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1. Introduction  

Nature provides us with many examples of ingenious sensors and systems at the service of 
animal behavior, which can be transferred into innovative systems for the control of Micro-
Air Vehicles (MAVs). Winged insects demonstrate daunting behaviors in spite of the poor 
resolution of their visual system. For more than 100 million years, they have been navigating 
in unfamiliar 3D environments by relying on optic flow (OF) cues. To sense and react to the 
flowing image of the environment, insects are equipped with smart sensors called 
Elementary Motion Detectors (EMDs) that can act as optic flow sensors (figure 1). The 
principle of our bio-inspired optic flow sensors is based on findings obtained at our 
laboratory on the common housefly’s EMDs, by performing electrophysiological recordings 
on single neuron while applying optical microstimuli to two single photoreceptors cells 
within a single ommatidium (Franceschini, 1985, Franceschini et al. 1989). 
The OF-field gives the angular velocity (in rad/s) at which any contrasting object in the 
environment is moving past the eye (Koenderink, 1986). One lesson we have learned from 
insects is that they are able to navigate swiftly through the most unpredictable environments 
without using any velocimeters or rangefinders. Insects rely on optic flow to avoid collisions 
(Collett, 1980; Wagner, 1982; Tammero and Dickinson, 2002), to follow a corridor (Kirchner 
and Srinivasan, 1989; Baird et al. 2005; Ruffier et al., 2007; Serres et al., 2007; Serres et al. 2008), 
to follow the terrain (William, 1965; Srygley and Oliveira, 2001), to fly against wind (Kennedy 
1939, Kennedy 1951), and to cruise and land (Srinivasan et al., 1996), for example. 
Interestingly, insects seem to maintain a constant optic flow with respect to their 
surrounding environment while cruising and landing (Kennedy, 1951; David, 1978, 
Srinivasan et al. 1996, 2000). Several MAV autopilots were built in recent years which show 
how insects could achieve this feat by using a feedback control system called the optic flow 
regulator (Ruffier and Franceschini, 2003, 2005, Serres et al. 2008). Future MAVs’ visual 
guidance systems may have to incorporate optic flow sensors covering various parts of the 
visual field, like insects do (Figure 2). 
The biorobotic approach developed at our laboratory over the past 20 years enabled us to 
construct several terrestrial and aerial robots based on OF sensing (Pichon et al., 1989, 
Franceschini et al., 1992, 1997; Mura and Franceschini, 1996; Netter and Franceschini., 2002, 
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Ruffier et al., 2004). The robot Fly ('le robot-mouche') started off as a small, completely 
autonomous (terrestrial) robot equipped with 114 optic flow sensors. This robot was able to 
steer its way to a target through an unknown field of obstacles at a relatively high speed 
(50cm/s) (Franceschini et al. 1992, 1997). Over the last 10 years, we developed small (mass 
< 1kg) optic flow based aerial demonstrators with limited degrees of freedom (Viollet and 
Franceschini, 1999, 2001 ; Netter and Franceschini, 2002; Ruffier and Franceschini, 2003, 
2005; Kerhuel et al., 2007; Serres et al., 2008,) called FANIA, OSCAR, OCTAVE, and LORA, 
respectively.  

 

Figure 1. Principle of an optic flow regulator. The feedback control loop aims at maintaining 
the OF measured constant and equal to an optic flow set point 

 

Figure 2. Several optic flow sensors covering various, strategic fields of view for an insect-
like visual guidance of Micro-Air Vehicles (MAV) 

In addition to visuo-motor control loops, inner control loops are necessary (i) to lock the 
micro-aircraft in certain desired attitudes, and (ii) to improve the control performances and 
robustness. 
(i) Attitude control systems laid out in parallel with the visuo-motor control loops may use 
inertial and/or magnetic angular sensors (Ruffier et al., 2005; Viollet et al., 2001; Serres et al., 
2008) 
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(ii) Control speed and accuracy can be improved with advanced actuators and more 
classical control loops based on proprioceptive sensors.   
MAVs suffer, however, from stringent constraints on avionic payload, which requires highly 
miniaturized sensors, actuators and control systems (Viollet et al., 2008, Ahmad and Taib, 
2003, Van Nieuwstadt and Morris, 1995). 
Some of the aerial robots we developed thus far (FANIA and LORA) embedded only the 
optic flow sensors, the electromechanical actuators, and some internal stabilizing loops. The 
visuo-motor control system therefore operated off-board, yet real time experimentation was 
made possible by the joint use of Simulink (The Mathworks) and Dspace (Dspace) softwares. 
This permanent exchange between simulation (from the high level models) and 
experimental tests (from the robot) is appealing because it permits quick implementation of 
any new visuo-motor control systems onto a physical demonstrator, in addition to easy 
monitoring, and validation and tuning procedures. In this approach, the robot’s behavior 
may be limited by the wire umbilical, however, unless a wireless link is established between 
the robot and the real-time board.  
In our quest to achieve robot’s complete - computational and energetic – autonomy, we now 
designed a complete digital system that integrates both optic flow sensors and robot’s 
control systems within the same target: a 0.5 gram Field Programmable Gate Array (FPGA). 
An FPGA offers significantly more computational capabilities-per-gram than an embedded 
microprocessor or Digital-Signal Processor (DSP) because it supports custom, application-
specific logic functions that may accelerate processing. 
In the next sections, we describe our autopilot project based on an FPGA that meets three 
constraints: (i) the complete autonomy requirements, (ii) the computational requirement for 
real-time processing, and (iii) the requirement for light weight imposed by the very limited 
avionic payload (Chalimbaud and Berry, 2007). 
Our project consists in the FPGA implementation of a visuo-motor control system, called LORA 
(LORA stands for Lateral Optic flow Regulation Autopilot), that was developed for a miniature 
hovercraft (section 3). The FPGA integration work was performed from a top-down design 
methodology using Intellectual Property (IP) cores and VHDL descriptions imported in the 
Simulink high-level graphical environment (The Mathworks) and the System Generator software 
interface (Xilinx) (section 2). The high-level Simulink blocks of the designed autopilot are then 
substituted for digital Xilinx blocks. Digital specifications of several functions, such as 
sampling time, fixed-point binary formats (section 4) and architectures (section 5), were 
defined from behavioral studies. Only models built from Xilinx blocks were translated into 
hardware logic devices using System Generator. Finally, the overall behavior of the integrated 
systems was analyzed using a hardware/software simulation based on both the Simulink 
environment (on a PC) and the FPGA (via a JTAG protocol). This co-simulation allowed us to 
analyze the hovercraft’s behavior in various visual environments (section 6). 

