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Abstract

Accurate and comprehensive transcriptome assemblies lay the foundation for a range of
analyses, such as differential gene expression analysis, metabolic pathway reconstruction,
novel gene discovery, or metabolic flux analysis. With the arrival of next-generation
sequencing technologies, it has become possible to acquire the whole transcriptome data
rapidly even from non-model organisms. However, the problem of accurately assembling
the transcriptome for any given sample remains extremely challenging, especially in
species with a high prevalence of recent gene or genome duplications, those with alterna-
tive splicing of transcripts, or those whose genomes are not well studied. In this chapter,
we provided a detailed overview of the strategies used for transcriptome assembly. We
reviewed the different statistics available for measuring the quality of transcriptome
assemblies with the emphasis on the types of errors each statistic does and does not detect.
We also reviewed simulation protocols to computationally generate RNAseq data that
present biologically realistic problems such as gene expression bias and alternative splic-
ing. Using such simulated RNAseq data, we presented a comparison of the accuracy,
strengths, and weaknesses of nine representative transcriptome assemblers including
de novo, genome-guided, and ensemble methods.

Keywords: RNAseq, transcriptome, assembly, de novo, genome-guided, ensemble
approach

1. Introduction

Transcriptome assembly from high-throughput sequencing of mRNA (RNAseq) is a powerful

tool for detecting variations in gene expression and sequences between conditions, tissues, or
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strains/species for both model and non-model organisms [1, 2]. However, the ability to accu-

rately perform such analyses is crucially dependent on the quality of the underlying assembly

[3]. Especially for the detection of sequence variations, but also for isoform detection and

transcript quantification, mis-assembly of genes of interest can increase both the false positive

and false negative rates, depending on the nature of the mis-assembly [4]. These problems are

exacerbated in non-model organisms where genomic sequences that can be used as the refer-

ences, if available at all, are sufficiently different than those from the individuals sequenced [5].

Transcripts can be mis-assembled in several ways [6]. Two of the most drastic assembly errors

are fragmentation, where a single transcript is assembled as one or more smaller contigs, and

chimeras, where a contig is assembled using part or all of more than one transcript. Fragmenta-

tion errors tend to result from fluctuations in the read coverage along a transcript, with the

breaks in the transcript sequence occurring in regions that have lower coverage. By contrast,

chimera errors often occur because of ambiguous overlaps within the reads, coupled with

algorithms that choose the longest possible contig represented by the data, or by adjacent genes

on the genome being merged. Both of these types of errors can have major impacts especially on

gene identification. Small (single or few) nucleotide alterations to the contig sequence also

happen as mis-assemblies. Sequence mistakes are often the result of mis-sequenced reads, but

can also result from ambiguity for highly similar reads e.g. from heterozygous genes and from

duplicated genes. In some cases, these errors can shift the reading frame for the contig, which can

have significant impacts on the translated protein sequence. Finally, transcripts can be mis-

assembled when alternative transcripts are collapsed into a single contig [6].

In the following sections, we will first review strategies used for transcriptome assembly as well

as how their performance can be assessed. We then compare the performance of representative

transcriptome assembly methods using a simulated human transcriptome and RNAseq. Finally

we discuss a possible strategy to improve transcriptome assembly accuracy.

2. Transcriptome assembly strategies

2.1. De novo assemblers

De novo assemblers generate contigs based solely on the RNAseq data [7–13]. Most of the de

novo assemblers rely on de Bruijn graphs generated from kmer decompositions of the reads in

the RNAseq data [14]. The reads are subdivided into shorter sequences of a given length k (the

kmers) and the original sequence is reconstructed by the overlap of these kmer sequences. One

major limitation of the de Bruijn graphs is the need for a kmer to start at every position along

the original sequence in order for the graph to cover the full sequence [13]. This limitation

creates a tradeoff in regard to the length of the kmers. Shorter kmers are more likely to fully

cover the original sequence, but are more likely to be ambiguous, with a single kmer

corresponding to multiple reads from multiple transcripts. While by using longer kmers such

ambiguity can be avoided, those kmers may not cover the entire sequence of some transcripts

causing e.g. fragmented assembly. Consequently, each transcript, with its unique combination

of expression level (corresponding to the number of reads in the RNAseq data generated from
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that transcript) and sequence will have a different best kmer length for its assembly [15]. As a

result, even using the same de novo assembly algorithm, performing two assemblies with

different kmer lengths will generate a different set of contigs, inevitably with a varying set of

correctly assembled contigs [16].

Examples of popularly used de novo assemblers include idba-Tran [9], SOAPdenovo-Trans [8],

rnaSPAdes [12], and Trinity [7]. Idba-Tran is unique among these de novo assemblers, as it

runs individual assemblies across a range of kmer lengths and merges the results to form the

final prediction. The remaining assemblers use only the results of a single kmer length. For

SOAPdenovo-Trans and Trinity, a kmer length needs to be chosen (default kmer: 23 and 25,

respectively), while rnaSPAdes dynamically determines the kmer length to be used based on

the read data. While all of these tools use the same fundamental strategies to construct, revise,

and parse the de Bruijn graph for the assemblies, each method uses different thresholds and

different assumptions to make decisions. These differences lead to different subsets of tran-

scripts being correctly assembled by each method. An example of how these tools produce

different sets of contigs is shown in Section 4.2.

