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Abstract

Factor models are used to explain asset returns on all major capital markets. We argue that
standard econometric analyses implicitly assume that the relationships between prices,
spreads, and interest rates and their respective risk factors are time-scale independent.
Furthermore, by applying wavelet analysis, we do not have to assume capital market
efficiency; in fact, we explicitly allow for inefficiencies such as noise trading, dispersed
information, technical, feedback, fundamental, and rational trading to allow for typical
characteristics of capital market data. We use wavelet analysis to decompose capital
markets’ developments, and the risk factors, using the maximal overlap discrete wavelet
transform (MODWT). We proceed by estimating the relationships on a scale-by-scale
basis. Our respective empirical analyses for stock and bond markets are summarized and
new research is presented with regards to European corporate bonds markets. On stock
market, this approach finds more stable relationships between risk factors and price
movements. On the bond markets, we find empirical evidence for four significantly
evaluated factors. For the European corporate bonds market, the results show that the
amount of credit spreads explained by risk factors is in fact high for certain time scales
only which is similar to the findings for the other capital markets.

Keywords: maximal overlap discrete wavelet transform, factor models, stock markets,
term structure of interest rates, corporate bond spreads

1. Introduction

It has long been acknowledged that risk factors are important in explaining the development

of asset prices on all major capital markets. Ross [1] states that the difference between expected

and realized asset returns is due to the unexpected development of risk factors. In his arbitrage

pricing theory, he derives a relationship between expected asset returns and the sum of assets’
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sensitivities toward these risk factors. Similarities between equity and corporate bond markets’

risks have long been recognized and risk factors similar to those applied in stock markets were

included in the analysis of bond markets, and corporate bond spreads, for example, see [2].

Other empirical analyses present models for the simultaneous pricing of stock and bond

returns [3]. Generally speaking, it has long been recognized that capital markets have similar

characteristics [4]. Cutler et al. formulated four important characteristics of data concerning

returns in the stock, bond, foreign exchange, and other capital markets. Using monthly return

data, there appears to be a positive first-order auto-correlation from 1 month to the next. This

does, however, change if the time horizon is medium or even long term. In those cases, the

auto-correlation becomes negative. Finally, fundamental factors explain capital market move-

ments significantly in the medium and/or long term which can be explained by allowing for

capital markets’ inefficiencies, for example, they postulate that the positive 1 month autocor-

relation of data could be cause investors who only learn about relevant risk factors with a time

lag. In addition to that also traders acting on the basis of technical analyses can cause a positive

auto-correlation in the very short run. The negative medium, or long term, auto-correlation is

then a direct result from misperceptions that are corrected on those time scales. In addition to

those explanations, we consider that market participants have different objectives and there-

fore also different time horizons for their investments. Arbitrageurs seek to exploit mispricing

in nanoseconds. Day-traders want to use knowledge derived from technical analysis on a daily

or weekly basis. Although asset and wealth managers can represent investors with all sorts of

investment horizons their performance is evaluated at least every month. To summarize, it is

highly unlikely that the data generating process is the same for all investment horizons which

is the reason why we apply wavelet analysis to allow for discrepancies at different time

horizons.

We apply wavelet analysis to shed light on the applicability of factor models for stock, bond,

and corporate bond markets. For this purpose, we shortly summarize our respective findings

for stock and bond markets. We then present a detailed, exemplary, new analysis for European

corporate bond markets and present general ideas why the use of wavelet analysis improves

on the applicability of factor models in practice.

The wavelet decomposition we apply allows us to specifically distinguish short, medium, and

long run periods and at the same time it is possible to investigate if information from past

continues to be of importance for the following time period. There is little information about

the frequency content of data if no frequency analysis is performed. The frequency analysis,

however, is not able to maintain information about the time location of events. In our empirical

analysis of these models, explanatory variables are selected according to general consider-

ations which fundamental variable influence the capital markets and proceed by assuming

that the identified k factors contain the important information, so that we assume an approx-

imate factor structure to hold. We investigate if averaging over various time periods veils the

fact that the risk factors are of importance in explaining capital markets’ asset returns for

certain time scales only, i.e., we investigate if risk factors are especially powerful in explaining

asset returns at certain time horizons. For that purpose, we decompose asset returns and risk

factors into their time-scale components using the maximal overlap discrete wavelet transform
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(MODWT) thereby decomposing monthly data to their respective time scales (short term,

medium term, and long term). We then proceed by estimating the impact of the risk factors

on various capital markets on a scale-by-scale basis. We test for significance using the Fama/

MacBeth approach.

Only recently researchers start to analyze relationships to hold for various time periods and

not just for the short and long run. This is why wavelet analysis has been applied to macro-

economic and financial theories, for example see [5–10].

This chapter is organized in the following way. First, we review shortly the underlying theo-

retical backgrounds for the various capital markets’ factor models in Section 2. In Section 3, we

introduce the basic ideas of wavelet analysis and motivate its use to test for significantly

evaluated premiums for risk factors which we test for their significance on different time

scales. Our previous results for the stock and bond market are shortly summarized. In Section

4, we describe the respective analysis performed for the European corporate bond market as an

example in detail and Section 5 concludes.