2. Design methodology for FPGA 

2.1 FPGA general description 

A field programmable gate array (FPGA) is a general-purpose integrated circuit that is 
programmed by the designer rather than the device manufacturer. Unlike an application-
specific integrated circuit (ASIC), which can perform a similar function as in an electronic 
system, a FPGA can be reprogrammed, even after it has been deployed into a system. A 
FPGA is programmed by downloading a configuration program called a bitstream into static 
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on-chip random-access memory (RAM). Much like the object code for a microprocessor, this 
bitstream is the product of compilation tools that translate the high-level abstractions 
produced by a designer in an equivalent logic gate level. 
A platform FPGA is developed from low-density to high-density designs that are based on 
IP cores and customized modules. These devices are user-programmable gate arrays with 
various configurable elements. The programmable device is comprised of I/O blocks and 
internal configurable logic blocks. Programmable I/O blocks provide the interface between 
package pins and the inside configurable logic.  
The internal configurable logic includes elements organized in a regular array: configurable logic 
blocks (CLB) provide functional elements for combinatorial and synchronous logic, including 
basic storage elements; memory modules provide large storage elements of single or dual-
port; Multiplier blocks integrating adder and accumulator (MAC); digital clock managers 
provide self-calibrating, fully digital solutions for clock distribution delay compensation, clock 
multiplication and division, coarse- and fine-grained clock phase shifting. 
Several FPGAs also support the embedded system functionality such as high-speed serial 
transceivers, one or some hard embedded processors, Ethernet media-access control cores or 
others integrated high-functionality blocks. 
A general routing matrix provides an array of routing switches between each component. 
Each programmable element is tied to a switch matrix, allowing multiple connections to the 
general routing matrix.  
All programmable elements, including the routing resources, are controlled by values stored 
in memory cells. These values are loaded in the memory cells during configuration and can 
be reloaded to change the functions of the programmable elements. 
FPGAs especially find applications in any area or algorithm that can use the massive 
parallelism offered by their architecture. They begin to take over larger and larger functions 
to the state where some are now marketed as full systems on chips (SOC). In this sense, they 
can satisfy the computational needs of real-time processing onboard autonomous MAVs. 

2.2 FPGA design process   
There are many design entry tools used for FPGA design. The easiest and most intuitive is 
the schematic entry. In this case, the required functionality is drawn using a set of library 
components. These one include the components primitives available on the FPGA as well as 
some higher level functions. Intellectual Property cores (IP) can be configured and placed in 
the schematic as a black box.  
A trend in the digital hardware design world is the migration from graphical design entries 
to Hardware Description Languages (HDLs). They allow specifying the function of a circuit 
using a specific language such as VHDL or Verilog. These languages are specially made to 
describe the inherently parallel nature of digital circuits (behavioural and data flow models) 
and to wire different components together (structural models). In addition, HDLs are well 
adapted for designs with synchronous Finite State Machine (FSM) (Golson, 1994, Chambers, 
1997). State machines impose a strict order and timing for operations making them similar 
to programs for CPUs. 
However, HDL descriptions are difficult to design in the case of complex systems using 
digital signal processing functions or control applications. Indeed, the high level 
mathematical modelling tools are often used to validate a system model and to make a 
floating or fixed point model. Developments in the simulation capabilities of high-level 
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mathematical modeling tools have opened new design flow possibilities. These tools are 
includes in methodologies that help to hand complex design efficiently, minimize design 
time, eliminate many sources of errors, reduce the manpower required to complete the 
design and to produce optimal solutions. Nowadays, we can integrate complex system 
using IP cores and HDL descriptions imported in a high-level graphical environment. A 
software interface converts a fixed point model into hardware using traditional low level 
design implementation tools. Our design approach is based on this latter method. 
In our project the high-level environment is Matlab/Simulink (The Mathworks), and the used 
interface tool is System Generator for DSP (Xilinx). Matlab is interactive software for doing 
numerical computations that simplifies the implementation of linear algebra routines. 
Powerful operations can be performed by utilizing the provided Matlab commands. Simulink 
is an additional toolbox of the Matlab software that provides a graphical environment for 
modeling, simulating and analyzing dynamic systems. System Generator for DSP toolbox was 
specifically designed to allow the fast development of complex system requiring powerful 
digital signal operations. It is presented in the form of a 'toolbox' added to the Simulink 
graphic environment, which allows the interfacing of certain functions fulfilled with the 
others 'toolbox' dedicated to Simulink (Turney, 1999, Ownby, 2003). 

 

