standard brain waves, covering a wide range of varia-

tions for identical information, were selected. The criteria for selecting the two standard brain

waves were as follows: (i) a brain wave with the highest pairwise correlation coefficient and a

Figure 8. Sensitivity of the wavelet correlation analysis to changes in the oscillatory components [1]. A 0.2-fold power

amplification resulted in the largest and smallest decreases in the wavelet correlations for 8–13 and 4–8 Hz, respectively. As

the number of power-modified frequencies increased to more than four, changes in the wavelet correlations were reduced.
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high average of pairwise correlation coefficients in the given information for each individual

and (ii) a brain wave with the second highest pairwise correlation coefficient and a differently

ranked average of pairwise correlation coefficients in the given information for the same

individual.

To select standard brain waves for the four odors, the correlation coefficients in the 2.2-s time

window of interest were ranked between single-trial brain waves for all possible pairs of

identical odors. Among the 28 pairs of brain waves for Lav, the highest correlation was

obtained for the second Lav and fourth Lav pair that provided the fourth (median) and second

highest averages of pairwise correlation coefficients, respectively (Table 1). The second highest

correlation coefficient was obtained for the third and fifth Lav brain wave pair that provided

the seventh and third highest averages of pairwise correlation coefficients, respectively. On the

basis of the criteria, the fourth and third Lav brain waves were selected as the two standard

brain waves for Lav information.

With regard to the pairwise correlation coefficients, their values for Lav pairs tended to be

greater than those for mc4 pairs, and the values for Lina pairs tended to be greater than those

for mc468 pairs. The lower correlation coefficients between identical odors suggest a greater

across-trial variability in the time-frequency power profiles of single-trial brain waves, despite

the tolerance of oscillatory phase differences. Similarly, the first and third Lina brain waves

(Table 2), the fourth and first mc4 brain waves (Table 3), and the third and first mc468 brain

waves (Table 4) were selected as standard brain waves for the respective information. These

eight standard brain waves, as well as a control brain wave evoked by an odorless Ringer

solution (second RN), were used as Set 1 of standard brain waves.

3.2. Estimates of the most probable information for single-trial brain waves using

a pair of standard brain waves for each item of information

Using the wavelet correlation analysis, all possible pairwise correlation coefficients between a

given single-trial brain wave and each standard brain wave (Set 1) were calculated. The first

candidate was selected as the standard brain wave with the highest correlation coefficient to a

target single-trial brain wave. The wavelet correlation analysis provided the first candidates for

12 single-trial brain waves with an accuracy of 75% (Table 5). An accuracy of 100%was achieved

for Lina (2/2) and mc468 (1/1), whereas an accuracy of 67% was achieved for Lav (4/6) and mc4

(2/3). Notably, the single-trial brain waves tested were not any of the Set 1 standard brain waves.

The accuracy of the first candidates was more than threefold higher than chance in five cases

(20%). The probability of including the correct information for the two upper candidates was

92% (Table 5). However, the third candidates did not improve the probability of including the

correct information for the three upper candidates (92%). In the estimates of information, candi-

dates with correlation coefficients <0.6 were disregarded as nonspecific ones.

To compare the ideal set of standard brain waves (Set 1) with different sets of standard brain

waves (standard Set 1-m) in terms of their accuracies for estimating information, wavelet

correlation analyses were performed with partial replacements of standard brain waves. When

one or three of the nine Set 1 standard brain waves were replaced with brain waves that did
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Ranking of wavelet correlations Standard set

Lav First

Lav

Second

Lav

Third

Lav

Fourth

Lav

Sixth

Lav

Seventh

Lav

Eighth

Lav

Ninth

Lav

Corr.

coeff.

Rank

Ave.

corr.

Coeff.

