
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Advanced UAV Trajectory Generation: Planning
and Guidance

Antonio Barrientos, Pedro Gutiérrez and Julián Colorado
Universidad Politécnica de Madrid – (Robotics and Cybernetics Group)

Spain

1. Introduction

As technology and legislation move forward (JAA & Eurocontrol, 2004) remotely controlled,
semi-autonomous or autonomous Unmanned Aerial Systems (UAS) will play a significant
role in providing services and enhancing safety and security of the military and civilian
community at large (e.g. surveillance and monitoring) (Coifman et al., 2004). The potential
market for UAVs is, however, much bigger than just surveillance. UAVs are ideal for risk
assessment and neutralization in dangerous areas such as war zones and regions stricken by
disaster, including volcanic eruptions, wildfires, floods, and even terrorist acts. As they
become more autonomous, UAVs will take on additional roles, such as air-to-air combat and
even planetary science exploration (Held et al., 2005).
As the operational capabilities of UAVs are developed there is a perceived need for a
significant increase in their level of autonomy, performance, reliability and integration with
a controlled airspace full of manned vehicles (military and civilian). As a consequence
researchers working with advanced UAVs have moved their focus from system modeling
and low-level control to mission planning, supervision and collision avoidance, going from
vehicle constraints to mission constraints (Barrientos et al., 2006). This mission-based
approach is most useful for commercial applications where the vehicle must accomplish
tasks with a high level of performance and maneuverability. These tasks require flexible and
powerful trajectory-generation and guidance capabilities, features lacking in many of the
current commercial UAS. For this reason, the purpose of this work is to extend the
capabilities of commercially available autopilots for UAVs. Civil systems typically use basic
trajectory-generation algorithms, capable only of linear waypoint navigation (Rysdyk, 2003),
with a minimum or non-existent control over the trajectory. These systems are highly
constrained when maneuverability is a mission requirement. On the other hand, military
researchers have developed algorithms for high-performance 3D path planning and obstacle
avoidance (Price, 2006), but these are highly proprietary technologies that operate with
different mission constraints (target acquisition, threat avoidance and situational awareness)
so they cannot be used in civil scenarios.
This chapter presents a robust Trajectory Generation and Guidance Module (TG2M), a
software tool capable of generating complex six-degrees-of-freedom trajectories in 3D space
with velocity, acceleration, orientation and time constraints. The TG2M is an extension
module to the Aerial Vehicle Control Language (AVCL), a software architecture and

www.intechopen.com

Aerial Vehicles

56

interpreted language specification that address the issues of mission definition, testing,
validation and supervision for UAVs (Barrientos et al., 2006). The AVCL platform
incorporates a 3D visual simulator environment that uses a Geographic Information System
(GIS) as the world’s data model. The GIS backend means all objects are geo-referenced and
that several official and commercial databases may be used for mission planning (roads,
airports, power lines, crop fields, etc.). The language specification contains a wide set of
instructions that allow the off/on-line supervision and the creation of vehicle-independent
missions.
The TG2M is designed to model 3D cartesian paths with parametric constraints. The system
uses two types of mathematical descriptors for trajectories: analytical functions and
polynomial interpolation. The two main contributions of the module are its geometrical
representation of the trajectory and its parametric definition. Simple maneuvers like lines
and circumference arcs are created with analytical functions that constrain the geometry of
the desired path; then the parametric constraints are applied. These constraints are typically
kinematic: constant velocity and acceleration, trapezoidal curves to accelerate or stop, etc.
More complex maneuvers are described with polynomial interpolation and fitted to the
critical control path points, meeting desired position, time and velocity constraints. These
polynomial functions are based on third and fourth order splines with fixed boundary
conditions (for example initial and final velocities), which join all control points with a
continuous and smooth path (Jaramillo-Botero et al., 2004).
The section 2 of this chapter presents some of the current techniques extracted from the
military aerial survey applications, showing complex mission-planning tools capable of
addressing the mission-specific constraints required. Within those approaches, this section
also introduces a brief description of the AVCL architecture, describing its components,
modules, and the main features provisioned, addressing a novel way of human-mission
planning definition and testing. The section 3 introduces the AVCL built-in TG2M
framework, describing the different techniques used for the trajectory planning and
guidance of UAVs, as well as the mathematical treatment of these methods (analytical
functions and polynomial interpolation). On the other hand, simulation-based results (see
section 4) using a mini-helicopter simulator embedded into the AVCL environment will
show the capabilities of the TG2M while flying aggressive and simple maneuvers. Last but
not least, “final observations” in section 5 includes comments about the TG2M framework
and the upcoming additions to the TG2M under current development.

2. Motion-planning Methodologies

A planning algorithm should provide feasible and flyable optimal trajectories that connect
starting with target points, which should be compared and valued using specific criteria.
These criteria are generally connected to the following major concerns, which arise during a
plan generation procedure: feasibility and optimality. The first concern asks for the
production of a plan to safely “move” the UAV to its target state, without taking into
account the quality of the produced plan. The second concern asks for the production of
optimal, yet feasible, paths, with optimality defined in various ways according to the
problem under consideration (LaValle, 2006). Even in simple problems searching for
optimality is not a trivial task and in most cases results in excessive computation time, not
always available in real-world applications. Therefore, in most cases we search for
suboptimal or just feasible solutions. The simplest way to model an UAV path is by using

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

57

straight-line segments that connect a number of waypoints, either in 2D or 3D space (Moitra
et al., 2003, Zheng et al., 2005). This approach takes into account the fact that in typical UAV
missions the shortest paths tend to resemble straight lines that connect waypoints with
starting and target points and the vertices of obstacle polygons. Although waypoints can be
efficiently used for navigating a flying vehicle, straight-line segments connecting the
corresponding waypoints cannot efficiently represent the real path that will be followed by
the vehicle due to the own kinematics of the traced path. As a result, these simplified paths
cannot be used for an accurate simulation of the movement of the UAV in an optimization
procedure, unless a large number of waypoints is adopted. In that case the number of
design variables in the optimization procedure explodes, along with the computation time.
This is why this section presents some background based on the state-of-the-art
mission/path planning for UAVs. The purpose (apart from the state-of-the-art survey) is to
compare to the AVCL architecture in order to observe how its TG2M embedded framework
(see section 3 for details) is a complement of some lacking approaches found in this
specialized literature.