Figure 3. Top-down design methodology with a view to designing, simulating and 
implementing ‘visuo-motor control loops’ in FPGA (from Aubépart and Franceschini, 2007) 
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The design flow is presented in Figure 3. This methodology requires design various stages 
as well as the linking framework. This top-down methodology simplifies the integration 
problems by using detailed descriptions (Browny et al., 1997; Aubépart & Franceschini, 
2005, 2007, Murthy et al., 2008).  
Firstly, we start to create a ‘system model’ as well as one or more simulated environment 
configurations for validating its principle. In this state, a functional approach involves 
dividing the system into elementary function blocks. The elements used in constructing the 
‘system model’ are all capable of operating on real (double precision, floating point) or integer 
(quantized, fixed point binary) data types. When the model is first entered, simulation is 
typically performed using floating data types to verify that its theoretical performance is as 
desired. 
Secondly, we define the ‘high-level behavioral model’ which describes the computation 
sequences and timing data (sampling frequency, delays, etc.). For example, mathematical 
operators that occur within an algebraic feedback loop may have an associated delay to 
avoid the system instability. The fixed time step, insert delays and/or rate changes need to 
be also considered to ensure a stability of a system based on a feedback loop. 
Thirdly, an ‘algorithm implementation model’ must be defined for each function to integrate. 
This model identifies the data type and the procedures used in each function. It takes 
account some factors, such as the binary format, in order to optimize the digital calculations. 
The internal data types are then converted to the bit true representations that will be used in 
the hardware implementation, and the model is re-simulated to verify its performance with 
quantized coefficient values and limited data bit widths, which can lead to overflow, 
saturation and scaling problems. 
Fourthly, the hardware constraints are study in the ‘architectural model’ that defines one or 
several implementation architectures for each function to integrate. They are replaced by IP 
blocks available in the System Generator toolbox. We can also define black boxes, such as 
VHDL descriptions, which can be incorporated into the model and the elaboration process. 
The importation of VHDL descriptions will be limited to complex synchronous descriptions, 
such as Finite State Machines. 
Fifthly, the final verification will be completed by implementing the hardware co-simulation 
of the System Generator ‘architectural models’. The co-simulation process uses Xilinx ISE and 
core generator to synthesize and generate and FPGA programming bit file. A new Simulink 
library was created containing the hardware co-simulation blocks. These blocks were copied 
into the Simulink project file for replacing all the System Generator ‘architectural models’. The 
port names, types and rates are matching the original design. The hardware implementation 
is then executed by connecting the FPGA board to the computer and using a standard JTAG 
connection. When the simulation is run, stimuli are send to FPGA and output signals are 
receive by Matlab/Simulink environment, closing the loop.   
Finally, the designer can invoke the netlister and test-bench generator available from System 
Generator. The netlister extracts a hierarchical VHDL representation of the model’s structure 
annotated with all element parameters and signal data types that will integrate into FPGA 
from traditional low level tools include in Xilinx ISE: logic synthesize, mapping, placement 
and routing, generate programming file. 
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3. LORA III autopilot 

In this part, we present the ‘system model’ and the implementation of a full control system 
using System Generator toolbox. This study integrate a complete visuo-motor control system, 
called LORA III (LORA stands for Lateral Optic flow Regulation Autopilot, Mark 3), which 
was designed for a particular kind of aerial vehicle: a fully actuated miniature hovercraft that 
is able to "fly" at a few millimetres above the ground and to control both its speed and its 
distance from the walls – without any measurements of speed and distance (Serres et al., 2008). 

3.1 Robot position in travel environment 

The hovercraft is simulated to travel through an unknown textured corridor at a ground 

speed vector V
r

 over a flat surface, Figure 4. The walls are lined with vertical stripes with 

random spatial frequency and contrast that mimic a richly textured environment (Iida, 2001, 
Ruffier & Franceschini, 2005). The corridors are of two types: right or tapering.  

        

Figure 4. Miniature hovercraft moving through an unknown textured corridor: the 

groundspeed vector V
r

is projected onto the corridor-fixed coordinate frame.  Four thrusters 

(two rear thrusters and two lateral thrusters) allow the hovercraft to be fully actuated in the 
plane. (Adapted from Serres et al., 2008) 

The robot’s position (x, y) is computed in including side forward speed Vx and the side 
speed Vy. The hovercraft is fully actuated because in addition to the pair of rear thrusters 
providing forward motion (surge axis) and heading control (yaw axis), the vehicle is 
equipped with a pair of lateral thrusters generating independent side-slip motion (sway). 

The angle ψ defines the hovercraft’s yaw angle with respect to the corridor axis, which is 

kept at a reference value equal to zero (ψ = 0). In this study, the hovercraft's heading ψ is 
assumed to be stabilized along the X-axis of the corridor. 
The hovercraft's motion is defined by dynamic equations involving the forward thrust 
(FFwd = FRT1 + FRT2) produced by the rear thrusters (left: RT1, right: RT2) and the lateral thrust 
(FSide = FLT2 - FLT1) produced by the lateral thrusters (left: LT1, right: LT2). In the simulations, 
the maximum forward speed is 2m/s and the maximum side speed is 0.5m/s. At such low 
speeds, the drag-versus-speed function can be linearized. The following equations referred 
to the center of gravity G define the dynamics of the simulated hovercraft (Figure 5): 

 

( )

( )1LT2LTT1LT2LTyy
y

2RT1RTT2RT1RTxx
x

UU.KFFV.
dt

dV
.m

UU.KFFV.
dt

dV
.m

−=−=ξ+

+=+=ξ+

 (1) 
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Where m = 0,73 kg is the total mass of the hovercraft, and ξx and ξy are translational viscous 
friction coefficients along the X-axis and Y-axis, respectively. KT (0.10 N/V) is a simple gain 
that relates the thrust to the applied voltage: URT1 and URT2 are the forward control signals 
received by the rear thrusters, ULT2 and ULT1 are the side control signals received by the 
lateral thrusters. 

3.2 Dual optic-flow regulator 

The system addresses both issues of automatic speed control and side wall avoidance of the 
miniature hovercraft simultaneously. LORA is a dual optic flow regulator that consists of 
two interdependent control loops: a forward control loop and a side control loop. Figure 5 
shows the block diagram involving multiple processing stages. This scheme is composed of 
two parts. In first, all functions that we would integrate into FPGA (blue, green and red 
functions). Secondly, hovercraft dynamics, lens/photoreceptors system and visual 
environments simulate the trajectories resulting from the LORA dual regulator scheme 
(Cyan and cyan hatched functions). These ‘high level behavioural models’ will be used when 
digital, timing and architecture specifications will be defined for the functions to integrate.  