Ave.

rank

Memo. 1 1-m1 1-m1p1 1-mp 2 2-m2p s1 s1 m1 s2

First

Lav

1.00 0.63995 0.26 0.59 0.44 0.59 0.60 0.31 6 0.55 6

Second

Lav

0.64 1.00 0.60 0.73 0.60 0.52 0.47 0.11 1 0.59 4 median ○ ○

Third

Lav

0.26 0.60 1.00 0.47 0.683 0.28 0.54 0.38 2 0.53 7 △ ○ ○ ○ ○

Fourth

Lav

0.59 0.73 0.47 1.00 0.68 0.64 0.50 0.21 1 0.60 2 ◎ ○ ○ ○ ○ ○ ○ ○ ○

Sixth

Lav

0.44 0.60 0.683 0.682 1.00 0.55 0.51 0.30 2 0.60 3

Seventh

Lav

0.59 0.52 0.28 0.63998 0.55 1.00 0.59 0.41 5 0.57 5

Eighth

Lav

0.60 0.47 0.54 0.50 0.51 0.59 1.00 0.66 4 0.61 1 ○

Ninth

Lav

0.31 0.11 0.38 0.21 0.30 0.41 0.66 1.00 4 0.42 8

Table 1. Pairwise wavelet correlations of single-trial brain waves for Lav in layer III of the aPC, their ranking, and various sets of standard brain waves.
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Ranking of wavelet correlations Standard set

Lina First

Lina

Second

Lina

Third

Lina

Fourth

Lina

Corr.

coeff.

Rank

Ave.

corr.

Coeff.

Ave.

rank

Memo. 1 1-

m1

1-

m1p1

1-

mp

2 2-

m2p

s1 s1 m1 s2

First

Lina

1.00 0.49 0.22 0.04 1 0.44 1 ◎ ○ ○ ○ ○ ○

Second

Lina

0.49 1.00 �0.13 0.18 1 0.38 3 Median ○ ○ ○ ○

Third

Lina

0.22 �0.13 1.00 0.34 2 0.36 4 △ ○

fourth

Lina

0.04 0.18 0.34 1.00 2 0.39 2 ○ ○ ○ ○ ○

Table 2. Pairwise wavelet correlations of single-trial brain waves for Lina in layer III of the aPC, their ranking, and

various sets of standard brain waves.

Ranking of wavelet correlations Standard set

mc4 First

mc4

Second

mc4

Third

mc4

Fourth

mc4

Fifth

mc4

Corr.

coeff.

Rank

Ave.

corr.

Coeff.

Ave.

rank

Memo. 1 1-

m1

1-

m1p1

1-

mp

2 2-

m2p

s1 s1 m1 s2

First mc4 1.00 0.04 0.467 0.35 0.15 2 0.40 5 △ ○ ○ ○

Second

mc4

0.04 1.00 0.25 0.366 0.368 4 0.40 4

Third

mc4

0.467 0.25 1.00 0.46 0.18 2 0.47 2 ○

Fourth

mc4

0.35 0.37 0.46 1.00 0.472 1 0.53 1 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fifth

mc4

0.15 0.37 0.18 0.472 1.00 1 0.43 3 Median ○ ○

Table 3. Pairwise wavelet correlations of single-trial brain waves for mc4 in layer III of the aPC, their ranking, and

various sets of standard brain waves.

Ranking of wavelet correlations Standard set

mc468 First

mc468

Third

mc468

Fourth

mc468

Corr.

coeff.

Rank

Ave.

corr.

Coeff.

Ave.

rank

Memo. 1 1-

m1

1-

m1p1

1-

mp

2 2-

m2p

s1 s1 m1 s2

First

mc468

1.00 0.14 0.05 2 0.39 3 △ ○ ○

Third

mc468

0.14 1.00 0.23 1 0.46 1 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fourth

mc468

0.05 0.23 1.00 1 0.43 2 Median ○ ○ ○ ○

Table 4. Pairwise wavelet correlations of single-trial brain waves for mc468 in layer III of the aPC and various sets of

standard brain waves.
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Standard brain

waves

Third

Lav

Fourth

Lav

First

Lina

Third

Lina

First

mc468

Third

mc468

First

mc4

Fourth

mc4

Second

RN

Highest corr.