2.2. Genome-guided assemblers

Genome-guided assemblers avoid the ambiguity of kmer decompositions used in de Bruijn

graphs by mapping the RNAseq data to the reference genome. In order to account of introns,

mapping of the reads for genome-guided assembly needs to allow them to be split, where the

first part of the read maps to one location (an exon), and the other half maps to a downstream

location (another exon). This mapping is done by split-read mappers such as TopHat [17],

STAR [18], HISAT [19], or HPG-aligner [20]. Each of these methods maps the reads slightly

differently, which may impact the quality of subsequent assembly.

This read mapping greatly reduces the complexity of transcript assembly by clustering the reads

based on genomic location rather than relying solely on overlapping sequences within the reads

themselves [3]. However, this approach still has some major drawbacks. The most obvious

drawback is that genome-guided assemblers require a reference genome, which is not available

for all organisms. The quality of the reference genome, if it is available, also impacts the quality of

the read mapping and, by extension, the assembly. This impact is particularly noteworthy when

genes of interest contain gaps in the genome assembly, preventing the reads necessary to

assemble those genes from mapping to part or all of the transcript sequence. Ambiguity occurs

also when reads map to multiple places within a genome. How the specific algorithm handles

choosing which potential location a read should map to can have a large impact on the final

transcripts predicted [6]. This problem is expounded when working with organisms different

from the reference, where not all of reads map to the reference without gaps or mismatches.

Examples of popularly used genome-guided assemblers include Bayesembler [21], Cufflinks

[22], and StringTie [23]. While each of these methods uses the mapped reads to create a graph

representing the splice junctions of the transcripts, how they select which splice junctions are

real differs fundamentally. Cufflinks constructs transcripts based on using the fewest number

of transcripts to cover the highest percentage of mapped reads. StringTie uses the number of

reads that span each splice junction to construct a flow graph, constructing the transcripts
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based in order of the highest flow. Bayesembler constructs all viable transcripts for each splice

junction and uses a Bayesian likelihood estimation based on the read coverage of each poten-

tial transcript to determine which combination of transcripts is most likely. Due to these

fundamentally different approaches, each of these tools produces different sets of transcripts

from the same set of reads. An example of assemblies produced by these methods and how the

assembled contigs differ is described in Section 4.3.

2.3. Ensemble approach

While a core set of transcripts are expected to be assembled correctly by many different assem-

blers, many transcripts will be missed by any individual tool [24] (also see Section 4). Through

combining the assemblies produced by multiple methods, ensemble assemblers such as

EvidentialGene [25] and Concatenation [26] attempt to address the limitations of individual

assemblers, ideally keeping contigs that are more likely to be correctly assembled and discarding

the rest. Both of EvidentialGene and Concatenation filter the contigs obtained from multiple

assemblers (usually de novo) by clustering the contigs based on their sequences, predicting the

coding region of the contig, and using features of the overall contig and the coding region to

determine the representative sequence for each cluster. EvidentialGene recommends using several

different tools across a wide range of kmer lengths. It uses the redundancy from multiple tools

generating nearly identical sequences, clusters them, scores the sequences in each cluster based of

the features of the sequence (e.g. lengths of the 50 and 30 untranslated regions), and returns one

representative sequence from each cluster (keeping also some alternative sequences). In contrast,

Concatenation recommends using only three assemblers, with one kmer length each. Concatena-

tion merges nucleotide sequences that are identical or perfect subsets, only filters contigs with no

predicted coding region.

These approaches greatly reduce the number of contigs by removing redundant and highly

similar sequences. However, there is no guarantee that the correct representative sequence is

kept for a given cluster or that each cluster represents one unique gene. Because they require

multiple assemblies to merge, they also come at a far greater computational cost. An example

of how these ensemble assembly strategies perform compared to individual de novo and

genome-guided methods is shown in Section 4.4.

2.4. Third generation sequencing

All of the methods described so far primarily use short but highly accurate reads from Illumina

sequencing for assembly, with or without a reference. With the rise of third-generation

sequencing technologies from Pacific Biosciences (PacBio SMRT) and Oxford Nanopore Tech-

nologies (ONT MinION), it is becoming possible to sequence entire mRNA molecules as one

very long read, though with a high error rate [27]. The ability to sequence the entire mRNA

molecule is especially beneficial for detecting alternative splice forms, which remain a chal-

lenge for short-read only assembly, and potentially for more accurate transcript quantification

if there is no bias in the mRNA molecules sequenced.