 

Figure 5. LORA III functional block diagram. LORA III autopilot is based on two 
interdependent visual feedback loops working in parallel with their own optic flow set-
point (the forward control system is the upper one, and the side control system is the bottom one). 
Optic flow sensors measure the right and left optic flows in accordance with the hovercraft’s 
speed and position in the environment (adapted from Serres et al., 2008a) 

In Serres et al. (2008), the full control system is described in detail. We summarize here the 
principal aspects of them. That the hovercraft is fully actuated means that each groundspeed 
component Vx and Vy can be controlled independently. LORA III regulates (i.e., maintains 
constant) the lateral OF by side and forward controls, according to the following principles: 
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(i) The first lateral OF regulator adjusts the air vehicle’s lateral thrust (which determines the 
lateral speed Vy, i.e., the sway speed) so as to keep the lateral optic flow equal to the sideways 
OF set-point. The outcome is that the distance to the wall becomes proportional to the 
vehicle’s forward speed Vx which is defined in (ii): the faster the air vehicle travels, the 
further away from the walls it will be. The clearance from the walls will depend directly on 
the sideways OF set-point. 
(ii) The second lateral OF regulator adjusts the air vehicle’s forward thrust (which determines 
the forward speed Vx, i.e., the surge speed) so as to maintain the sum of the two (right and 
left) optic flows equal to the forward OF set-point. The outcome is that the air-vehicle travels 
all the faster as the environment is less cluttered. The forward speed attained by the vehicle 
will depend directly on the forward OF set-point and will become proportional to the local width of 
the corridor. 
The first lateral optic flow regulator is based on a feedback signal that takes into account the 
left or right optic flow measured. The feedback is simply the larger of the two optic flows 

measured (left or right): max(ωLmeas, ωRmeas): it corresponds to the nearest wall: min(DL, DR). 
This optic flow regulator was designed to keep the lateral optic flow constantly equal to the 

side optic flow set-point ωSetSide. The hovercraft then reacts to any deviation in the lateral 

optic flow (left or right) from ωSetSide by adjusting its lateral thrust, which determines the 
hovercraft’s side speed Vy: this eventually leads to a change in the distance to the left (DL) or 
right (DR) wall. A sign function automatically selects the wall to be followed, and a 

maximum criterion is used to select the higher optic flow value measured between ωRmeas 

and ωLmeas. This value is then compared with the sideways optic flow set-point ωSetSide. The 

error signal εside feeding the side controller is therefore calculated as follows: 

 ( ) ( )( )RmeasLmeasSetSideRmeasLmeasside ,maxsign ωω−ω×ω−ω=ε  (2) 

The identified transfer function of the side dynamics Gy(s) relating the hovercraft's ordinate 
y to the control signal approximates a first-order low-pass filter (with a time constant of 0.5s) 
in series with an integrator:  
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A lead controller Cy(s) was introduced into this feedback loop to increase the damping, thus 
improving the stability and enhancing the response dynamics. The lead controller Cy(s) 
(Eq.3) is tuned to reach a phase margin of 45° and a crossover frequency of 4rad/s (0.64Hz): 
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The second optic flow regulator is the forward control system. It is intended to keep the sum 

of the two lateral optic flows measured (ωRmeas+ωLmeas) constant and equal to a forward optic 

flow set-point ωSetFwd by adjusting the forward thrust, which will determine the hovercraft’s 
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forward speed Vx. At a given corridor width, any increase in the sum of the two lateral optic 
flows is assumed here to result from the hovercraft’s acceleration. This control scheme thus 
automatically ensures a ‘safe forward speed’ that is commensurate with the local corridor 
width. The sum of the two optic flows measured is compared with a forward OF set-point 

ωSetFwd, and the error signal εFwd (the input to the forward controller) is calculated as follows: 

 ( )LmeasRmeasSetFwdFwd ω+ω−ω=ε  (5) 

The model GVx(s) for the dynamics of our hovercraft is described by a first order low-pass 
filter with a time constant of 0.5s: 
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A proportional-integral (PI) controller CVx(s) (Eq. 7) is tuned to cancel the dominant 
(aeromechanical) pole of the hovercraft and to reduce the forward time constant computed 
in the closed-loop by a factor of 1.57. The integral action is introduced to cancel the steady 
state error: 
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3.3 Bio-inspired visual system 

The visual system of the hovercraft consists of two optic flow sensors. Each optic flow 
sensor is designed by a lens/photoreceptor assembly (the eye) including at least two 
photoreceptors (i.e. two pixels) driving an Elementary Motion Detector (EMD) circuit. 
Each eye consists of two photoreceptors mounted slightly defocused behind a lens, which 
creates a bell-shaped Angular Sensitivity Function (ASF) for each of them (Hardie, 1985). 
The ASF, which is often modelled in the form of a truncated Gaussian curve (Netter & 

Franceschini, 2002) and characterized by the ‘acceptance angle’ ∆ρ=4° (i.e. the angular width 
at half height). The ASF plays an important role in the visual processing chain, because it 
serves as an effective low pass anti-aliasing spatial filter. The visual axes of each pixel are 

separated by an inter-receptor angle ∆ϕ = 4°. 
The EMD principle was originally based on the results of experiments in which a combined 
electrophysiological and micro-optical approach was used. The activity of a large field 
motion detecting neuron in the housefly’s eye was recorded with a microelectrode while 
applying optical microstimuli to a single pair of photoreceptor cells located behind a single 
facet (Franceschini, 1985, Franceschini et al., 1989). Based on the results of these experiments, 
a principle was drawn up for designing an artificial EMD capable of measuring the angular 

speed ω of a contrasting object (Franceschini et al., 1986, Blanes, 1986). 
Thus, in each of EMDs, the lens/photoreceptor combination transforms the motion of a 

contrasting object into two successive photoreceptor signals separated by a delay ∆t: 

 
ω

ϕ∆
=∆t  (8) 
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Where ∆ϕ is the inter-receptor angle and ω is the relative angular speed (the optic flow). An 
electronic device based on some linear and nonlinear functions estimates the angular speed 

ωEMD: 
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Our original EMD functional scheme (Franceschini et al., 1986, Blanes 1986, Aubépart & 

Franceschini, 2007) consists of five processing steps giving ωEMD (Figure 6): 
1. A first-order high-pass temporal filter (fc = 20Hz) produces a transient response 

whenever a contrasting border crosses the photoreceptors’ visual field. This filter 
enhances the contrast information while eliminating the DC components of the 
photoreceptor signals.  