2.1 Background

Researchers at top research centers and universities (e.g. JPL at Caltech, Carnegie Mellon,
NASA, ESA, among others) are dealing with the development of new strategies that allow
high-level mission UAV planning within the desired flight performance. As examples of
these approaches we present the NASA Ames Research Center, the Georgia Institute of
Technology, and the University of Illinois.
For the past decade NASA has focused on developing an efficient and robust solution to
Obstacle Field Navigation (OFN), allowing a fast planning of smooth and flyable paths around
both known and unknown obstacles (Herwitz, 2007). Evolutionary algorithms have been used
as a viable candidate to solve path-planning problems effectively, providing feasible solutions
within a short time. Given a number of UAVs that are launched from different and known
initial locations, the algorithm must create 2-D trajectories with a smooth velocity distribution
along each trajectory and with the goal of reaching a predetermined target location, while
ensuring collision avoidance and satisfying specific route and coordination constraints and
objectives. B-Splines curves are used in order to model both the 2-D trajectories and the
velocity distribution along each flight path. A flying laboratory for autonomous systems,
based on the Yamaha RMAX helicopter is being developed, which it incorporates the OFN
planner and one all-digital camera system with a state-of-the-art tracking and passive ranging
capabilities. Machine stereo-vision is being used to determine safe landing areas and
monocular vision is used to track the landing location without access to GPS. A Ground
Control Station (GCS) is being integrated into the simulation environment to investigate the
issues related to high altitude and long endurance flights.
As an alternative approach other researchers do not focus on generating complex trajectories
profiles; their aim is to develop robust mission management, capable of successfully
integrating the available onboard hardware (e.g. cameras, sensors, etc). The Georgia Tech’s
UAV Lab developed the GTMax architecture (Alison et al., 2003) based on a Yamaha R-Max
mini-helicopter, is an example of this alternative approach. The GTMax system is capable of
fully autonomous flight with decentralized software modules for trajectory generation,
offline simulation, supervision, guidance and control. The trajectory module generates lineal
waypoints between targets with initial and final velocity parameterization. Commands to

www.intechopen.com

Aerial Vehicles

58

the helicopter take the form of different types of waypoints. All trajectories generated are
assumed to be physically feasible by the helicopter, the kinematic model used for the
trajectory generation uses specifiable limits on the maximum speed and acceleration the
aircraft may have during a maneuver. From a high-level mission management perspective
the GTMax architecture allows the UAV to autonomously locate targets with an identifying
symbol within a designated search area. Once the correct target is identified the mission
coordination and flight path generation is done at a centralized location on the ground, and
the commands are transmitted to the UAV via a wireless datalink. The GTMax GCS
interfaces with the primary flight computer and displays vehicle status, the object tracker
information and the flight plans generated by the mission planner. The Vision Monitoring
Station receives streaming video from the camera and the output of the image processor.
This allows the operator to monitor the efficiency of the image processing as well as visually
document the results of the search in the final phase of the mission.
For other projects the main goal is the unification of high-level mission commands and
development of generic languages that support online UAV mission planning without
constraining the system to a single vehicle. The University of Illinois at Urbana-Champaign
(Frazzoli, 2002) presents a new framework for UAV motion planning and coordination. This
framework is based on the definition of a modelling language for UAV trajectories, based on
the interconnection of a finite number of suitably defined motion primitives, or maneuvers.
Once the language is defined, algorithms for the efficient computation of feasible and
optimal motion plans are established, allowing the UAV to fulfill the desired path.
If we analyze the UAS described above, almost all of them share one important limitation:
their software architecture is tightly coupled to one vehicle and the capabilities of its low-
level controller. Civil applications require open and extendable software architectures
capable of talking to vehicles from different suppliers. The AVCL addresses those
limitations, allowing to model different vehicles into a single common language (vehicle-
independent missions). In the same fashion the described vehicles show that complex and
simple maneuvers could be a suitable solution depending on the kind of mission to fulfill.
For this reason the AVCL is extended with the TG2M framework, capable of generating
simple and complex 3D paths with the necessary vehicle constrains. The next sub-section
introduces the AVCL architecture and some of the features provisioned.

2.2 The Aerial Vehicle Control Language - AVCL

The AVCL is not just a language capable of describing the missions and capabilities of an
heterogeneous group of vehicles, it is part of a bigger framework that includes its
interpreter, a definition of a base-vehicle, and a Mission Planner that uses GIS as the data-
model for the world (Barrientos et al., 2006). The Mission Planner (MP) is not tied to a
particular set of vehicles, sensors or commands. At any given time new functionality can be
loaded and displayed to the human operator as new options and commands. This means
that the MP tool is to be extended through Vehicle and Command Libraries without
recompiling, and those new capabilities and better vehicles can be added easily. The Mission
Planner is a great tool for simulation and direct comparison of various trajectory trackers,
UAV models and controllers, because it can display N missions at the same time.
When considered just as a language the AVCL concept is the abstraction layer that allows
the human supervisor to create missions that are vehicle and payload independent,
promoting code reuse. At the same time the AVCL statements and commands hide device

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

59

specific software/hardware, and serve as mission definition and storage. As an example of
the code used to define operations within a mission:

uav.Sensors(0) = parser.loadObject (‘camera.lib’)
uav.Sensors(0).LookAt (p1)
uav.Sensors(1) = parser.loadObject (‘laser.lib’)
uav.Sensors(1).TurnOn()
uav.doLine (way_points = {p1, p2, p3, p4}, vel = 0.9 m_s)

Compared to previous vehicle programming languages the AVCL and its interpreter provide
several advantages: intuitive handling of different systems of units; its use of the object-
oriented-programming paradigm; facilities for inter-vehicle communications; run-time
definition of relations between vehicles, sensors and other equipment; it may be extended
easily through C, C++ or C# code; the interpreter is a light-weight application written in
C++, therefore it may be deployed in many SW/HW architectures. Before the development
of the TG2M module the AVCL framework relied on a simpler guidance module to connect
waypoints with straight-line segments, and while the language could describe complex
maneuvers and mission constraints the framework lacked the capacity to fly a vehicle
through complex paths.

Figure 1. The AVCL simplified diagram for mission planning

3. Trajectory Generation and Guidance Module - TG
2
M

The TG2M is designed to model 3D cartesian paths with parametric constraints. The system
uses two types of mathematical descriptors for trajectories: polynomial interpolation and

www.intechopen.com

Aerial Vehicles

60

analytical functions. Complex maneuvers are described with polynomial interpolation
based on third and fourth order splines with fixed boundary conditions (e.g. initial and final
velocities user definition), which join all control points with a continuous and smooth path.
Likewise, simple maneuvers like lines and circumference are created with analytical
functions that constrain the geometry of the desired path. These constraints are typically
kinematic: constant velocity and acceleration, trapezoidal curves to accelerate or stop, etc.

Figure 2. The TG2M framework

As shown in Fig. 2, two main modules compose the TG2M framework: the geometrical
trajectory generation and the online closed-loop guidance. All the parameters and
fundamental data (e.g. the desired maximum speed, etc) are provided by the user via the
AVCL interpreter.