While many tools exist to perform genome assemblies using either these long reads alone or by

combining long reads and Illumina reads, at present no short read transcriptome assemblers
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take advantage of long-reads in transcriptome assembly. If these long reads can be sufficiently

error-corrected (e.g. [28, 29]), they can be used for a snapshot of the expressed transcriptome,

without requiring assembly or external references [30, 31]. Alternatively, after an independent

de novo assembly of short reads, the long reads can be used to confirm alternative splice forms

present in the assembly [32]. The long reads can be also mapped to a reference genome similar

to the split-read mapping methods used for genome-guided short-read assemblers discussed

above [27, 33–35]. With their accuracy increasing, in the future, long reads can be used more to

improve transcriptome assembly quality.

3. Performance metrics used for transcriptome assembly

In this section, we will discuss commonly used metrics to assess the quality of transcriptome

assemblies.

3.1. Metrics based on contig count and lengths

The most straightforward assembly metrics are those based on the number and lengths of the

sequences produced [36]. The number of sequences can be presented either or both of:

• the number of contigs

• the number of scaffolds

where for contigs no further joining of the sequences is performed after assembly, and for

scaffold contigs that have some support for being from the same original sequence are com-

bined together with a certain number of gaps between them.

Several different statistics are available for presenting the lengths of the sequences (either

contigs or scaffolds). The most commonly reported metrics are:

• minimum length (bp): the length of the shortest sequence produced

• maximum length (bp): the length of the longest sequence produced

• mean length (bp): the average length of the sequences produced

• median length (bp): the length where half of the sequences are shorter, and half of the

sequences are longer

• N50 (bp): a weighted median where the sum of the lengths of all sequences longer than

the N50 is at least half of the total length of the assembly

• L50: the smallest number of sequences whose combined length is longer than the N50

Additional metrics similar to N50 (e.g. N90) based on different thresholds are also used.

For genome assemblies where the target number of sequences is known (one circular genome

plus any smaller plasmids for prokaryotic organisms and the number of chromosomes for

eukaryotic organisms), these metrics provide an estimate for the thoroughness of the assembly
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[36]. For instance, in prokaryotic assemblies, the vast majority of the sequence is expected to be

in one long sequence, and having many shorter sequences indicates fragmentation of the

assembly [15]. In this context, longer sequences (e.g. larger N50) tend to indicate higher quality

assemblies. For transcriptome assemblies, however, the length of the assembled contigs varies

depending on the lengths of the transcripts being assembled. For the human transcriptome, for

example, while the longest transcript (for the gene coding the Titin protein) is over 100 kb, the

shortest is only 186 bp, with a median length of 2787 bp [37]. Emphasizing longer contigs also

rewards assemblers that over-assemble sequences, either by including additional sequence

incorrectly within a gene, or by joining multiple genes together to form chimeric contigs.

Therefore, for transcriptome assembly, metrics based on contig lengths do not necessarily

reflect its quality.

3.2. Metrics based on coded protein similarity

Rather than focusing on the number or length of the sequences produced by the assembly,

performing similarity searches with the assembled sequences can provide an estimate of the

quality of the contigs or scaffolds [24, 38]. Typically, the process consists of either similarity

searches against well annotated databases (such as the protein datasets of related genomes or

targeted orthologs, the BLAST non-redundant protein database [39] or the UniProt/Swiss-Prot

database [40]), conserved domain search within the contig sequence that determines the

potential function of the gene (such as PFAM or Panther [41, 42]), or a search against a lineage

specific conserved single-copy protein database (such as BUSCO [43]). These similarity

searches are usually performed on the predicted protein sequences for the contigs (e.g. using

GeneMarkS [44]), but can also be performed directly from the assembled nucleotide sequences

using BLASTX where translated nucleotide sequences are used to search against a protein

database [38]. If the organism being sequenced is closely related to a model organism with a

well-defined transcriptome, nearly all of the contigs that are not erroneously assembled and

code proteins should have identifiable potential homologs in the database. If a large percent-

age of the contigs do not have similar proteins identified in the database, there is a high

probability that the sequences are incorrectly assembled, regardless of the length of the

sequences. By performing similarity searches, over-assemblies or chimera contigs (those cov-

ering more than one gene) can be also detected as large gaps in the alignment between the

query and the hits. As protein sequence annotations are necessary for most downstream

analyses, they also provide a convenient metric without the need for additional, otherwise

unnecessary analyses.

Despite these advantages, there are some limitations to using protein-similarity based metrics

for assembler performance. First, the more divergent the organism being sequenced is from the

sequences in the database searched and the more species-specific genes in the transcriptome,

the lower the percentage of contigs with hits will be. This can result in some organisms

appearing to have a lower quality assembly solely due to their divergence from those well

represented in the databases. By extension, assemblies that recover more transcripts whose

coded proteins have few similar sequences in the database will appear worse than assemblies

that only recover conserved genes. This limitation can be somewhat mitigated by comparing
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only genes that are universally single-copy across different species, which are more likely to be

conserved and similar enough to be identified. This is the strategy used in BUSCO [43].

However, this comparison at best uses only a subset of the assembled contigs. Second, and

more problematic, this metric rewards assemblies that artificially duplicate conserved genes

with only small differences in the nucleotide sequence. In the extreme, this can result in several

times as many contigs in the assembly than were present in the actual transcriptome, but with

nearly all of the contigs coding conserved protein sequences. This is particularly an issue when

the analysis depends on identifying the gene copy numbers in the assembly. It also has a large

impact on the accuracy of contig quantification and differential expression analyses [45].