2. A higher order low-pass temporal filter (fc = 30Hz) attenuates any high frequency noise, 
as well as any interferences brought about by the artificial indoor lighting (100Hz) used. 

3. A thresholding device/step normalizes the signals in each channel. 
4. A time delay circuit is triggered by one channel and stopped by the neighboring 

channel. This function measures the time ∆t elapsing between similar transitions 
occurring in two adjacent photoreceptors. 

5. A converter translates the delay ∆t measured into a monotonic function that will 

approximate the angular speed ωEMD. A simple inverse exponential function makes for a 
relatively large dynamic range (eq. 9). 

 

 

Figure 6. Principle scheme of Elementary Motion Detector (EMD). (Aubépart & 
Franceschini, 2007) 

4. Implementation of visual feedback loops 

4.1 Sampling time consideration 
In aerial robotic applications, the sampling time must comply with the requirements 
imposed by the digital control system so that the MAV can be controlled throughout its safe 
flight envelope. The maximum sampling time TSMAX will depend on the minimum delay 

∆tmin encountered by the robot’s EMDs during the fastest manoeuvres in the most critical 

applications. Indeed, in an extreme case the smallest delay ∆tmin which could be determined 
by the EMD will be that corresponding to one only counter clock period, whose clock signal 
corresponds to the sampling time.  

www.intechopen.com



Aerial Vehicles 

 

40 

One example of a fast maneuver is automatic wall-following, which is performed by 
measuring the side optic flow in the side direction. When the eye-bearing hovercraft is in 
pure translation at speed Vx and follows a textured wall at distance D, the image of the wall 

slips at an angular speed ω that depends on both Vx and D: 

 
tD

Vx

∆

ϕ∆
==ω  (10) 

If we take an extreme case where the hovercraft is allowed to follow the wall at the 
minimum distance D = 0.05m at the maximum speed Vx = 2m/s, equations 8 and 10 show 

that the 90° oriented EMD onboard the hovercraft, with its inter-receptor angle ∆ϕ = 4°, will 

be subject to a minimum delay ∆tmin ≈ 1.8ms. Accordingly, the sampling frequency fSmin will 
have to be set at values of at least 500Hz. When considering a MAV flying over an unknown 
terrain, we selected a minimum sampling frequency of 1kHz (Aubépart & Franceschini, 
2007). 
The maximum sampling frequency fSMAX is less constraining to choose. It must be in keeping 
with the timing specifications to which the lens/photoreceptors devices are subject, 
especially in the case photoreceptors using the current-integrator mode (Kramer et al., 1997). 
On the other hand, the maximum sampling frequency fSMAX, is limited by the lower end of 
the illuminance range over which the sensor is intended to operate, because at low 
illuminance levels, the integration of the photoreceptor signal takes a relatively long time 
and the sampling procedure will have to wait for this integration process to be completed 
(Aubépart & Franceschini, 2007). Taking the range [100Lux–2000Lux] to be a reasonable 
working illuminance range for the hovercraft, this gives fS = 2.5kHz, which we call the 
'nominal sampling frequency' (Aubépart & Franceschini, 2005). At twice this sampling 
frequency (5kHz), the hovercraft would still operate efficiently in the [200Lux – 2000Lux] 
range, but it would then be difficult for it to detect low contrasts under artificial indoor 
lighting conditions. In addition, we avoided CMOS cameras equipped with digital outputs, 
which have not high frame rates, which still need to scan every pixel internally (Yamada et 
al., 2003, Zufferey et al., 2003). 
As regards the forward and side controllers or others functions ('sign', 'add' and 'max' 
functions) present in the visual feedback loops, the sampling time should be adapted to the 
maximum frequency of the processed signals. Generally, the highest frequency corresponds 
to the smallest time-constant of control loops. In our loops, it is equal to 0.5-second that 
corresponds to a cut-off pulsation of 2rad/s. In discrete time we may consider that a 
sampling frequency 100 times higher than the system cut-off frequency would give results 
similar to continuous time. An equivalent sampling frequency of about 32 Hz could be 
sufficient. Since this value is in the lower part of the minimal value necessary to EMDs, we 
chose 2.5kHz as the nominal sampling. 

4.2 Digital specifications 
In feedback control loops, the digital specifications were mainly defined for EMDs design (i) 
and controllers design (ii). The secondary functions, such as 'sign', 'add' and 'max' functions, 
are easily adapted to the digital choices (binary format, implementation, etc.) without 
modifying the control loops operation. 
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In EMDs (i), the digital specifications were found during the filter design. Due to the low 
values of the high-pass and low-pass filter corner frequencies (fCHP = 20Hz, fCLP = 30Hz) in 
comparison with the sampling frequency (fS = 2,5kHz), it was not possible to obtain a digital 
band-pass filter meeting the Bode specifications. The high-pass filter section and low-pass 
filter section were therefore designed separately and cascaded. 
Infinite Impulse Response (IIR) filters were synthesized (see eq. 5 below) because they 
require far fewer coefficients than Finite Impulse Response (FIR) filters, given the low cut-
off frequencies and short sampling times involved: 

 ( ) ( ) ( ) ( ) ( )∑∑
−

==

⋅−⋅=
1n

1i

n

1i

iyiaixibny  (11) 

A transposed Direct-Form II structure was used because this structure reduces the number 
of delay-cells and decreases the quantization errors. Ripples on the low-pass filter temporal 
response were prevented by using a 4th-order Butterworth Filter, the phase of which was 
linearized over the frequency range of interest. The filters require 17 coefficients in all (4 
coefficients for the 1st-order high-pass section, 12 for the 4th-order low-pass section, and 1 
for the adjustment between the two filters). Three Direct-Form II filters suffice in fact to 
perform all the filtering, including that carried out by the two cascaded 2nd order low-pass 
filters. 
A specific binary format was developed and used to prevent offset and stabilization 
problems. A two-complement fixed-point binary format, denoted [s,mI,mD], was defined. 
The bit number of integer parts, mI, and the decimal part, mD, were defined so as to ensure 
maximum accuracy and to eliminate overflow from the filter calculations. Based on the 
results of a study carried out with Filter Design and Analysis and Fixed-point Blockset of the 
Mathworks tools, 6 bits were selected for the integer part mI and 29 bits for the decimal part 
mD. The large mD bit number is due to the low value required to make the coefficients in the 
low-pass filter section comply with a Bode template characterized by a low cut-off 
frequency at high sampling frequencies. 
Other digital specifications were defined in EMDs as regards the bit number of the counter 

output giving the delay time ∆t, and the inverse exponential function giving the angular 

speed ωEMD. 