3.1 Polynomial interpolation using splines

The fundamental idea behind the spline interpolation is based on the definition of smooth
curves through a number of points. These curves are represented by a polynomial function
(normally of third-grade) defined by some coefficients that determine the spline used to
interpolate the numerical data points. These coefficients bend the line so that it passes
through each of the data points without any erratic behavior or breaks in continuity. The

essential idea is to define a third-degree polynomial function

S t() of the form:

S t()= a it

3 +bit
2 +c it +d i (1)

This third-degree polynomial needs to conform to the following conditions in order to
interpolate the desired knot-points as depicted in Fig. 3:

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

61

Figure 3. Knot-points to interpolate using 3D splines (with free boundary conditions)

•
S t(), ′ S t() and

′ ′ S t() will be continuous on the interval
t0 , tn[].

• Since the curve

S t() must be continuous across its entire interval, it can be concluded

that each sub-function must joint at the data points, so:

s i t i()= s i−1 t i().

Taking into account the set of conditions previously described, for each i = 1, 2.....n − 1,

t i ∈ t i ,t i+1[], S t i()= s i t i(), and letting

hi = t i+1 − t i

i=1

n−1

∑ , Eq. (1) is re-writing as:

s i t i()= a ihi

3
+bihi

2
+cihi +d i (2)

Also, to make the curve smooth across the interval, the first derivative of the

S t()

function

must be equal to the derivative of the position reference points; this yields:

s i
′ t i()= 3a ihi

2 + 2b ihi + c i

s i
′ t i()= ′ s i−1 t i()

s i
′ t i()= c i = 3a i−1hi

2 + 2bi−1hi + c i−1

 (3)

Applying the same approach for the second derivative:

s i
′′ t i()= 6a ihi + 2bi

s i
′′ t i()= s i+1

′′ t i()
s i

′′ t i()= 2bi+1 = 6a ihi + 2bi

 (4)

For the solution of the polynomial coefficients in Eq. (1), the system in Eq. (5) must be solved
as:

 A ⋅Y = f (5)

where the matrix A ∈ℜnxn (n is the number of knot-points to interpolate) corresponds to:

www.intechopen.com

Aerial Vehicles

62

()
()

()

0 0 1 1

0 1 2 2

2 2 1 1

1 0 0 0

2

0 2

2

0 0 0 1

n n n n

h h h h

h h h h

A

h h h h− − − −

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎣ ⎦

" " "
% #

% % #
% % % % %
% % % %
%

" " "

 (6)

The term h ∈ℜn−1 in Eq. (6) is the time vector defined for each point

P0 ,P1 ,Pn(). The bi

coefficients in Eq. (1) are stacked in Y ∈ℜnx 3, which yields the term f ∈ℜnx 3 as:

() ()

() ()

2 1 1 0

1 0

1 1 2

1 2

0

3 3

3 3

0

n n n n

n n

d d d d
h h

f

d d d d
h h

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(7)

From Eq. (2) and (3), the ai and c i coefficients are respectively obtained as:

a i =
bi+1 − bi

3hi

c i =
1

hi

d i+1 − d i()−
hi

3
2bi − b i+1()

d i = S t i()

 (8)

Example 1. Simple UAV trajectory planning using 3D splines with fixed boundary condition.

Let’s define three knot-points as:

P0 = 0,0,0[], P1 = 5,10,10[], P2 = 0,10, 20[] with the following

time condition for each point:

t = 0,10, 20[](note that the time vector components are given in

seconds). Calculate a 3D spline considering zero initial and final velocities.
The natural 3D splines with free boundary conditions may generate smooth paths but
without control over the velocities over the knot-points. Because of this, Eq. (6) and (7) must
be complemented in order to generate a 3D spline with the fixed boundary conditions, in
this case, with zero initial and final velocities. Re-writing those equations yield:

()
()

()

0 0

0 0 1 1

0 1 2 2

2 2 1 1

1 1

2 0 0

2

0 2

2

0 0 2

n n n n

n n

h h

h h h h

h h h h

A

h h h h

h h

− − − −

− −

⎡ ⎤
⎢ ⎥

+⎢ ⎥
⎢ ⎥+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎣ ⎦

" " "
% #

% % #
% % % % %
% % % %
%

" " "

 (9)

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

63

The same system A ⋅Y = f must be solved with the new A ∈ℜnxn from Eq. (9) and f ∈ℜnx3

defined in Eq. (10). Note that the first derivative of the

S t() function has been added in the

first and last position of the f vector, allowing the control of the initial and final velocities

of the curve.

() ()

() ()

() ()

() ()

1 0 0

0

2 1 1 0

1 0

1 1 2

1 2

1

1

3
3

3 3

3 3

3
3

n n n n

n n

n n n

n

d d S t
h

d d d d
h h

f

d d d d
h h

S t d d
h

− − −

− −

−

−

⎡ ⎤
′− −⎢ ⎥

⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

′ − −⎢ ⎥
⎣ ⎦

(10)

The first procedure is to obtain the time vector as follows:

h = t i+1 − t i =

i=1

n−1

∑ 10 10[], then the

system: Y = A−1 f must be solved to obtain the polynomial coefficients as:

A =

20 10 0

10 40 10

0 10 20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 ,

Yx =

b0x = 0.15

b1x = −0.15

b2x = 0.15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

fx =

1.5

−3

1.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,

Yy =

b0y = 0.15

b1y = 0

b2y = −0.15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

fy =

3

0

−3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,

Yz =

b0z = 0.1125

b1z = 0.0750

b2z = −0.2625

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

f z =

3

1.5

−4.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Finally, the two polynomials for each (x, y, z) component are evaluated from the time
[0, 10] to [10, 20]. Figure 4 shows the results.

Figure 4. 3D spline with fixed boundary condition

The end of Example 1: Simple UAV trajectory planning using 3D splines

www.intechopen.com

Aerial Vehicles

64

In the previous example, the 3D splines with fixed boundary conditions allowed to define a
smooth curve across the knot-points. Nevertheless, two basic problems must be taken into
account: the 3D spline only allows the user to establish the initial and the final velocities of
the whole trajectory, limiting the user to have total control over the other points. The
second problem is the smoothness of the acceleration curves (linear). To solve these
problems 4D splines must be used. These address the user total control over the velocity
profile across the whole trajectory and its results in additional smoothness for position,
velocity and even acceleration curves. This could be more effective for UAVs tasks where
the mission requires a strong control of the vehicle acceleration and velocities at each
defined knot-point.