3.3. Assembly metrics based on benchmark transcriptomes

The only way to overcome the limitations of the metrics described in the previous sections is to

compare the assembly output against a benchmark transcriptome where correct sequences of

all transcripts are known. When an RNAseq data generated from a well-established model

organism is used for assembly, many of correctly assembled contigs can be identified. How-

ever, variability in the transcriptome among e.g. cell types limits the amount of information

that can be gained for incorrectly assembled contigs. It is also not possible to determine

whether sequences from the reference that are missing from the assembled transcriptome are

due to assembly errors, or whether they were not expressed in the library sequenced.

Transcriptome sequences may also vary between the individual under study and the reference.

Such variations can mask assembly errors that affect the contig sequences. Although this

limitation can be mitigated by sequencing an individual that is genetically identical to the

reference, it severely limits the types of organisms that can be used for the benchmark.

To comprehensively assess all of the assembly errors, we need to obtain RNAseq data from a

transcriptome where all transcript sequences and expression patterns are known. Ideally, such

a benchmark transcriptome would be synthetically produced and sequenced using standard

protocols. However, currently no such synthetic mRNA library exists. An alternative approach

is to simulate the sequencing of a given benchmark transcriptome. There are several tools that

can generate simulated reads modeling short Illumina reads [46, 47] and/or long third-

generation sequencing reads such as PacBio SMRT and ONT MinION [48, 49]. These tools

typically either focus on identifying the statistical distribution of reads across the sequences

and errors within the reads, as is the case for RSEM [46], PBSIM [48], and Nanosim [49], or

attempt to reconstruct each step of the library preparation and sequencing pipeline, mimicking

the errors and biases introduced at each step, as is the case for Flux Simulator [47].

Using simulated RNAseq data with a known transcriptome as a benchmark gives the most

detailed and close to true performance metric for assemblies. Specifically, this strategy allows

the quantification of each of the following categories:

• correctly assembled sequences (true positives or TPs)

• sequences that are assembled with errors (false positives or FPs)

• sequences in the reference that are missing from the assembly (false negatives or FNs)
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“Correctness” and “incorrectness” (or error) can be defined using varying degrees of sequence

similarities. Using the strictest threshold, a contig sequence is assembled “correctly” only if the

entire nucleotide or coded protein sequence is identical to a reference transcript. All other

contigs found in the assembly, including those whose sequences have no similarity in the

reference transcriptome (missing contigs), are considered to be assembled “incorrectly” (FPs)

regardless of the similarity against the reference sequences.

Note that true negatives (TNs) can be counted only if the assembly experiments are done

including reads that are derived from transcripts that are not part of the reference transcriptome

(negative transcripts). Using these categories, following assembly metrics can be calculated:

• Accuracy = TPþTN

TPþFPþTNþFN

• Sensitivity (or recall) = TP

TPþFN

• Specificity = TN

TNþFP

• Precision = TP

TPþFP

• F-measure (or F1 score) =
2 TPð Þ

2 TPð ÞþFPþFN

• False discovery rate (FDR) = FP

FPþTP

Often in an RNAseq simulation, negative transcripts are not included; hence TN cannot be

counted. In such cases, we can calculate an alternative metric as the accuracy:

• Accuracy* = TP

TPþFPþFN

Despite the added benefits of simulation for measuring the performance of assemblers, these

metrics assume that the simulation accurately reflects the nature of real RNAseq data. Differ-

ences in the distribution of reads or errors between the simulations and real data can impact

the relative performance of the assemblers. Assemblers that perform well on simulated data

may perform poorly on real data if those assumptions are not met. Consequently, great care

must be taken to ensure that the simulated data captures the features of real data as accurately

as possible to best characterize the performance of different assembly strategies.

4. Performance analysis of transcriptome assemblers

In this section, as an example, we compare the performance of transcriptome assemblers using

a simulated benchmark transcriptome dataset.

4.1. Benchmark transcriptome and simulated RNAseq

RNAseq datasets were generated by Flux Simulator [47] using the hg38 human genome

(available at https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg38) as the reference. The older

hg19 human genome (available at http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19) was
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also used as an alternate reference genome to assess the impact of using a different reference

with genome-guided assemblers. The gene expression profile was generated by Flux Simulator

using the standard parameters from the hg38 reference genome and transcriptome model.

Approximately 250 million pairs of reads were computationally generated with the given

expression model with no PolyA tail. The simulated library construction was fragmented

uniformly at random, with an average fragment size of 500 (�180) nucleotides (nt). Because

reads overlapping within read pairs can cause problems for some assemblers, fragments

shorter than 150 nt were removed. The simulated sequencing was performed using paired-

end reads of length of 76 nt using the default error model based on the read quality of

Illumina-HiSeq sequencers. Note that only reference transcripts with full coverage of RNAseq

data were included in the benchmarking, as transcripts without full coverage cannot be

correctly assembled as a single contig. This filtering removed 2700 transcripts expressed in

the benchmark transcriptome, leaving 14,040 unique sequences derived from 8557 genes (5309

with no alternative splicing; on average 1.64, ranging up to 13, isoforms per gene).