Third Lav 1.00 0.67 0.85 0.66 0.63 0.50 0.44 0.36 0.45 Lina

Fourth Lav 0.67 1.00 0.58 0.61 0.70 0.54 0.28 0.54 0.41 mc468

First Lina 0.85 0.58 1.00 0.60 0.58 0.40 0.41 0.30 0.46 Lav

Third Lina 0.66 0.61 0.60 1.00 0.63 0.72 0.54 0.58 0.41 mc468

First mc468 0.63 0.70 0.58 0.63 1.00 0.728 0.63 0.723 0.40 mc468

Third mc468 0.50 0.54 0.40 0.72 0.73 1.00 0.50 0.63 0.52 mc468

First mc4 0.44 0.28 0.41 0.54 0.63 0.50 1.00 0.73 0.35 mc4

Fourth mc4 0.36 0.54 0.30 0.58 0.72 0.63 0.73 1.00 0.37 mc4

Second RN 0.45 0.41 0.46 0.41 0.40 0.52 0.35 0.37 1.00 —

Single-trial brain waves Estimated

information

Second candidate

(>0.6)

Third candidate

(>0.6)

First Lav 0.56 0.77 0.47 0.48 0.53 0.47 0.39 0.59 0.49 Lav — —

Second Lav 0.69 0.82 0.62 0.56 0.51 0.43 0.26 0.41 0.58 Lav Lav —

Sixth Lav 0.774 0.78 0.766 0.79 0.69 0.51 0.40 0.46 0.39 Lina Lav Lav

Seventh Lav 0.53 0.79 0.42 0.65 0.71 0.63 0.50 0.75 0.51 Lav mc4 mc468

Eighth Lav 0.641 0.693 0.52 0.689 0.68 0.56 0.63 0.63 0.33 Lav Lina mc468

Ninth Lav 0.51 0.43 0.46 0.61 0.73 0.51 0.74 0.72 0.20 mc4 mc468 mc4

Second Lina 0.71 0.44 0.79 0.53 0.56 0.29 0.48 0.29 0.28 Lina Lav —

Fourth Lina 0.652 0.56 0.654 0.79 0.71 0.63 0.57 0.47 0.24 Lina mc468 Lina

Fourth mc468 0.58 0.56 0.54 0.775 0.777 0.86 0.60 0.63 0.33 mc468 mc468 Lina

Second mc4 0.36 0.44 0.23 0.60 0.68 0.84 0.58 0.80 0.51 mc468 mc4 mc468

Third mc4 0.35 0.35 0.25 0.55 0.66 0.61 0.81 0.85 0.34 mc4 mc4 mc468

Fifth mc4 0.36 0.45 0.25 0.57 0.54 0.55 0.68 0.81 0.41 mc4 mc4 —

Correct rate 75% 92% 92%

Table 5. Estimated information of single-trial brain waves in layer III of the aPC by ranking of wavelet correlations using two standard brain waves (set 1).
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not meet the criteria, there were no changes in the 75% accuracy for the first candidates, and a

92% probability of including the correct information for the two upper candidates was

observed. Nevertheless, there were some exchanges between correct and incorrect estimates

for identical information (data not shown).

In contrast, by using the pair of brain waves with the highest pairwise correlation coefficients

as the two standard brain waves for each odor (standard Set 2), the accuracies of estimation

were reduced by 100% for Lina (2/2 ! 0/2) and 34% for Lav (4/6 ! 2/6), but no change

occurred for mc468 (1/1) and mc4 (2/3) (Table 6). This standard Set 2 provided a total accuracy

of 42% (33% reduction) and a 75% probability (17% reduction) of including the correct infor-

mation for the two upper candidates (Figure 9). By replacing two of the nine Set 2 standard

brain waves with one that did not meet the criteria, the accuracy for the first candidates

increased by 25% and the 92% probability of including the correct information for the two

upper candidates was recovered (Figure 9). Therefore, the proposed criteria of selecting stan-

dard brain waves with a wide variation are likely appropriate and achieve better estimation

than the selection of those with a narrow range (the most similar brain wave pairs).