2. Factor models in finance

Factor models have always been of great interest to explain price movements on all major

capital markets. If risk factors can be identified that are significantly evaluated by the market,

that information is valuable for the purpose of general management, determining fair values of

firms, asset management, finance, and controlling.

2.1. Stock markets

One of the most important and general approaches to explain price movements on stock

markets is the arbitrage pricing theory (APT) developed by Ross [1]. The advantage of the

APT is its generality. Various factor models can be derived and require different estimation and

testing techniques. A detailed overview of the various possibilities for factor models is given in

[7]. The factor models can be distinguished according to the origin of the factors. Statistical

factors can be derived from applying factor analysis. Factors can also be determined in

advance—derived from theoretical considerations—and observable data of macro-economic

variables can be investigated for being risk factors. Since the purpose is to identify risk factors

and not to derive fair prices for financial derivatives, the relationship between asset prices and

risk factors is restricted to be approximately linear [7].

Ross develops his theory in the context of neo-classical assumptions concerning capital mar-

kets without frictions. He assumes that investors differ in their opinion of the exact distribution

of the risk factors, however they all agree on a linear k-factor structure. The main assumption is

the following: the return at the end of the period is determined by the return that was expected

at the beginning of the investment period (μ
i
) but also by the returns of the common risk

factors (~λk). The importance of the risk factors for an asset i depends on how sensitive the asset
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is with regards to the k risk factors (bik). Those sensitivities are called factor loadings. Last but

not least there is a white noise error variable (~E i). The k factors are common factors, i.e., every

asset reacts to the development of these factors.

~ri ¼ μ
i
þ bi1~λ1 þ…þ bik~λk þ ~Ei ∀i ¼ 1,…, n (1)

with ~ri = realization of the random variable asset i’s asset return at the end of the investment

period; μ
i
= expectation of asset i’s return at the beginning of the investment period; bik = factor

loading of asset i’s return in relation to the risk factor k’s realized end-of-period return; ~λk =

realization of the random variable risk factor k’s end of period return; and ~Ei = realization of the

random variable asset i’s idiosyncratic risk.

In matrix notation this becomes Eq. (2):

~r

nx1ð Þ
¼

μ

nx1ð Þ
þ

B

nxkð Þ
∗

~λ

kx1ð Þ

þ

~ε

nx1ð Þ

(2)

In this economy, systematic risk is represented through unexpected changes of common risk

factor returns. Ross assumes that idiosyncratic risk is diversifiable and that there are no

arbitrage opportunities. It is then possible to derive a relationship between asset i’s expected

return and the factor loadings multiplied by the risk premiums of the k risk factors (λ1,…, λk).

The exact APT equation is given by Eq. (3).

μ
i
¼ λ0 þ bi1λ1 þ…þ bikλk ∀i ¼ 1,…, n (3)

This is the APT equation which we use in the empirical analysis to identify statistically

significant risk factors. Without idiosyncratic risk, Eq. (3) is an immediate result arising from

the absence of arbitrage opportunities, because a riskless portfolio is then simply a combina-

tion of assets such that the portfolio is insensitive with regards to the risk of the risk factors and

therefore orthogonal to the column space of the B-matrix.

The factor models based on the APT can be summarized by four different model types

according to the different ways to choose risk factors. They can be macro-economic, funda-

mental, statistical or non-linear. Once the factors are determined the asset returns sensitivities

toward themmust be estimated. In the second step, the estimated sensitivities are incorporated

in a cross-section regression and the risk premiums are estimated.

After some transformation, Fama/MacBeth derived an OLS-estimator for risk premiums at

every point in time bλt ¼ bBk

‘bBk

� ��1bB
‘

k
~rt for all t = 1,…, T in a cross-section regression [11]. This

results in a time series of estimated risk premiums bλt to which they apply a test statistic that is

t-distributed and that allows to test for significantly evaluated risk factors, see Eq. (4).

t λk

� �
¼

λk∗T
1
2

s bλk

� � (4)
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with T = numbers of observations, λk = arithmetic mean of bλkt, and s(λk) = standard deviation

of the monthly estimates bλkt.

Wavelet analysis is then applied to decompose the risk factors and asset returns. The test for

significantly evaluated risk factors is not only performed on an aggregate level but also at

different time scales that allow information to be of relevance for certain time periods only.

Furthermore, we also apply wavelet to distinguish expected and unexpected components of

the risk factors. This approach results in the identification of risk factors that remain significant

over longer time periods, the problem of parameter constancy is therefore mitigated as well.

This approach reduces the variance of the estimated means of the risk premiums. Furthermore,

it shows that only certain scale information of the risk factors remains important over time. We

find that this approach improves on the findings which fundamental factors are significant in

explaining stock market returns. For a detailed derivation of the estimation equations and the

results in which fundamental factors are significantly evaluated in the stock market, see [7].