The read pairs generated by Flux Simulator were quality filtered using Erne-filter version 2.0

[50]. The reads were filtered using ultra-sensitive settings with a minimum average quality of

q20 (representing a 99% probability that the nucleotide is correctly reported). The filtering was

performed in paired-end mode to ensure that both reads of the pair were either kept or

discarded concurrently to keep the pairs together. The remaining reads were normalized using

Khmer [51] with a kmer size of 32 and an expected coverage of 50�. The normalization was

also performed in paired-end mode to maintain pairs.

4.2. De novo assemblies

We compared the performance among four de novo transcriptome assemblers: idba-Tran (ver-

sion 1.1.1) [9], SOAPdenovo-Trans (version 1.03) [8], rnaSPAdes (version 3.11.0) [12], and

Trinity (version 2.5.1) [7], using the simulated human RNAseq dataset as described in the

previous section. The resulted assemblies were compared against the benchmark

transcriptome. As shown in Table 1, all of the tools underestimated the number of transcripts

present, generating fewer contigs than the number of transcripts expected (14,040). The best

performing tool among the four compared was Trinity with the most correct contigs (5782) and

the highest correct/incorrect ratio (C/I = 0.84). However, even with Trinity, still only 41% (5782/

14,040) of transcripts in the benchmark were correctly assembled; the remaining almost 60% of

contigs either contained errors in the sequence or were missed entirely. rnaSPAdes assembled

the largest number of transcripts (874 more unique transcripts compared to Trinity). The

number of unique transcripts generated, 13,513, is also the closest to the expected total number

of transcripts (96% of 14,040). However, fewer of those sequences (36%) were correctly assem-

bled, lowering the overall performance across all statistics than Trinity.

Performance statistics for each assembler is given in Table 2. Precision is a measure of how likely

an assembled contig is to be correct, and recall is a measure of how likely the assembler is to

correctly assemble a contig. In these terms, for assemblers with high precision, the contigs

produced are more likely to be correct, but the assembly may miss a large number of sequences

present in the sample. Conversely, assemblers with high recall values correctly assemble more of
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the sequences present in the sample, but may do so at the cost of accumulating a large number of

incorrectly assembled contigs. In these statistics, both the modified accuracy score (accuracy*; see

Section 3.3) and the F1 score are a measure of the number of correctly assembled contigs relative

to the number of missing and incorrectly assembled contigs. FDR is the proportion of assembled

reads that are incorrect. Based on these statistics, Trinity is the best performing de novo assembler

with the highest precision, recall, accuracy* and F1 score, and the lowest FDR, followed by

rnaSPAdes then SOAPdenovo-Trans. Despite idba-Tran running multiple kmers and merging

the results, it performed worst across every metric.

In Table 1, the results from pooling (taking the union of) the outputs of multiple runs of each

assembler across a range of kmer lengths are also shown. With these pooled assemblies, the

proportion of correctly assembled transcripts in the benchmark for Trinity increased from 41 to

46%, and for rnaSPAdes from 36 to 47%. However, the pooling process also accumulated

several times more unique incorrect sequences than additional correct sequences recovered.

Methods Totala Uniquea Correcta (%)b Incorrecta C/Ic

[Default]

idba-Tran 11,943 11,941 3504 (24.96) 8437 0.4153

SOAPdenovo-Trans 12,902 11,830 3754 (26.74) 8076 0.4648

rnaSPAdes 15,670 13,513 5014 (35.71) 8499 0.5900

Trinity 14,044 12,639 5782 (41.18) 6857 0.8432

[Pooled]d

idba-Tran 170,358 41,849 6391 (45.52) 35,458 0.1802

SOAPdenovo-Trans 297,192 50,504 6059 (43.16) 44,445 0.1363

rnaSPAdes 765,525 113,975 6665 (47.47) 107,310 0.0621

Trinity 89,126 25,045 6452 (45.95) 18,593 0.3470

aNumber of contigs assembled.
bProportion (%) of transcripts in the benchmark that were correctly assembled.
c(Number of correctly assembled contigs)/(number of incorrectly assembled contigs).
dPooled results from using multiple kmers as follows: 15, 19, 23, 27, and 31 for Trinity; 15 kmer values ranging from 15 to

75 in increments of 4 for SOAPdenovo-Trans and rnaSPAdes; 20, 30, 40, 50, and 60 for idba-Tran.

Table 1. Performance of individual de novo assemblers on simulated RNAseq library using default parameters or pooled

across multiple kmer lengths.

Methods Precision Recall Accuracy* F1 FDR

idba-Tran 0.2934 0.2496 0.1559 0.2697 0.7066

SOAPdenovo-Trans 0.3173 0.2674 0.1697 0.2902 0.6827

rnaSPAdes 0.3711 0.3571 0.2225 0.3640 0.6289

Trinity 0.4575 0.4118 0.2767 0.4334 0.5425

Table 2. Performance statistics of individual de novo assemblers using default parameters on simulated RNAseq library.
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For Trinity, the C/I decreased from 0.8432 to 0.3470, and for rnaSPAdes this ratio decreased

from 0.5900 to 0.0621.