3.3. Estimates of the most probable information for single-trial brain waves with

a standard brain wave for each item of information

By using a set of single standard brain waves for four odors that met only the first criterion

(standard Set s1), a similar accuracy of estimated information and probability of including the

correct information for the two upper candidates was obtained for the 12 target brain waves

(data not shown). The Set s1 standard brain waves were composed of the fourth Lav, first Lina,

third mc468, fourth mc4, and second RN. Among the 16 target brain waves, the accuracy and

probability slightly decreased by 6 and 4%, respectively, compared to those of the 12 target

brain waves (data not shown). When one or two of the five Set-s1 standard brain waves were

replaced with those that did not meet the criteria, the accuracy was reduced to 67 or 42%,

respectively (data not shown). The probability of including the correct information for the two

upper candidates was also reduced by 9 and 25%, respectively. For the 16 target brain waves,

the accuracy and probability showed almost no changes when one of the five Set s1 standard

brain waves was replaced, whereas the accuracy and probability for the estimated information

were reduced by 13% when two of the Set s1 standard brain waves were replaced (data not

shown).

3.4. Single-trial brain waves composed of redundant signals in the olfactory pathway

exhibiting a similar accuracy and probability for estimated information

It is interesting to examine the accuracy of the wavelet correlation analysis for predicting the

in-brain information of single-trial brain waves comprising redundant signals in layer I of the

aPC. By using a set of standard brain waves that meet the proposed criteria for the redundant

brain waves recorded in layer I (standard Set 1r), the wavelet correlation analysis provided a

similar accuracy (75%) of estimated information and probability (100%) of including the

correct information for the two upper candidates (Table 7) compared to the results observed

for the brain waves recorded in layer III (Table 5). In contrast, by using the pairs of brain waves
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Standard brain

waves

Second

Lav

Fourth

Lav

First

Lina

Second

Lina

Third

mc468

Fourth

mc468

Fourth

mc4

Fifth

mc4

Second

RN

Highest corr.

Second Lav 1.00 0.80 0.57 0.47 0.40 0.37 0.35 0.39 0.55 Lav

Fourth Lav 0.80 1.00 0.47 0.37 0.50 0.54 0.50 0.46 0.35 Lav

First Lina 0.57 0.47 1.00 0.80 0.38 0.56 0.28 0.24 0.42 Lina

Second Lina 0.47 0.37 0.80 1.00 0.28 0.49 0.29 0.29 0.27 Lina

Third mc468 0.40 0.50 0.38 0.28 1.00 0.85 0.54 0.55 0.48 mc468

Fourth mc468 0.37 0.54 0.56 0.49 0.85 1.00 0.58 0.53 0.29 mc468

Fourth mc4 0.35 0.50 0.28 0.29 0.54 0.58 1.00 0.83 0.27 mc4

Fifth mc4 0.39 0.46 0.24 0.29 0.55 0.53 0.83 1.00 0.38 mc4

Second RN 0.55 0.35 0.42 0.27 0.48 0.29 0.27 0.38 1.00 —

Single-trial brain waves Estimated

information

Second candidate

(>0.6)

Third candidate

(>0.6)

First Lav 0.78 0.76 0.42 0.36 0.44 0.41 0.58 0.70 0.43 Lav Lav mc4

Third Lav 0.61 0.58 0.87 0.76 0.49 0.62 0.35 0.36 0.41 Lina Lina mc468

Sixth Lav 0.65 0.73 0.70 0.74 0.56 0.71 0.41 0.52 0.32 Lina Lav mc468

Seventh Lav 0.62 0.74 0.36 0.40 0.57 0.63 0.72 0.65 0.41 Lav mc4 mc4

Eighth Lav 0.61 0.68 0.47 0.52 0.57 0.63 0.65 0.72 0.33 mc4 Lav mc4

Ninth Lav 0.27 0.40 0.42 0.42 0.47 0.60 0.75 0.70 0.18 mc4 mc4 mc468

Third Lina 0.52 0.57 0.55 0.54 0.69 0.77 0.54 0.60 0.40 mc468 mc468 mc4

Fourth Lina 0.34 0.50 0.62 0.70 0.60 0.84 0.44 0.40 0.18 mc468 Lina Lina

First mc468 0.50 0.66 0.56 0.55 0.71 0.79 0.66 0.55 0.35 mc468 mc468 mc4

First mc4 0.17 0.22 0.37 0.45 0.45 0.57 0.75 0.68 0.27 mc4 mc4 —

Second mc4 0.26 0.42 0.21 0.15 0.83 0.70 0.71 0.72 0.48 mc468 mc4 mc4

Third mc4 0.19 0.32 0.24 0.28 0.60 0.63 0.85 0.77 0.28 mc4 mc4 mc468

Correct rate 42% 75% 75%

Table 6. Estimated information of single-trial brain waves in layer III of the aPC by ranking of wavelet correlations using two standard brain waves with the highest