Figure 5. Knot-points to interpolate with 4D splines

The fourth-degree polynomial is defined by:

S t()= e it

4 + a it
3 + b it

2 + c it + d i
 (11)

The same 3D-spline conditions previously described also apply to the 4D-spline. To obtain a
generalized solution of the system to solve (A ⋅Y = f), we start from the three-point case as

depicted in Fig. 5. The polynomials for each trajectory segment as a function of time t are:

sn t0()= e0t0

4 +a0t0

3 +b0t0

2 +c0t0 +d0 = f t0()
sn t1()= e0t1

4 +a0t1

3 +b0t1

2 +c0t1 +d0 = f t1()
sn−1 t1()= e1t1

4 +a1t1

3 +b1t1

2 +c1t1 +d1 = f t1()
sn−1 tn()= e1tn

4 +a1tn

3 +b1tn

2 +c1tn +d1 = f tn()

 (12)

Taking the first and second derivatives (velocities and accelerations), we obtain:

′ s 1 t0()= 4e0t0

3 + 3a0t0

2 + 2b0t0 +c0 = V0

′ s 1 t1()= 4e0t1

3 + 3a0t1

2 + 2b0t1 +c0 = V1

′ s n−1 t1()= 4e1t1

3 + 3a1t1

2 + 2b1t1 +c1 = V1

′ s n−1 tn()= 4e1tn

3 + 3a1tn

2 + 2b1tn +c1 = Vn

 (13)

The second derivatives of Eq. (12) yield a set of accelerations. Equaling the acceleration

functions for the intermediate points (t1 for each case) and setting to zero the initial and

final acceleration of the path segment yields:

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

65

s0
′′ t0()= 12e0t0

2 +6a0t0 + 2b0 = ′ s n−1 t1()= 12e1t1

2 +6a1t1 + 2b1

s0
′′ t1()= 12e0t1

3 +6a0t1 + 2b0 = sn−1
′′ tn()= 12e1tn

2 +6a1tn + 2b1

 (14)

Equations (12), (13) and (14) conform the complete system in order to obtain the ten

polynomial coefficients. Solving A ⋅Y = f , the matrix A ∈ℜ5 (n−1) x 5 (n−1) corresponds to:

A =

1 t0 t0

2 t0

3 t0

4 0 0 0 0 0

1 t1 t1

2 t1

3 t1

4 0 0 0 0 0

0 0 0 0 0 1 t1 t1

2 t1

3 t1

4

0 0 0 0 0 1 t2 t2

2 t2

3 t2

4

0 1 2t0 3t0

2 4t0

3 0 0 0 0 0

0 1 2t1 3t1

2 4t1

3 0 0 0 0 0

0 0 0 0 0 0 1 2t1 3t1

2 4t1

3

0 0 0 0 0 0 1 2t2 3t2

2 4t2

3

0 0 2 6t1 12t1

2 0 0 −2 −6t1 −12t1

2

0 0 2 6t0 12t0

2 0 0 −2 −6t2 −12t2

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(15)

The polynomial coefficients are stacked into the Y ∈ℜ5(n−1) vector, and with the f ∈ℜ5 (n−1)

term, the total system is defined from Eq. (14) and (15):

Y = d0 c0 b0 a0 e0 d1 c1 b1 a1 e1[]
T

f = f t0() f t1() f t1() f tn() V0 V1 V1 Vn 0 0[]
T

(16)

Example 2. UAV trajectory planning using 4D splines with total velocity control

Lets define three knot-points as:

P0 = 0,0,0[], P1 = 5,7, 5[], P2 = 4, 2,10[] in the time

t = 0, 4, 8[](note that the time vector components are given in seconds). Calculate the 4D spline

considering the following velocity profile:

V0 = 0,0,0[], V1 = 0.5,0.8,1[], V2 = 1,1.5,1[].

Solving the system: Y = A−1 f , we obtain the following numerical data:

A =

1 0 0 0 0 0 0 0 0 0

1 4 16 64 256 0 0 0 0 0

0 0 0 0 0 1 4 16 64 256

0 0 0 0 0 1 8 64 512 4096

0 1 0 0 0 0 0 0 0 0

0 1 8 48 256 0 0 0 0 0

0 0 0 0 0 0 1 8 48 256

0 0 0 0 0 0 1 16 192 2048

0 0 2 24 192 0 0 −2 −24 −192

0 0 2 0 0 0 0 −2 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
,

Yx,y ,z =

d0x d0y d0z

c0x c0y c0z

b0x b0y b0z

a0x a0y a0z

e0x e0y e0z

d1x d1y d1z

c1x c1y c1z

b1x b1y b1z

a1x a1y a1z

e1x e1y e1z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

fx,y,z =

0 0 0

5 7 5

5 7 5

4 2 10

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

fx,y,z =

0 0 0

5 7 5

5 7 5

4 2 10

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

www.intechopen.com

Aerial Vehicles

66

Finally, the two polynomials for each (x, y, z) component are evaluated from the time
[0, 4] to [4, 8] seconds. Figure 6 shows the results:

Figure 6. 4D spline with total control of the knot-points velocities

The end of Example 2: UAV trajectory planning using 4D splines with total velocity control

3.2 Simple Maneuvers with Analytical Functions

For simple maneuvers the TG2M framework also supports the definition of straight-lines
and circumferences via analytical functions that constrain the geometry of the desired path.
These constraints are typically kinematic: constant velocity and acceleration, trapezoidal
curves to accelerate or stop, etc. This kind of parameterization is useful when the mission
requires the UAV stops at the desired end-point of the trajectory effectively, due to the user-
control of the acceleration slope tilt level. For both (lines and circumferences) the desired set
of velocities must fulfill the following trapezoidal velocity profile:

Figure 7. Trapezoidal velocity profile used for simple UAV maneuvers

From Fig. 7, three fundamental segments compose the total function to define the straight-

line. The two intermediate points of the trapezoidal curve:

P τ(), P T − τ() are calculated as 1:

1 Sub-indices x,y,z refer to each coordinate of motion.

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

67

P τ()
x ,y ,z

=
1

2 P T()
x ,y ,z

− P0x ,y ,z

Vk

t
t 2 P T()

x ,y ,z
− P0x ,y ,z

⎛
⎝

⎞
⎠ +P0x ,y ,z

P T − τ()
x ,y ,z

=
Vk T − 2t()

P T()
x ,y ,z

− P0x ,y ,z

P T()
x ,y ,z

− P0x ,y ,z

⎛
⎝

⎞
⎠ +P τ()

x ,y ,z

(17)

Once that the intermediate points have been defined, the three segments that compose the

total function are defined by Eq. (18). In the first section (from P0 to

P τ()) the initial velocity

is set Vi = 0 and progresses toward a final velocity Vk . The second segment (from

P τ() to

P T − τ()) is traced at constant maximum velocity Vk . Finally the last segment (from

P T − τ()to

P T()) drives the vehicle from Vk to zero velocity.

 ()

()((
()()

() ()((
() () ()() ()

()
() ()((

() () ()() ()

2

0 0

0

0
2

2

k

k

k
k

V
t P P P t

P P

V
f t t P T P P t T

P T P

t T V
t T V P T P T P T T t T

P T P T

τ τ
τ τ

τ τ τ τ τ τ
τ τ

τ
τ τ τ τ

ττ

⎧ ⎫
⎪ ⎪− + ≤ ≤
⎪ ⎪−
⎪ ⎪
⎪ ⎪

= − − − + < ≤ −⎨ ⎬
− −⎪ ⎪

⎪ ⎪
− + ⎛ ⎞⎪ ⎪− − + + − − + − − < ≤⎜ ⎟⎪ ⎪− − ⎝ ⎠⎩ ⎭

(18)

The same approach is applied to generate circumferences with the trapezoidal profile used
for the straight-lines. Three knot-points define the circumference path and the objective is to
find the trace angle across the trajectory.