Although the four de novo assembly methods use the same core approach, each method assem-

bled a different set of sequences correctly (Figure 1A). Only a set of 5331 contigs were correctly

assembled by all of the four de novo assemblers with at least one kmer length. Additional 813,

567, and 670 contigs were correctly assembled by at least three, at least two, and only one of the

assemblers, respectively. In contrast, the vast majority of the incorrectly assembled contigs were

produced by only one assembler (Figure 1B). For these contigs, 3764 were produced by all four

assemblers, while an additional 2692, 7977 and 166,720 were produced by at least three, at least

two or only one of the assemblers, respectively.

4.3. Genome-guided assemblies

We next compared the transcriptome assembly performance among three genome-guided

assemblers: Bayesembler (version 1.2.0) [21], Cufflinks (version 2.2.1) [22], and StringTie (ver-

sion 1.0.4) [23]. To demonstrate the impact of using different reference genomes on genome-

guided transcriptome assemblies, we used both of the hg38 as well as hg19 genomes as the

references. Assembly assessment was done against the hg38 benchmark transcriptome.

Table 3 shows the performance of each of these tools in the two scenarios (RNAseq data and

the reference were derived from the same or different genomes). As observed with de novo

methods, all of these genome-guided methods underestimated the number of transcripts

present, even more severely than de novo methods. In terms of the number of contigs correctly

assembled, StringTie performed slightly better than other two methods. All three methods had

comparable percent correct (36–41% with the same reference) and C/I (0.87–0.88 with the same

Figure 1. Comparisons of the contigs correctly (A) and incorrectly (B) assembled among four de novo assemblers. For each

assembler, results from multiple kmers were pooled. Correctly assembled sequences were identified when the protein

sequence of the contig matched the protein sequence in the benchmark transcriptome. Incorrectly assembled sequences

were identified when the protein sequence of the contig did not exactly match any protein sequence in the benchmark

transcriptome.
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reference). While none of the genome-guided assemblers produced as many correctly assem-

bled contigs as the best performing de novo assembler (Trinity), proportions of correctly assem-

bled contigs were higher with genome-guided methods (C/I = 0.87–0.88 with the same

reference) than with the four de novo methods (C/I = 0.41–0.84). When the performance metrics

are compared between the best performing de novo assembler (Trinity) and genome-guided

assembler (StringTie) (Table 4), while both methods showed similar accuracy, StringTie (when

using the same reference) showed slightly higher precision, accuracy* and F1 and lower FDR

compared to Trinity, but a slightly lower recall. It reflects fewer FPs and FNs produced by

StringTie.

As with the de novo assemblers, each of these tools correctly assembled a different set of tran-

scripts (Figure 2A and C). When the assemblies were performed using the same reference as the

simulation, all of the genome-guided tools correctly assembled a core set of 4013 transcripts

(Figure 2A). There were nearly a quarter as many (936) that were unique to only one genome-

guided tool. When a different reference was used, the number of sequences correctly assembled

by all of the tools dropped to 2546 (Figure 2C). Similar to the de novo assemblers, most of the

Methods Total Unique Correct (%) Incorrect C/I

[Same reference]

Bayesembler 12,989 11,482 5327 (37.94) 6155 0.8655

Cufflinks 11,257 10,733 4992 (35.56) 5741 0.8695

StringTie 13,218 12,147 5696 (40.57) 6451 0.8830

[Different reference]

Bayesembler 8536 7479 3345 (23.82) 4134 0.8091

Cufflinks 7234 6906 3078 (21.92) 3828 0.8041

StringTie 8608 7867 3466 (24.69) 4401 0.7875

Table 3. Performance of individual genome-guided assemblers using default parameters on simulated RNAseq library

with both the same and different references genome as the benchmark. See Table 1 for the description of numbers shown.

Methods Precision Recall Accuracy* F1 FDR

[Same reference]

Bayesembler 0.4639 0.3794 0.2638 0.4174 0.5361

Cufflinks 0.4651 0.3556 0.2524 0.4030 0.5349

StringTie 0.4689 0.4057 0.2780 0.4350 0.5311

[Different reference]

Bayesembler 0.4473 0.2382 0.1841 0.3109 0.5527

Cufflinks 0.4457 0.2192 0.1723 0.2939 0.5543

StringTie 0.4406 0.2469 0.1880 0.3164 0.5594

Table 4. Performance statistics of individual genome-guided assemblers using default parameters on simulated RNAseq

library with both the same and different references genome as the benchmark.

Bioinformatics in the Era of Post Genomics and Big Data26



incorrectly assembled contigs produced by each of the genome-guided assemblers were pro-

duced by only one assembler regardless of the reference genome used (Figure 2B and D). For

assemblies using the same reference genome, 2013 incorrectly assembled contigs were produced

by all of the tools, while an additional 2382 and 7546 were produced by any two or only one tool,

respectively (Figure 2B). For assemblies using a different reference genome, 1420 incorrectly

assembled contigs were produced by all of the tools, while an additional 1667 and 4772 were

produced by any two or only one tool, respectively (Figure 2D).