pairwise correlation coefficients (set 2).
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corresponding to the Set 1 of layer III (standard Set 10 in layer I), the accuracy of estimation was

reduced by 17%, and the probability of including the correct information for the two upper

candidates was reduced by 25% (to 75%) (data not shown). By using single standard brain

waves (standard Set s1r), the accuracy and probability were slightly reduced compared to

those of the standard Set s1 (data not shown).

Finally, it was examined whether the combination of data for two recording sites (layers I and

III) affected the accuracy for the first candidates. Using this method, the accuracy (75%) of

estimated information was maintained but not improved in standard Set 1 + 10 and Set 1r + 1r’

(data not shown).

3.5. A new method of real-time estimation of in-brain information of single-trial brain

waves

A new method is proposed for estimating the information of single-trial brain waves in fine

temporal structures with a cross-trial variability by using a set of standard brain waves in a

given category for each individual. In the oscillatory brain waves recorded in layer III or I of

the aPC of the isolated whole brain of a guinea pig, the wavelet correlation analysis provided a

75% accuracy for the first candidate and a > 92% probability of including the correct informa-

tion for the two upper candidates (Tables 5 and 7). The results support the validity of the

proposed criteria for selecting standard brain waves with a wide variation for estimating

different information in a given category.

The accuracy of this method was not affected by the information redundancy of signal sources,

such as those resulting from olfactory receptors with overlapping tuning specificities and an

Figure 9. Variation-dependent changes in the accuracy of estimated information of single-trial brain waves in layer III of

the aPC.
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Standard brain

waves

Second

Lav

Eighth

Lav

Second

Lina

Third

Lina

First

mc468

Fourth

mc468

First

mc4

Fifth

mc4

Second

RN

Highest corr.

Second Lav 1.00 0.56 0.64 0.73 0.63 0.56 0.59 0.42 0.47 Lina

Eighth Lav 0.56 1.00 0.47 0.50 0.57 0.63 0.66 0.76 0.09 mc4

Second Lina 0.64 0.47 1.00 0.67 0.85 0.68 0.76 0.49 0.48 mc468

Third Lina 0.73 0.50 0.67 1.00 0.69 0.75 0.74 0.48 0.25 mc468

First mc468 0.63 0.57 0.85 0.69 1.00 0.79 0.81 0.54 0.35 Lav

Fourth mc468 0.56 0.63 0.68 0.75 0.79 1.00 0.87 0.58 0.23 mc4

First mc4 0.59 0.66 0.76 0.74 0.81 0.87 1.00 0.69 0.30 mc468

Fifth mc4 0.42 0.76 0.49 0.48 0.54 0.58 0.69 1.00 0.20 Lav

Second RN 0.47 0.09 0.48 0.25 0.35 0.23 0.30 0.20 1.00 —

Single-trial brain waves Estimated

information

Second candidate

(>0.6)

Third candidate

(>0.6)