The delay time ∆t is measured in terms of a count number at a given clock period. The 
minimum delay to be measured determines the minimum clock period (400µs for 
fS = 2.5kHz). The maximum delay to be measured is taken to be ~100ms, which is 
compatible with the wide range of angular speed values encountered by the hovercraft eyes 

(eq.4): ω ~40°/s to ~10000°/s, for ∆ϕ = 4°. Using an 8-bit counter at fS = 2.5kHz gives an 
delay of 102.4ms. 

The measured angular speed ω is a hyperbolic function of ∆t (eq. 8), but we used a function 

that decreases more slowly: an inverse exponential function with a time constant τ = 30ms. 

A Look-Up Table (LUT) was used to convert the delay ∆t into an output that decreases 
monotonically (exponentially) with the delay and therefore approximately reflects the 

angular speed ωEMD  (eq. 9). The Look-Up Table features an 8-bit input resolution (at 
fS = 2.5kHz) and a 12-bit output resolution for memorizing the results of the conversion. 
The digital correctors design (ii) is easy in using 'c2d' Matlab function (discretize 
continuous-time system). The correctors’ continuous-time models have been converted to 
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discrete-time models with sampling time TS. The discretization method used was the 
bilinear Tustin approximation. Table 1 presents the discretized polynomial transfer 
functions.  

Correctors Continous-time Discrete-time 

side 
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s5.11
10)s(Cy

+

+
×=  

9992.0z
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−
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s

s5.01
10)s(CVx

+
×=  
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−

+
=  

Table 1.  Correctors' discretization using Tustin bilinear approximation with fS = 2.5kHz 

As during EMD design, a specific binary format was defined to avoid offset and stability 
problems. Once again, we used the 'Filter Design and Analysis' tool as well as the 'Fixed-point 
Blockset' tool. A first approximation gave two signed fixed-point binary formats: 9 bit and 8 
bit for the integer part mI of the forward and side correctors, respectively, 10 bit for their 
decimal parts mD. However, simulations of the full feedback control system showed that 
accuracy was too low. The decimal parts mD were then increased to 13 bit for best accuracy 
in computation. 

5. Architecture 

5.1 Optic flow sensor 
Figure 7 shows the "EMD architecture". This architecture has several important features, such 
as the optimization of the digital filters, the simplicity of design owing to the use of 
Intellectual Property (IP) cores, and the added flexibility in the circuit design. Special care 
was taken to restrict the space taken by the digital filter implementation. Instead of 
implementing eight IIR digital filters in parallel - which would each require a high number 
of mathematical operators (adders, subtracters and multipliers) - a single structure called the 
“Filter Compute Unit” was developed, with which high speed sequential processing can be 
performed, as shown in figure 8. This unit consists of only one multiplier, one adder, one 
Read Only Memory (ROM), one Random Access Memory (RAM), two multiplexers, three 
registers and two binary transformation functions. The ROM contains the 17 filter 
coefficients obtained at a sampling frequency fS = 2.5kHz. The RAM is used to store the 
intermediate values computed. The multiplexers minimize the number of operators. 
In this unit, each photoreceptor signal is processed during the sampling time TS. A Finite 
State Machine (FSM) was written in VHDL language and imported into the Simulink 
environment. The FSM specifies the filtering sequence for each photoreceptor channel. Even 
though this solution somehow complicates the design (due to the mixing of VHDL 
description and System Generator IP blocks), it has the advantage to minimize the number 
of logical gates necessary for integration in the FPGA. 

Once the filtering process is completed, the delay ∆t between the excitations of two 
neighboring photoreceptors starts being measured. A comparator determines the instant at 
which the band-pass filtered signal from each photoreceptor channel reaches the threshold 

value. The resulting logical signal is used to trigger the measurement of the delay ∆t 
corresponding to each of the two eyes (an eye consists of a lens and only two 
photoreceptors). Specifically, the logical signal delivered by a photoreceptor starts a counter 
that will be stopped by the logical signal delivered by the neighboring photoreceptor. 
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Figure 7. Elementary Motion Detector Architecture 

 

Figure 8. "Filter Compute Unit" architecture. The Filters’ input is at port Nb 1. Others inputs 
(from 2 to 11) are control signals from a Finite State Machine that specifies the sequence of  
the filtering process for each photoreceptor channel 

The final piece of the architecture is the inverse exponential function with a time constant 

τ = 30ms, which allows for a wide range of delays ranging up to 102.4ms. This component 
was implemented in the form of Look-Up Tables (ROM) to facilitate the conversion of each 

delay data into an estimated angular speed ωEMD (i.e., the optic flow). 

5.2 Forward and Side correctors 
The forward and side controllers (see Figure 5) have discretized polynomial transfer 
functions that can be designed as first-order IIR filters. For their realization, we chose the 
transposed-Direct Form-II architecture. System generator IP blocks allow for graphical 
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integration of IIR filters because they use only multipliers, registers and adders. Using the 
Xilinx Multiplier Block called "Mult" (instead of the "CMult Xilinx Constant Multiplier") 
allowed this operation to be integrated via the multipliers embedded in the FPGA.   

 

Figure 9. Transposed-Direct-Form-II implementation for the forward controller (input to the 
left, outputs to the right) 

Figure 9 shows the forward controller, in which only two multipliers are implemented 
because the denominator coefficients are equal to one (see Table 1).  A Xilinx "MCode" block 
allows the two forward control signals (URT1 + URT2) to be determined, for driving the two 
rear thrusters RT1 and RT2. The Xilinx "MCode" block is a container that executes a user-
supplied MATLAB function within Simulink. A parameter of this block specifies the M-code 
function name. The block executes the M-code and calculates the block outputs during the 
Simulink simulation. When hardware is generated, the same code is translated into 
equivalent behavioral VHDL in a straightforward manner. 