Figure 2. Comparisons of the contigs correctly (A and C) and incorrectly (B and D) assembled among three genome-guided

assemblers. Correctly assembled sequences were identified when the protein sequence of the contig matches the protein

sequence in the same (A) or different (C) reference genome. Incorrectly assembled sequences were identified when the

protein sequence of the contig does not exactly match any protein sequence in the same (B) or different (D) reference genome.
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4.4. Comparison of de novo and genome-guided assemblers

While the overall statistics are comparable between the best de novo assemblies and the genome-

guided assemblies using the same reference genome, these tools produced different sets of

contigs. The overlap of correctly assembled contigs between the assemblers from de novo with

pooled kmers lengths and the three genome-guided assemblers are shown in Figure 3A. All of

the de novo assemblers and at least one genome-guided assembler correctly assembled 4605

contigs. An additional 629 were assembled by at least three de novo and at least one genome-

guided assembler and 427 assembled by at least two de novo and at least one genome-guided

assembler. Conversely, 3861 contigs were correctly assembled by all of the three genome-guided

assemblers and at least one de novo assembler, with 1338 assembled by at least two genome-

guided assemblers and at least one de novo assembler (Figure 3B). Additionally, these tools

produced only 602 correctly assembled contigs that were not predicted by any de novo assembly,

while 1514 sequences were correctly assembled by at least one de novo assembly, but no genome-

guided assemblies.

As with the individual assemblies, fewer incorrectly assembled contigs were produced by all

of the tools, and most are assembler specific (Figure 3C and D). In particular, only 1387

incorrectly assembled contigs were produced by all of the de novo assemblers and at least one

genome-guided assembler (Figure 3C), and only 1593 contigs were produced all of the

genome-guided assemblers and at least one de novo assembler (Figure 3D). In contrast, 4823

incorrectly assemblers were produced by at least one genome-guided assembler but no de novo

assemblers, and 176,397 incorrectly assembled contigs were produced by at least one de novo

assembler but no genome-guided assemblers.

Overall, these results suggest that genome-guided assemblies provide relatively few correctly

assembled contigs relative to performing multiple de novo assemblies, even when using the

same reference genome. However, they produce far fewer incorrectly assembled contigs than

the pooled de novo assemblies. If the correctly assembled contigs produced by each of the de

novo assemblies can be retained while filtering out the incorrectly assembled contigs, de novo

assemblies can outperform all of the genome-guided assemblies. This result forms the motiva-

tion of ensemble assembly strategies, discussed in the next section.

4.5. Ensemble assemblies

We compared the two ensemble transcriptome assembly methods, EvidentialGene (version

2017.03.09) [25] and Concatenation (version 1) [26] using the simulated RNAseq data. The

strategies for these assemblies followed the recommendations by each method. For

EvidentialGene, the pooled results from all of the four de novo assemblies performed across

the full range of kmer lengths (described in Section 4.2) were used. For Concatenation, the

results of a single assembly each from idba-Tran (using kmer length of 50), rnaSPAdes (with

default kmer selection), and Trinity (with default kmer length) were used. These assemblers

were chosen to match the assemblies used in [26], substituting the commercial CLC Assembly

Cell (https://www.qiagenbioinformatics.com/products/clc-assembly-cell/) with freely available

rnaSPAdes.
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In addition to the two ensemble methods, we also included three “consensus” approaches

taking the consensus of the pooled de novo methods. These consensus assemblies involve

keeping all of the unique protein sequences produced by any two, three and four tools (named

Consensus 2, Consensus 3 and Consensus 4, respectively). Note that Consensus 4 is a subset of

Consensus 3, and Consensus 3 is a subset of Consensus 2.

The performance of these ensemble strategies is shown in Table 5. Both of EvidentialGene and

Concatenation resulted in an over-estimation in the number of transcripts present. Interestingly,

while Concatenation produced a larger total number of transcripts (19,767) than EvidentialGene

(19,177), ~2300 of those sequences were redundant, leading to fewer unique sequences (17,497 by

Figure 3. Comparisons of the results among de novo and genome-guided transcriptome assemblers. For each de novo

assembler, results from multiple kmers were pooled. Correctly (A) and incorrectly (C) assembled sequences for each de

novo assembler are compared with the combined results from genome-guided assemblers. Correctly (B) and incorrectly

(D) assembled sequences for each genome-guided assembler are compared with the combined results from de novo

assemblers.
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Concatenation). Additionally, Concatenation both kept more of the correctly assembled contigs

from the individual de novo assemblies, and removed more of the incorrectly assembled contigs

than EvidentialGene. These differences lead Concatenation to outperform EvidentialGene across

every statistic (Table 6). The performance of the consensus approach varied based on the number

of assemblers required.