First Lav 0.77 0.70 0.66 0.52 0.59 0.55 0.63 0.70 0.43 Lav Lav mc4

Third Lav 0.79 0.43 0.74 0.60 0.72 0.49 0.51 0.38 0.48 Lav Lina mc468

Fourth Lav 0.83 0.68 0.58 0.70 0.66 0.58 0.61 0.53 0.20 Lav Lina Lav

Sixth Lav 0.81 0.52 0.79 0.85 0.78 0.73 0.75 0.52 0.37 Lina Lav mc468

Seventh Lav 0.56 0.91 0.45 0.47 0.53 0.59 0.64 0.76 0.06 Lav mc4 mc4

Ninth Lav 0.56 0.83 0.62 0.48 0.68 0.67 0.72 0.76 0.28 Lav mc4 mc468

First Lina 0.73 0.44 0.78 0.66 0.69 0.55 0.54 0.38 0.63 Lina Lav mc468

Fourth Lina 0.59 0.40 0.7758 0.84 0.85 0.75 0.7756 0.42 0.27 mc468 Lina Lina

Third mc468 0.64 0.55 0.77 0.837 0.83 0.89 0.839 0.51 0.36 mc468 mc4 Lina

Second mc4 0.52 0.62 0.69 0.77 0.84 0.891 0.887 0.64 0.27 mc468 mc4 mc468

Third mc4 0.53 0.779 0.71 0.64 0.775 0.778 0.84 0.80 0.18 mc4 mc4 Lav

Fourth mc4 0.59 0.65 0.57 0.67 0.65 0.79 0.85 0.70 0.21 mc4 mc468 mc4

Correct rate 75% 100% 100%

Table 7. Estimated information of single-trial brain waves in layer I of the aPC by ranking of wavelet correlations using two standard brain waves (set 1r).
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experience dependency in layer I or from pyramidal cells with a stimulus dependency after the

integration of signals from multiple cognate olfactory receptors in layer III (Table 8). Layer I

brain waves comprising redundant signals exhibited a similar accuracy of estimated informa-

tion and a slightly increased probability of including the correct information for the two upper

candidates compared to layer III brain waves.

The redundancies of brain waves are attributable to two origins: information and signaling. In

the olfactory system, the information redundancy changes through the signal pathway from

the receptors to the higher cortical areas via signal integration in the third- or higher-order

neurons and/or mutual inhibition [1, 11–13] for category [14] or elemental odor representation

[15]. Unlike the >80% overlap of about 70 receptors for carvone enantiomers having similar

odors [16], the quite different odors of Lav and mc468 evoked different amplitude receptor

potentials in the olfactory epithelium and dissimilar brain waves in the anterior piriform cortex

[1]. Nevertheless, the wavelet correlation analysis sometimes produced the highest correlation

coefficients of Lav for mc468. The error rate of Lav for mc468 was 9.3% in layer I brain waves

but was reduced to 1.7% in layer III brain waves (Table 8 and Figure 10), which is consistent

with the change in the information redundancy from high to low stages between layers I and

III. On the other hand, the error rate of mc468 for Lav was 0% in both layers I and III. For the

single-compound odors, Lina and mc4 exhibited odor similarity-dependent changes in the

error rates of the estimated information between layers I and III. The error rates of the single

compounds for their original mixture odors (partially similar odor) increased between layers I

and III (0 ! 7.7% in Lina and 13.6 ! 30.8% in mc4) and those of single compounds for their

nonrelative mixture odors (dissimilar odor) decreased between layers I and III (46.7! 19.2%

in Lina and 4.5! 0% in mc4). Notably, the error rates between these single compounds were

0% in both layers I and III. These results suggest a partial overlap of the elemental odors that

are represented in the pyramidal cells in the aPC and are recorded in layer III as brain waves.

The total error rates of Lina decreased in layer III compared to those of layer I (and vice versa

for the correct rate), whereas those of mc4 increased.

Information Recoding sites Estimated information

Lav Lina mc468 mc4

Lav Layer I (input) 62.8% 20.9% (e) 9.3% (e) 7.0% (e)

Layer III (output) 57.9% 18.4% (e) 1.3% (e) 22.4% (e)

Lina Layer I (input) 0.0% (e) 53.3% 46.7% (e) 0.0% (e)

Layer III (output) 7.7% (e) 73.1% 19.2% (e) 0.0% (e)

mc468 Layer I (input) 0.0% (e) 25.0% (e) 75.0% 0.0% (e)

Layer III (output) 0.0% (e) 26.7% (e) 73.3% 0.0% (e)

mc4 Layer I (input) 4.5% (e) 0.0% (e) 13.6% (e) 81.8%

Layer III (output) 0.0% (e) 0.0% (e) 30.8% (e) 69.2%

Table 8. Correct and error rates (e) of estimated information in single-trial brain waves recorded in layers I and III of the

aPC by the wavelet correlation analysis.
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The signaling redundancy originates from an identical temporal profile of different subsets of

neurons tuned to distinct or shared information or from identical temporal profiles that are

composed of multiple different profiles of various different subsets of neurons tuned to multi-

ple distinct or shared information. The constant error rates of mc468 for Lina between layers I

and III (both ~25%, Table 8 and Figure 10) are likely attributable to the signaling redundancy

rather than the information similarity or information redundancy. Moreover, in the increased

case, there was a threefold higher error rate of Lav for mc4 in layer III than layer I, whereas the

error rates of Lav for Lina were almost constant between layers I and III.