 

Figure 10. Transposed-Direct-Form-II implementation for the side controller (input to the left, 
outputs to the right) 
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The side controller was designed in the same way as the forward controller, figure 10. An 
additional multiplier was needed to perform calculation with the denominator coefficient 
b2. The two side control signals (ULT1 - ULT2) controlling the two lateral thrusters LT1 and 
LT2 were again obtained by a Xilinx "MCode" block in which the sign of the difference 
between the right and left lateral optic flows measured was used. 

5.3 Complete visuo-motor control system 
The complete control system based on System Generator is presented in Figure 11. The 
secondary functions such as the determination of the larger value (OF max) and sign 
between right and left optic flows measured are easily realized with Xilinx "MCode" blocks. 
An adder and two subtracters are put in to close the loops. Xilinx "Gateway Out" blocks and 
"Gateway In" blocks limit the I/O from the Xilinx portion of the user’s Simulink design. 
"Gateway Out" blocks convert the System Generator fixed point data type into Simulink 
double format while "Gateway In" blocks convert Simulink integer, double and fixed point 
data types into the System Generator fixed point type. Each block will define a top-level I/O 
port in the HDL design generated by System Generator. 
Forward dynamics, side dynamics and "robot position compute" are defined by high level 
Simulink models linked to Matlab files that set several constants before simulation. 
"Lens/photoreceptors model" is designed with S-functions. An S-function is a computer 
language description of a Simulink block and is used to add our own blocks to Simulink 
models. Generally, such functions make it possible to accelerate simulations. 

 

Figure 11. Complete control system based on System Generator. Xilinx "Gateway Out" blocks 
and "Gateway In" blocks limit the I/O from the Xilinx portion of the user’s Simulink design 

The System Generator block provides for control of system and simulation parameters, and is 
used to execute the code generator. Every Simulink model containing any element from the 
Xilinx Blockset must contain at least one System Generator block. Once a System Generator 
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block is added to a model, it is possible to specify how code generation and simulation 
should be handled. 

6. Hardware co-simulation 

The final tests were achieved by making a hardware co-simulation of the system. The 
various functions (the EMDs and the two complete visuo-motor control loops) were 
implemented on a small Virtex-4 FPGA (type XC4FX12, size 17mm X 17mm, mass 0.5gram) 
whose digital processing capacities are largely sufficient. We designed a specific electronic 
board, figure 12, embedding the FPGA to validate the various digital properties of the whole 
system in co-simulation. This board was realized with an aim to install it on-board the 
miniature hovercraft and therefore also included the required interface components (ADC, 
DAC, etc.). The complete board weighs only 17.3grams and measures 90mm x 50mm and it 
is well suited to an embedded technological solution. 

 

Figure 12. Specific electronic board based on a small FPGA Virtex-4: (i) right hand side: 
components for the power supply; (ii) middle part: FPGA XC4FX12 (top) and the Flash-
memory to configure it (bottom); (iii) left hand side: electronic front-end related to the 
photosensors and several Analog-Digital and Digital-Analog Converters 

The FPGA power consumption was evaluated using Xilinx "XPower" tool. The consumption 
is estimated at 149mW for a 2.5 kHz sampling frequency of the visuo-motor control loops 
and for the FPGA running at a clock frequency of 4MHz. The total power consumption of 
the electronic board, figure 12, is estimated at ~500mW 

6.2 Hardware co-simulation results  
A Simulink library was created from System Generator and copied into the Simulink project 
file replacing all the Xilinx System Generator blocks (i.e. between "Gateway In" and 
"Gateway Out" blocks, figure 11). The simulated robot is equipped with two lateral eyes 

oriented at ±90° to the walls (the inter-receptor angle is ∆ϕ=4° and the acceptance angle is 

∆ρ=4°). At 2.5kHz sampling frequency, the computing temporal step is δt = 400µs and the 

simulation spatial accuracy is δθ = 0.005°. The two OF set-points were chosen according to 
the results of behavioural studies on honeybees that were video-filmed when flying through 
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a straight corridor (Serres et al., 2008b). The forward OF set-point was set to ωsetFwd = 314°/s 

and the side OF set-point was set to ωsetSide = 238°/s. 

6.2.1 Automatic speed control and lateral positioning in a straight corridor 

The simulated visual environment is a 3-meter long, 1-meter wide straight corridor with 
textured walls. The right and left walls are lined with a random pattern of various grey 
vertical stripes covering a 1-decade contrast range (from 4% to 38%) and a 1.1-decade 
angular frequency range (from 0.068 c/° to 0.87 c/° reading from the corridor midline). 
In figure 13, the hovercraft can be seen to follow either the right (red or black trajectory) or 

the left wall (blue trajectory), depending on the sign of the error signal εside, (Eq. 1). The 
robot can be seen to generate a steady state clearance of 0.24m from either wall (figure 13a), 
while reaching a steady state forward speed of Vx = 1m/s (figure 13b). Thus, the hovercraft 
adopts a wall-following behavior in much the same way as honeybees do in a similar 
situation (Serres et al., 2008a). 

 

Figure 13. Hovercraft automatic wall-following behavior: (a) Simulated trajectories starting 
from three different initial positions y0 (red: y0 = 0.15m; black: y0 = 0.40m; blue: y0 = 0.80m). 
(b) Forward speed profiles. In the steady state, the forward speed can be seen to have 

reached Vx = 1m/s in the three cases. (c) Sum of the two lateral optic flows (ωR + ωL). (d) 
Larger value of the two lateral optic flows, right and left 
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6.2.2 Automatic response in a tapered corridor 

For the dual OF regulator, a tapered corridor acts like a non-constant OF disturbance. The 
forward control system adjusts the forward speed proportionally to the local corridor width 
(the width varies from 1.24m to 0.50m). The lateral control system controls the distance to 
the right wall in proportion to the forward speed at all times. This simulation experiment 
shows that the dual OF regulator is able to cope with the major disturbance caused by a 
tapered corridor, by making the robot decelerate or accelerate appropriately, figure 14. 
The hardware co-simulation results presented here closely match the Simulink results 
presented by Serres et al. (2008a). 