Figure 8. X-Y plane for circumference maneuver

The first step is to determine the center of the circle that joins the three knot-points. The
equation of the trajectory plane is defined by the cross product between the vectors formed

by points P0 , P1 and P2 , as shown in Eq. (19).

P0

G
P 1 ×P0

G
P 2 = N A,B,C()

Ax +By +Cz = cte
(19)

www.intechopen.com

Aerial Vehicles

68

The center of the circle

c xc , yc ,z c() is always equidistant to any point over the circle2, then:

x0,1,2 − x c()
2

+ y0,1,2 − yc()
2

+ z0,1,2 − z c()
2

= K 2

Axc +By c +Cz c = cte
(20)

To obtain the relation between the angle motion (θ), the angular velocity (ω) and the

tangential velocity (v t), constant velocity is assumed across the path, yielding:

ω =
dθ

dt
=

v t

r

dθ =
v t

r
dt

dθ∫ =
v t

r
dt∫

θ t()=
v t

r
t +θ i where t ∈[0,T]

(21)

Likewise, the relation between the angle motion (θ) and the angular acceleration of the
curve is given by:

at +v0 = r
dθ

dt

dθ =
at +v0

r
dt

dθ∫ =
at +v0

r
dt∫

θ t()=
a

2r
t 2 +

v0

r
t +θ i where t ∈[0,T]

(22)

If the known parameter is the total motion time (T) of the trajectory, we set the acceleration
term to the left-side of the equation, yielding:

θ t()= θ f =
a

2r
t 2 +

v0

r
t +θ i

a =
2 θ f −θ i ()r − v0T[]

T 2

(23)

Otherwise, if the constrained parameters are the initial and final velocity, the acceleration
function is given by:

a =
v ft - v0t

T

T =
2 θ f −θ i ()r

v0t +v ft

(24)

2 Sub-indices 0,1,2 refers to each vector component for Po,P1,P2 (see Fig. 8).

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

69

Example 3. UAV straight-line trajectory with trapezoidal velocity profile

Lets defined a straight-line trajectory starting from P0 = [0,0, 20] to

P T()= [10,0, 20] with 10

meters of displacement in the X coordinate at a constant altitude of 20 meters. Define the 3D
cartesian trajectory with a maximum velocity of 1m/s taking into account a trapezoidal velocity
profile with 30% of acceleration time.

The distance vector to trace is:

dist = P T()− P0 = 10,0,0[].

The total velocity is obtained from the norm of the vector dist:

VT = dist = 10 .

The total motion time is calculated as:

T =
VT

Vk 1 − pt()
= 7 , where Vk is the maximum velocity

at 1m/s and pt is the percentage of acceleration (30%=0.3).

The acceleration motion is also obtained as:

a =

Vk

T * pt
= 0.2381.

The number of the total points to generate is: n = 28 (the user defines this parameter
depending on the UAV controller data rate). In the same way, the number of points in the

first and last segment of the trapezoidal profile is calculated as:

k = 2 pt ⋅n()= 16 , and for the

constant velocity segment: k c = n − 2k = 12 . Once that the preliminary data have been

calculated, Eq. (16) is used to obtain the intermediate points (see Fig. 7):

Px τ()=
1

2Vt

at 2 dist()
x

+P0x = 2.10

Py τ()=
1

2Vt

at 2 dist()
y

+P0y = 0

Pz τ()=
1

2Vt

at 2 dist()
z

+P0z = 20

Px T − τ()=
Vk T − 2t()

VT

dist()
x

+P τ()
x

= 7.7

Py T − τ()=
Vk T − 2t()

VT

dist()
y

+P τ()
y

= 0

Pz T − τ()=
Vk T − 2t()

VT

dist()
z

+P τ()
z

= 20

The first segment of the path (from P0 to

P τ()) is calculated using Eq. (17):

fx t()=
Vk

2t P t()− P0
x

t i
2 P t()

x
− P0x()+P0x

i=1

k/2

∑

fy t()=
Vk

2t P t()− P0
y

t i

2 P t()
y

− P0y

⎛
⎝

⎞
⎠ +P0y

i=1

k/2

∑ 0 ≤ t ≤ τ

fz t()=
Vk

2t P t()− P0
y

t i
2 P t()

z
− P0z()+P0z

i=1

k/2

∑

The time vector t is obtained as:

t = 0 :
1

Vk

2 P τ()− P0

k
:

1

Vk

2 P τ()− P0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, which is:

t = 0 0.5250 1.0500 1.5750 2.1000 2.6250 3.1500 3.6750 4.2000[].

www.intechopen.com

Aerial Vehicles

70

For the second segment (at constant velocity Vk), the time vector is calculated as:

t = 0 :
1

n − 2k
: 1

⎡

⎣
⎢

⎤

⎦
⎥ == 0 0.0833 0.1667 0.25 0.3333 0.4167 0.5 0.5833 0.6667 0.75 0.83 0.9167 []

fx t()= t i P T − τ()
x

− P τ()
x

()+P τ()
x

i−1

kc

∑

fy t()= t i P T − τ()
y

− P τ()
y

⎛
⎝

⎞
⎠ +P τ()

y
i−1

kc

∑ τ < t ≤T − τ

fz t()= t i P T − τ()
z

− P τ()
z

()+P τ()
z

i−1

kc

∑

Finally the last segment drives the vehicle from Vk to zero end velocity. The time vector is:

t = 0 :
1

Vk

2 P T − τ()− P τ()
k

:
1

Vk

2 P T − τ()− P τ()
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
0 0.287 0.575 0.862 1.15 1.43

1.72 2.01 2.3

⎡

⎣
⎢

⎤

⎦
⎥

,

yielding the following function for each coordinate of motion:

f t()
x

=
−Vkt i

2 +Vkt i

2 P T()− P T − t()
x

P T()
x

− P T − t()
x

()+P T − t()
x

i=1

k/2

∑

f t()
y

=
−Vkt i

2 +Vkt i

2 P T()− P T − t()
y

P T()
y

− P T − t()
y

⎛
⎝

⎞
⎠ +P T − t()

y
i=1

k/2

∑ T − t < t ≤T

f t()
z

=
−Vkt i

2 +Vkt i

2 P T()− P T − t()
z

P T()
z

− P T − t()
z

()+P T − t()
z

i=1

k/2

∑

The results are presented in Fig. 9:

Figure 9. UAV straight-line motion with trapezoidal velocity profile

The end of Example 3: UAV straight-line trajectory with trapezoidal velocity profile

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

71

3.3 UAV Guidance

The geometrical representation of a UAV trajectory has been presented in the previous
sub-section. Complex trajectories may be described using third-fourth order degree splines,
or simple maneuvers may be generated using common lines and circumferences functions
with some parametric features defined by the end-user. But in order to complete the
generation of trajectories for a single UAV a guidance module is required.