Consensus 2 produced the most correctly assembled contigs of any method (6711), but at

the cost of more incorrectly assembled contigs than Concatenation (14,433). However, both

Consensus 3 and Consensus 4 kept the majority of the correctly assembled contigs while

reducing the number of incorrectly assembled contigs by roughly half or three quarters,

respectively. Consensus 4 had the highest precision (0.5861) and lowest FDR (0.4139) of any

method. However, the additional reduction in the number of correctly assembled contigs lead

to Consensus 3 having slightly higher accuracy* (0.2998) and F1 score (0.4613).

In Figure 4 all individual methods (both de novo and genome-guided) as well as ensemble

methods are compared. Concatenation performed more poorly than Trinity despite the Trinity

assembly forming part of the ensemble. In contrast, Consensus 3 kept more correctly assem-

bled contigs than any individual assembly, with fewer incorrectly assembled than any

approach except Consensus 4. This test highlights the weakness of ensemble assembly strate-

gies to retain the incorrect version of a transcript, even if the correct version of the transcript

exists in the individual assemblies. More robust methods, such as the consensus approaches

we presented here, are needed to reliably improve over individual assemblies.

Methods Total Unique Correct (%) Incorrect C/I

EvidentialGene 19,177 19,175 2267 (16.15) 16,908 0.1341

Concatenation 19,767 17,497 4697 (33.45) 12,800 0.3670

Consensus 2 21,444 21,444 6711 (47.80) 14,433 0.4650

Consensus 3 12,600 12,600 6144 (43.76) 6456 0.9517

Consensus 4 9095 9095 5331 (37.97) 3764 1.416

Table 5. Performance of individual genome-guided assemblers using default parameters on simulated RNAseq library

with both the same and different references genome as the benchmark transcriptome. See Table 1 for the description of

numbers shown.

Methods Precision Recall Accuracy* F1 FDR

EvidentialGene 0.1182 0.1615 0.0733 0.1365 0.8818

Concatenation 0.2684 0.3345 0.1750 0.2979 0.7316

Consensus 2 0.3174 0.4780 0.2357 0.3815 0.6826

Consensus 3 0.4876 0.4376 0.2998 0.4613 0.5124

Consensus 4 0.5861 0.3797 0.2994 0.4609 0.4139

Table 6. Performance statistics of ensemble assembly strategies using de novo assemblies on simulated RNAseq library.
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5. Conclusions

Transcriptome assembly can be approached from multiple different strategies. Historically,

these approaches have revolved around assembling short but highly accurate Illumina reads

with or without an existing genome assembly as a reference, referred to as genome-guided or

de novo assemblers, respectively. All of the widely used de novo assemblers decompose the

short reads into smaller kmers and use de Bruijn graphs built on these kmers to attempt to

reconstruct the original transcripts. Due to the limitations of the de Bruijn graphs, this

approach presents a trade-off between the uniqueness of the longer kmers and increased

coverage of the shorter kmers. As a result, different kmer lengths can produce drastically

different graphs, leading to large differences in the final assemblies.

Genome-guided assemblers avoid the limitations of the de Bruijn graphs by mapping the reads

to the reference genome. This mapping, however, introduces its own limitations and trade-

offs. Reads that are ambiguous between splice forms in the same genomic locations or across

multiple genomic locations create similar challenges to the de Bruijn graphs. These ambiguities

are compounded when the mapping must take into account mismatches due to sequencing

errors as well as biological variations.

The limitations of the individual tools can potentially be overcome by combining multiple

different assemblies in ensemble. As each tool and set of parameters results in a different set

of correctly assembled contigs, accurately selecting these correctly assembled contigs without

Figure 4. Performance comparison among all assemblers including de novo, genome-guided, and ensemble strategies.

Simulated RNAseq data were used for testing, and the default parameters were used for each assembler. See Tables 1, 3,

and 5 for the actual numbers. The expected number of contigs is 14,040.
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selecting any redundant incorrectly assembled contigs would leverage the strengths of each

methods without the weaknesses of any. However, currently available ensemble strategies

cannot guarantee that the correct sequence is chosen, leading to ensemble assemblies that are

less accurate than individual assemblies. As the selection criteria for ensemble methods

improve, such as with the “Consensus” approach shown here, these methods can also leverage

new assembly approaches that can better handle certain subsets of transcripts (e.g. alternative

splice forms) that may have other weaknesses that prevent them from being competitive as a

general transcript assembly tool.

Overall, as our results demonstrated, transcriptome assemblers can still be improved,

regardless of the approach used. While the genome-guided assemblers generally perform

best when the assembly is performed against the same reference sequence that the RNAseq

data was generated from, this is not always possible. When these sequences differ, the

genome-guided assemblers may have lower accuracy than the de novo assemblers. While

ensemble assembly strategies can potentially improve on accuracy over individual assem-

blies, it is also possible that they instead reduce the accuracy. Improving the performance of

these tools, whether individual assemblers, ensemble strategies, or combined with long-read

sequencing, will improve not only the accuracy of the reconstructed transcriptome but also

the accuracy of downstream analyses, such as sequence annotation, quantification, and

differential expression.
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