3.6. Applicable examples of estimated in-brain information in humans using the

wavelet correlation analysis

Each brain system (e.g., a sensory, memory, decision, or motor system) is organized in a

hierarchical manner from simple to complicated matters. The sensory system generates oscil-

latory activities between the related cortical regions and the thalamus, and the latter acts

(except in the olfactory system) to gate the sensory input to the cortex and provides feedback

from the cortical pyramidal neurons. In olfaction, transient oscillatory brain waves are

observed in the aPC [5, 17–21]. Strong feed-forward inhibition [5, 22, 23] via the sensitive

pathway from the olfactory bulb [24] and the other sensory thalamocortical circuit [25, 26] or

higher olfactory centers [27] could induce oscillatory brain waves that would contribute to

parts of the EEGs recorded at the respective positions on the human scalp, in analogy to these

experimental animals. Such information-dependent temporal profiles of the EEGs may enable

us to estimate in-brain information by comparison with a set of standard time-frequency

Figure 10. Correct and error rates of estimated information in single-trial brain waves recorded in layers I and III of the

aPC by the wavelet correlation analysis. These values are listed in Table 8.
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power profiles of EEGs in each individual. To this aim, a wavelet correlation analysis of the

brain waves in a guinea pig was conducted using standard brain waves with the proposed

criteria and achieved an accuracy of 75% for the first candidates. This accuracy is attributable

to the comparisons with standard single-trial responses in the wavelet time-frequency power

profiles.

Conventional methods have focused only on some parts of the brain wave characteristics.

For example, the FFT power spectra of sensorimotor EEGs [28, 29] or auditory EEGs [30] in

specific frequency bands at a specific recording position were analyzed for the development of

brain-computer interfaces. The Morlet wavelet convolutions for four-frequency band powers

of the single-trial EEGs were analyzed to understand the cognitive control system via a priori

estimation of information across three tasks [31]. By using the wavelet correlation analysis in

the time-frequency power profiles at nine frequencies, these analyses could be improved in

their subprocesses. Odor sensation [32, 33] and color-opponent responses [34] were also

recorded in humans at Fz and an intermediate position between Oz and the inion, respectively,

and they demonstrated informational differences in response amplitudes or profiles. Like

EEGs in object recognition and those responsible for mental states, these EEGs are also subjects

for the application of the wavelet correlation analysis for estimating in-brain fine information.

Pain-related alpha-band desynchronization at contralateral-central electrodes (C2, C4, CP2,

and CP4) and gamma-band synchronization at the ipsilateral-posterior electrodes (P3, P5, and

so on) [35] are also good candidates for application. In animal models, the neural pathways of

innate and learned fear responses have been revealed [36], and different pathways of stress

relaxation using rose and hinokitiol odors were found [37, 38]. Therefore, determining their

differing time-frequency power profiles would enable us to estimate the strengths of stress or

relaxation in EEGs in humans. Future studies will focus on programming the wavelet correla-

tion analysis for real-time estimates of in-brain information in humans.

4. Conclusions

We developed a new method for a similarity analysis and real-time estimates of in-brain

information in single-trial brain waves by ranking the correlation coefficients in the wavelet

correlation analysis. The wavelet correlation analysis with a set of standard brain waves

provided the first candidate of estimated information with an accuracy of 75% with a > 92%

probability of including the correct information for the two upper candidates, regardless of the

information redundancy of signal sources. This method may be also useful for its applications

to brain-machine interfaces or medical/research tools.
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Abbreviations

aPC anterior piriform cortex

aPCvr ventro-rostral region of the aPC

EEG electroencephalography

EOG electro-olfactogram

FFT fast Fourier transform

LFP local field potential

LOT lateral olfactory tract

OR olfactory receptor

osci-LFP oscillatory local field potential
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