Figure 10. TG2M guidance scheme

Figure 11. Velocity error command

The AVCL simulation module contains a dynamic model of a mini-helicopter (Valero, 2005)
and its associated controllers: attitude, velocity and position. The velocity controller is based

www.intechopen.com

Aerial Vehicles

72

on a Proportional-Integrative “PI” design; it receives the velocity error command generated by
the guidance module shown in Fig. 10. These velocity error references are named Vxref and
Vyref, with respect to either the world or vehicle’s frame, and are calculated with the UAV’s
error position. In Fig. 11 the theoretical (or ideal) UAV velocity vector is represented by the
Vt term. Due to wind and other perturbations during flight, a velocity error vector Ve must
be considered in order to set the final velocity references to send to the vehicle’s controller.
This vector is derived from the UAV position error between the current and desired
positions. Finally, the velocity references Vxref and Vyref are the components of the vector
Vt +Ve.
The guidance module must take into account that the helicopter’s orientation (yaw) is
independent from the direction of travel. The high-level modules must generate a set of
orientations across the vehicle’s trajectory. The built-in AVCL control module (see Fig. 10) is
capable of receiving velocity and yaw angle orientation commands from the TG2M module
and generating the needed commands for the attitude controller that governs the vehicle’s
roll and pitch. The TG2M’s guidance module focuses on the generation of yaw references,
and use a simple Proportional “P” controller for smooth yaw angle transition during the
flight. Two methods are use to generate the yaw angle references: for simple maneuvers the
yaw angle is calculated using simple trigonometric relations due to the path displacement.
For complex trajectories using splines we introduce a feasible method to calculate a smooth
yaw angle evolution. This method also shows how to calculated roll and pitch references due
to the vehicle trajectory and its velocity. For roll, pitch and yaw angles calculation, the
following frame of reference is used:

Figure 12. Frames of reference for UAV guidance and control

From Fig. 12, the following vectors can describe the motion of the UAV vehicle in 6 DOF:

η = η1 ,η2[]
T

= x, y ,z ,φ ,θ ,ψ[]
T

v = v1 ,v2[]
T

= u,v ,w , p ,q,r[]
T

(25)

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

73

In Eq. (25), η1 denotes the position of the center of mass CM of the vehicle and η2 its

orientation described by the Euler angles with respect to the inertial frame {I}. The vector v1

refers to the linear velocity and v2 to the angular velocity of vehicle frame {B} with respect

to inertial frame {I}. In order to express the velocity quantities between both frames of
references (from {B} to {I} and vice versa), the following transformation matrix is used3:

1 1

1 1

I

BR v

c c s c c s s s s c c s

s c c c s s s c s s s c v

s c s c c

η

ψ θ ψ φ ψ θ φ ψ φ ψ θ φ

η ψ θ ψ φ φ θ ψ ψ φ θ ψ φ

θ θ φ θ φ

′ =

− + +⎡ ⎤
⎢ ⎥′ = + − +⎢ ⎥
⎢ ⎥−⎣ ⎦

 (26)

The body-fixed angular velocities and the rate of the Euler angles are related through:

2 2

1

0

0 / /

s t c t

c s v

s c c c

φ θ φ θ

η φ φ

φ θ φ θ

⎡ ⎤
⎢ ⎥′ = −⎢ ⎥
⎢ ⎥⎣ ⎦

(27)

The position and the magnitude of the velocity vector at a point P on the trajectory are given
by 4:

Sp = x , y ,z[]
T

Vp = ′ S p = ′ x 2 + ′ y 2 + ′ z 2

(28)

The method to define the Euler angles is based on the Frenet-Serret theory (Angeles, 1997).
To every point of the curve we can associate an orthonormal triad of vectors (a set of unit

vectors that are mutually orthogonal) namely the tangent e t , the normal en and the bio-

normal eb (see Fig. 13). The Frenet-Serret theory says that by properly arranging these

vectors in a matrix ∈ℜ3x 3, we obtain a description of the curve orientation due to the
position, velocity and acceleration of the UAV while tracing out the path. The unit vectors
are then defined as:

e t =
′ S p

Vp

, eb =
′ S p × ′ ′ S p()
′ S p × ′ ′ S p

, en = eb × e t

(29)

In the definition of a frame associated with the curve the original definition of the Frenet
frame for counterclockwise rotating curves is used; in the case of a clockwise rotating curve,

the z฀axis of the Frenet frame points in the opposite direction upwards than the inertial {I}
frame. So in order to define small relative rotation angles for the orientation of a vehicle

rotating clockwise and having its zb axis pointing downwards, we define a reference frame

3 where c = cos(); s = sin(); t = tan()
4 The terms (x,y,z) are computed due to the spline methodology previously exposed.

www.intechopen.com

Aerial Vehicles

74

associated with the curve as previously, but rotated with respect to the Frenet by an angle of

180 degrees about the x−axis of the Frenet frame (see Fig. 13).

Figure 13. The inertial, the Frenet, the vehicle and the curve Frames

Collectively we denote the Frenet and the rotated frame as the “curve” frame {C}. According
to the notation of rotational transformations used in robotics literature, we can express the
coordinates of a vector given in the curve frame {C} to the {I} frame with the matrix:

RC
I = e t en eb[]

RI

C = RC

I T
 (30)

For a counterclockwise rotation: RC

I = Rx 180D()e t en eb[]. Likewise, the rotation of the {B}

frame from the {C} frame to the reference {R} frame can be expressed using customary

aeronautical notation by considering the sideslip angle β and angle of attack α, (Siouris,
2004):

β = sin−1 vR

Vp

⎛

⎝
⎜

⎞

⎠
⎟

α = tan−1 wR

uR

⎛

⎝ ⎜
⎞

⎠ ⎟ (31)

The vector vR refers to the y-axis velocity component in the reference frame and wR ,uR to

the z and x - axis respectively. The overall rotation is composed by a rotation about body zB

axis through the angle β , followed by a rotation about the body yB through the angle α ,

which is expressed as:

RC

R = Ry

T α()Rz

T −β() (32)

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

75

Finally, the roll, pitch and yaw angles can be deduced as follows:

RI

R = RC

RRI

C

φ = atan2 r23 ,r33()
θ = atan2 −r13 , r23

2 +r33

2⎛
⎝

⎞
⎠

ψ = atan2 r12 ,r11()

 (33)