 

Figure 14. Automatic response in a tapered corridor: (a) Simulated trajectory of the hovercraft 
moving to the right in a tapered corridor starting at the initial position y0 = 0.24m. This 
trajectory shows that the hovercraft automatically slows down when the local corridor 
width decreases and accelerates again when it widens again after the constriction.  
(b) Corresponding forward speed profile Vx. The forward speed turns out to be a quasi 
linear function of the distance travelled x, and hence of the local corridor width. (c) Sum of 

the two optic flow (ωR + ωL). The speed control system succeeds to keep the sum of the optic 
flows measured virtually constant. (d) Larger value ("max") between the two optic flows 
measured. The side control system succeeds to keep the larger value of the two optic flows 
measured virtually constant 
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6.3 Hardware integration 

In order to make the interface between the peripheral components and the FPGA- 
integrated system, several pilots have being developed and tested: driver ADC108S102, 
driver ADC101S101, driver DAC1101S101, PWM generator. These drivers link the 
components or the corresponding boards to the integrated visuo-motor control loops 
(generated by System Generator). They are integrated in the Virtex-4 FPGA and designed in 
VHDL because this language is more adapted to the realization of both the PWM 
generator and the communications protocols, such as the SPI protocol (Standard 
Peripherical Interface) that is used by ADC and DAC. For example, it is easier to manage 
the timing aspects of these low level hardware functions by a VHDL Finite State Machine 
synchronized by the FPGA clock.  
The complete description can be performed in two different ways: (i) In Simulink, the 
visuo-motor control system is associated to import some drivers' descriptions (using Xilinx 
black box in the System Generator library); (ii) in Xilinx ISE environment, the VHDL 
generated description of the visuo-motor control system is connected to drivers descriptions 
(using ISE schematic description).  The first solution (i) is difficult to apply because it 
requires the addition of peripheral components or functions high level models. This 
solution is not likely to improve the digital integration of control loops (validated in co-
simulation) or drivers (validated in low level simulations and/or tested with peripheral 
components). The second solution does not allow any simulations of the closed loop 
system, but facilitates the integration stages (synthesis, mapping, placement and routing) 
and the generation of FPGA configuration binary file. 
Table 2 shows the working characteristics of the Virtex-4 FPGA obtained after the 
integration of the LORA III autopilot and drivers. 

DSP48 15 out of 32 42% 

Slices 2569 out of 5472 47% 

Block RAM 18kb 9 out of 36 25% 

Table 2. Working characteristics of the XC4FX12 Virtex-4 FPGA 

The DSP48 is a DSP-oriented component. The DSP48 is basically a multiplier followed by 
an adder with several optional registers on the ports and between the multiplier and 
adder. The multiplier takes two 18-bit signed signals and multiplies them, giving a 36-bit 
result. This is then sign extended to 48 bits and can be fed into the adder or routed 
directly to the outputs of the DSP48. The adder, which can be configured either as an 
adder or a subtractor, can accept the sign-extended output of the multiplier and 48-bit 
input to the DSP48. In addition, the adder can also accept itself as an input, to form an 
accumulator. 
A slice is a basic element of Configurable Logic Block (CLB). A CLB element contains four 
interconnected slices. These slices are grouped in pairs. The elements common to both 
slice pairs are two logic-function generators (or look-up tables), two storage elements, 
wide-function multiplexers, carry logic, and arithmetic gates. The slices are used to 
provide logic, arithmetic, and ROM functions. Virtex-4 device features a large number of 
18 Kb block RAM memories. True Dual-Port RAM offers fast blocks of memory in the 
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device. Block RAMs are placed in columns, and the 18 Kb blocks are cascadable to enable 
a deeper and wider memory implementation, with a minimal timing penalty. 

7. Conclusion and future work 

We have developed a digital integration of an autopilot called LORA III (Serres et al. 2008a) 
onto a Virtex-4 FPGA. The autopilot consists of two interdependent visuo-motor control 
loops that are meant to control the visual guidance of a miniature hovercraft in a corridor 
without any measurements of speed and distance from the walls. 
A top-down methodology was used to design and simulate the overall visuo-motor control 
system. The latter was studied using both a high-level graphical environment: Simulink from 
Mathworks, and System Generator for DSP toolbox, from Xilinx. The remarkable analysis 
capability is due to the fact that System Generator allows the designed sensory-motor control 
loop to be implemented from within the Simulink environment. The design flow has 
simplified the integration problems in using several levels of abstraction that were validated 
at each stage of development. According to this methodology, digital specifications and 
architectures of each control loop were optimized for the LORA III autopilot. Moreover, 
final tests were performed by exploiting the hardware co-simulation. We were therefore 
able to test final descriptions in FPGA from Matlab/Simulink environment with a JTAG 
connection. In this way, integrated architectures were validated by considering the 
hovercraft "flying" in straight or tapered corridors.  
Integrating the visuo-motor control loops also required designing a specific electronic board 
based on a Virtex-4 FPGA (Figure 12). Linking the control system to the external 
components (ADC, DAC, motors control) also required designing several drivers that were 
embedded into the same 0.5 gram FPGA. 
 Future work will consist in installing the FPGA based sensory-motor control board into the 
miniature hovercraft for which it was built. Tests similar to those made in co-simulation will 
then be carried out. Additional improvements are also planned to increase the robustness of  
LORA III control system and make the robot negotiate more challenging corridors. The 
passive OF sensors and the simple processing system described here are particularly 
suitable for use with Micro-Air Vehicles (MAVs), in which highly stringent constraints are 
imposed in terms of the permissible avionic payload and onboard energy resources. FPGA 
implementation has recently been envisioned not only for the visuo-motor control of micro-
air vehicles but also for the automatic visual guidance and retrorocket control of future 
planetary landers. 
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