Where

ri, j represent the components of the rotation matrix RI

R ∈ℜ3x 3. Computing the

previous methodology, we use 3D splines with fixed boundary conditions in order to
generate a complicated path as shown in Fig. 11. Seven knot-points have been used
(distance are in meters): P=[0 0 0; 5 1 2; 10 5 5; 15 10 10; 10 15 15; 5 10 20; 0 8 20; 5 0 20].
Eq. (33) has been used to obtain the UAV orientation with respect to the Inertial Frame as:

Figure 14. Roll, Pitch and Yaw angle references for UAV guidance

For complex maneuvers the Frenet theory allowed to define smooth yaw references as well
as roll and pitch angles if it is required. Nevertheless, the computational cost of calculating
those equations could decrease the system performance if the number of knot-points of the
path is large. For this reason, normal maneuvers such as straight-lines use simple
trigonometric theory to obtain the UAV orientation. On the other hand, the end-user is able
to define the kind of orientation of the vehicle, this means that the vehicle is not constrained
to be oriented just by the trajectory direction, hence, it will be able to trace out the trajectory
oriented towards to any fixed point defined.
The yaw angle defined by the term ψ is given by:

ψ = tan−1
ydiff

xdiff

⎛

⎝
⎜

⎞

⎠
⎟ (34)

www.intechopen.com

Aerial Vehicles

76

Where

xdiff , ydiff correspond to the difference between the target fixed point and the current

position of the UAV. In addition, depending of the motion quadrant, the term ψ in Eq. (34)
must be fixed, this means that for the {x-,y+} and the {x-,y-} quadrant, the yaw angle is
ψ = ψ + π , otherwise, for the {x+,y-} quadrant, ψ = ψ + 2π .
Figure 15 shows a circumference-arc generated using Eq. (24) as well as the yaw evolution of
the UAV oriented towards the center of the arc located at [0,0] coordinate in the x-y plane
using the previosly theory described in Eq. (34).
This section has successfully introduced the mathematical treatment and methods for the
generation of complex trajectories and simple maneuvers using the available theory
reported in specialized literature (LaValle S.M, 2006), (Jaramillo-Botero et al., 2004).
Geometrical trajectory generation and some techniques for its parameterization based on
polynomial splines and function with trapezoidal velocity profile are an interest solution for
this problem, actually, some of these methodologies are used for complex UAV trajectory
definition nowadays. The novel solution presented in this book is the integration of these
methods into a powerful environment that allows high-level user control of complex
missions. The AVCL definitively brings those features and the next section will introduce
some tests using the AVCL interpreter and the simulation environment.

Figure 15. Circumference 3D motion, trapezoidal velocity profile and yaw angle evolution

4. TG
2
M Simulation Results

As shown in Fig. 1 the Mission Planner (MP) has two similar loops for mission planning and
simulation/supervision. The difference is that in the Planning Loop the interpreter sends the
projected waypoints back to the MP’s Enhanced Reality, while in the Simulation Loop the
interpreter commands the simulated vehicle, which in turn sends the simulated positions to

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

77

the MP. Our research group has developed a Simulink-based model of a UAV helicopter
named Vampira, which includes a position controller and is capable of real-time simulation.
This simulator has been used with the Mission Planning and Simulation tool to test the
TG2M. For Mission Supervision the AVCL commands would be sent to the real vehicle, and
its position plotted alongside the projected and/or simulated paths. The Vampira helicopter
was built within the framework of the project: “Guidance and Control of an Unmanned
Aerial Vehicle” DPI 2003 01767 (VAMPIRA), granted by the Spain Ministry of Science and
Technology, and it will be used for the real-world tests of the built-in TG2M framework.
Figure 16 shows the Vampira prototype, which includes: a GPS, Wi-Fi link, IMU, and a
PC104 computer for the low-level control (main rotor and tail servos). The Vampira’s
dynamics model has been obtained, identified and validated in previous works (Valero,
2005), (del Cerro et al., 2004). This work takes advantage from the AVCL simulation
capabilities in order to validate the TG2M framework theory for trajectory planning.

Figure 16. The Vampira’s Helicopter prototype

Three test scenarios showcase the TG2M validation process. These tests involve the whole
methodology previously presented in the other sections of this chapter, as well as the
numerical simulation results using the AVCL environment and the embedded dynamics
and control algorithms for the Vampira’s helicopter. Two complex maneuvers are presented
using 3D and 4D splines respectively and a simple last test using analytical function to
generate a parameterized circumference motion.
1). Semi-spiral using 3D splines for the velocity profile generation and the Frenet theory for UAV
orientation: In this first test, we used a 3D spline to joint three knot control points: (P0(0, 0, 0),
P1(3, 5, 10), P2(6, -7, 20)) at the desire time (given in seconds) for each point: (t(0, 10, 20)) and
the desire initial and final speed (given in m/s): (V0(0, 0, 0), Vf(0, -0.2, 0.4)):

www.intechopen.com

Aerial Vehicles

78

Figure 17. The AVCL simulation environment: Vampira’s helicopter executing a semi-spiral
motion using 3D splines

Figure 18. Test1: Cartesian UAV position and velocities with respect to the Inertial Frame

The UAV started from initial point located at (0, 0, 0) coordinate and finished its trajectory at
(6, -7, 20). Visual simulation depicted in Fig 17, showed smooth motion across the trajectory
due to the 3D spline approach. Nonetheless, 3D splines just allow the user to define the
initial and final velocities of the motion, lacking of velocity control for the rest of the knot-
points.

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

79

Figure 19. Test1: UAV orientation (Euler angles evolution)

To solve this problem, the following test introduces a more complex trajectory generation
using 4D splines, addressing total user control of the UAV velocity profile.
2). Complex trajectory using 4D splines for the velocity profile generation and the Frenet theory for
UAV orientation. This trajectory includes different kind of maneuvers joined into a single
polynomial function (take-off, circumference-type motion and slow down in spiral-type
motion). This test includes UAV long-endurance to high altitude (150 meters above ground)
and a maximum easting displacement about of 60 meters. The following knot-control points
(given in meters) have been defined: (P0(0, 0, 0), P1(0, 0, 20), P2(0, 0, 40), P3(0, 0, 60), P4(10, 2,
80) , P5(20, 4, 110) , P6(25, -7, 130) , P7(30, -10, 150), P8(35, -5, 140) , P9(30, 16, 125) , P10(20, 5,
130) , P11(33, -10, 145) , P12(40, -5, 135) , P13(55, -6, 125)):

Figure 20. Test2: smooth 4D spline for complex maneuve

www.intechopen.com

Aerial Vehicles

80

Figure 21. Test3: Arc-type motion using analytical functions

The advantage about using 4D splines relies in the possibility of defining feasible paths
that matches with the knot-control points defined (with less match error percentage than
the 3D polynomial splines). In addition, the user is able to define the set of velocities for
each of the knot-points during the motion. The set of velocities (given in m/s) are: (V0(0,
0, 0), V1(0, 0, 0.8), V2(0, 0, 1), V3(0, 0, 1.2), V4(0.5, 1, 1.4) , V5(0, 0.5, 1.7) , V6(2, 1.5, 2.5), V7(3,
2.2, 3), V8(2, 1.2, 2) , V9(1, 0.5, 1.5) , V10(-0.5, -1, 0.8) , V11(-3, -2, 0.4) , V12(-1, -0.5, 0.8), V13(0,
0, 0)).
3). Simple arc-type maneuver with trapezoidal velocity profile parameterization: for the
analytical AVCL feature of trajectory planning, the TG2M module supports straight-lines
and circumferences motions. An arc defined by: P0(0, 0, 2), P1(10, 5.5, 2), P2(20, 0, 2)) with a
maximum velocity of 0.5m/s is tested using the AVCL interpreter that allows the user to
define the trapezoidal velocity profile configuration. For this case, the acceleration slopes
of the curves (see Fig. 21) have been set to the 30% of the total motion.

Figure 22. Test3: UAV orientation (Euler angles evolution)

www.intechopen.com

Advanced UAV Trajectory Generation: Planning and Guidance

81

5. Final Observations

For modeling continuous cartesian trajectories in the AVCL, several analytical functions
and polynomial interpolation methods are available; all of which can be used in any
combination. The TG2M module handles the definition of trajectories using knot control
points as well as the incorporation of path constraints. It also supports the definition of
complex tasks that require the construction of trajectories made up of different primitive
paths in any combination of analytical and interpolated functions. The user-designed
spatial trajectories can be visualized in three dimensions on the display window or
plotted versus time using the embedded plotting library.
Simulation results have shown that the TG2M module works perfectly for the definition
and testing of wide kind of smooth trajectories, allowing the user a high-level control of
the mission due to the AVCL interpreter. The three different scenarios used for testing,
allowed verifying that the mathematical framework used for the trajectory generation and
guidance was really working during simulation flight. Percentage errors during
maneuver execution were minimal, maintaining the UAV at the desired velocity limits
and within the established path. We also incorporated velocity error fixing during flight.
For high altitude tests, the velocity of the wind plays a mandatory role as a main
disturbance external force. The TG2M module includes wind perturbation compensation.
The Guidance module fixes the velocity commands in real-time flight maneuver,
decreasing the error position tracking. For the three scenarios tests, the AVCL simulation
environment includes normal wind conditions during simulation flight, introducing small
perturbations into the UAV equations of motion. As shown in the obtained results, those
perturbations were compensated, allowing the UAV to follow the desired trajectory
within the less error as possible.
The Frenet-Serret formulas included for the UAV orientation also presented a good
approach in order to obtain smooth UAV rotation rate during flight. The use of simple
trigonometric theory to obtain and define the UAV orientation profile (Yaw angle) is not
convenient for complex maneuvers. Splines sometimes require a lot of know-points for
feasible trajectory guidance, hence, using these polynomial equations, the Frenet
approach allowed smooth angle changes between knot-points, which it had not been
obtained with the simple trigonometric angle calculation.

6. References

JAA & Eurocontrol,.A concept for the European Regulations for Civil Unmanned Aerial
Vehicles. UAV Task-Force Final Report. 2004

Coifman, B., McCord, M., Mishalani, M., Redmill, K., Surface Transportation Surveillance
 from Unmanned Aerial Vehicles. Proc. of the 83rd Annual Meeting of the
 Transportation Research Board, 2004.

Held, Jason M; Brown, Shaun and Sukkarieh, Salah. Systems for Planetary Exploration.
 I5th NSSA Australian Space Science Conference, pp. 212-222, ISBN: 0864593740.
 RMIT University, Melbourne, Australia, from 14 to 16 September 2005.

Gutiérrez, P., Barrientos, A., del Cerro, J., San Martin., R. Mission Planning and
Simulation of Unmanned Aerial Vehicles with a GIS-based Framework;
AIAA Guidance, Navigation and Control Conference and Exhibit. Denver,
EEUU, 2006.

www.intechopen.com

Aerial Vehicles

82

Rysdyk, R. UAV path following for constant line-of-sight. In 2th AIAA Unmanned
 Unlimited. Conf. and Workshop and Exhibit, San Diego, CA, 2003.

Price, I.C, Evolving self organizing behavior for homogeneous and heterogeneous swarms
 of UAVs and UCAVS. PhD Thesis, Graduate School of Engineering and
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
March 2006.

Herwitz, S. Developing Military COEs UAV applications. UAV Applications Center –
 NASA Ames Research Center, Moffett Field, CA. 2007.

Alison A. P., Bryan G., Suresh K. K., Adrian A. K., Henrik B. C. and Eric N. J. Ongoing
 Development of an Autonomous Aerial Reconnaissance System at Georgia Tech .
 UAV Laboratory, School of Aerospace Engineering. Georgia Institute of
Technology, 2003

Jaramillo-Botero A., Correa J.F., and Osorio I.J., Trajectory planning in ROBOMOSP,
 Robotics and Automation Group GAR, Univ. Javeriana, Cali, Colombia, Tech. Rep.
GAR-TR-10-2004, 2004.

LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
Moitra, A., Mattheyses, R.M., Hoebel, L.J., Szczerba, R.J., Yamrom, B.: Multivehicle

 5reconnaissance route and sensor planning. IEEE Transactions on Aerospace and
 Electronic Systems, 37 (2003).

Zheng, C., Li, L., Xu, F., Sun, F., Ding, M.: Evolutionary Route Planner for Unmanned Air
 Vehicles. IEEE Transactions on Robotics 21 (2005) 609–620

Frazzoli, E. Maneuver-based motion planning and coordination for single and multiple
 UAVs. AIAA's 1st technical conference and workshop on unmanned aerospace vehicles.

University of Illinois at Urbana-Champaign, il 61801. S. Portsmouth, Virginia.
May 2002.

Angeles J., Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms.
Springer, New York, 1997.

Siouris, G. M. Missile Guidance and Control Systems. Springer, New York, 2004.
Valero, Julio. Modelo dinámico y sistema de supervisión de vuelo de un helicóptero

autónomo. Proyecto de fin de carrera. ETSIIM-UPM. 2005.

www.intechopen.com

Aerial Vehicles

Edited by Thanh Mung Lam

ISBN 978-953-7619-41-1

Hard cover, 320 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more

intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for

further improvement of the design and application of aeral vehicles. The advanced techniques and research

described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and

space.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Antonio Barrientos, Pedro Gutierrez and Julian Colorado (2009). Advanced UAV Trajectory Generation:

Planning and Guidance, Aerial Vehicles, Thanh Mung Lam (Ed.), ISBN: 978-953-7619-41-1, InTech, Available

from:

http://www.intechopen.com/books/aerial_vehicles/advanced_uav_trajectory_generation__planning_and_guida

nce

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