2.2. Term structure of interest rates

The models to explain the term structure of interest rates have been of interest to researchers

for a long time. The models differ in the purpose they are built for. In our analysis, we assume

that the data generating process for term structure of interest rates can be expressed as an

approximate factor model as in the previous section. Those types of models are especially

meaningful if the task at hand is to forecast future term structures of interest rates. The models

that generate good forecasts and are equally satisfying from a theoretical, arbitrage-free view-

point have been developed, for example, see [12–14]. The risk factors are found to represent

information with regards to the level, slope, and curvature of the term structure of interest

rates. We find that in this market too, for the same reasons as before, an analysis on an

aggregate level can be misleading so that we perform our analysis on a scale-by-scale basis.

We then apply the procedure of Fama/MacBeth to test for significance of risk factors. The

Nelson-Siegel model approximates the actual yield curve observed in the market on any

specific date t for zero rates y with maturity τ through the following Eq. (5):

yt τð Þ ¼ β0t þ β1t
1� e�γτ

γτ

� �
þ β2t

1� e�γτ

γτ
� e�γτ

� �
(5)

with β0t, β1t, β2t, and γ as model parameters [15].

The respective βi’s can be viewed as dynamic factors that represent short-, medium-, and long-

term behavior [12]. The factors level (β0), slope (β1), curvature (β2), and γ the mean reversion

rate are then identified as risk factors. The models parameters are then estimated by assuming

an autoregressive, dynamic data generating process for the factors.

The dynamic generalized Nelson-Siegel [14] embeds the Nelson-Siegel approach in an

arbitrage-free setting. In order to ensure the absence of arbitrage, the number of risk factors

has to be increased to five.
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The above models increase the number of explanatory factors according to theoretical consid-

erations. In our analysis, we test whether there is statistical evidence for the proposed risk

factors to be significantly evaluated by the market. As before, we acknowledge that there

might be inefficiencies present in the market. Similar to stock markets, we then assume an

approximate factor structure to hold in the bond markets. As before, we then test for signifi-

cance using the Fama/MacBeth approach. The data used consist of European Zero Coupon

Curves estimated by ICAP and provided by Thomson Reuters. We then determine whether

risk factors are significant for every time scale and not only on an aggregate level. Similar to

our analysis with regards to the stock markets, we find that the significance of the risk factors

varies with different time scales. By reconstructing the time series using the significant time

scales only, we concentrate on a relatively small number of wavelet functions. We then inves-

tigate the scaled and significantly evaluated risk factors for their ability to help forecast the

term structure of interest rates. In our analysis, we can only detect four significantly evaluated

risk factors for the term structure of interest rates [16].

2.3. Corporate bonds

Structural models based on the idea of Merton result in theoretical credit spreads that signifi-

cantly deviate from observable corporate bond markets spread [17]. The models can only

explain a limited proportion of corporate bond market spreads even if tax asymmetries,

liquidity, and conversion options are considered. This empirical finding is referred to as the

credit spread puzzle [18]. Similarities between equity and corporate bond market’s risk have

long been recognized and risk factors similar to those applied in stock markets are included in

the analysis of corporate bond spreads, for example see [2]. The set of explanatory variables is

enriched by other researchers to also account for market inefficiencies. For example, it can be

assumed that there are limits to arbitrage which combined with noise leads to predictable

deviations of market prices from the asset’s fundamental value [19]. A solution could be a

dynamic model with dispersed information in which noisy investors only learn about funda-

mental information with a time delay in order to solve the puzzle. Furthermore, it can be

assumed that market participants develop habit formation [20]. Other researchers find that

there are higher spreads for bonds for which analysts’ forecasts are more diverse, i.e., that

higher risk premiums are present for bonds where there is higher disagreement [21, 22].

Furthermore, the necessity to analyze varying frequency behavior in the data has been

documented for credit markets, for example see [23]. In contrast to the stock and bond market,

we do not impose Ross’ approximate factor structure, but instead we use Merton’s approach to

postulate a straightforward relationship between credit spreads and risk factors that influence

the corporate’s ability to pay back its debt and credit spreads on corporate bond markets in

general (fundamental factors). If the purpose is to analyze corporate bond markets jointly, the

assumption of Ross’s factor structure would become necessary.

To estimate the proportion of credit spreads (cs) explained by risk factors, Eq. (6) has to be

analyzed econometrically.

cst ¼ a þ b ðxtÞ þ ut (6)

with ut being a white noise error term, and xt being the risk factors.
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Risk factors represent risks arising from the possibility to default, term structure of interest

rates, equity markets, liquidity from mutual funds, and business cycle. Huang and Kong find

that for B (BB) rated corporate bonds approx. 68% (61%) of the variation in credit spreads can

be explained by respective risk factors [2]. For investment grade bonds however they find that

the proportion explained is much lower. Inefficiencies can lead to a higher proportion being

explained by the models, for example see [19, 21]. Again we want to analyze the data at

different time horizons and simultaneously allow for inefficiencies such as delayed learning

about relevant information or other forms of feedback, or technical trading and account for

different investment horizons of market participants.

We decompose the data with wavelet analysis. We then test for significantly evaluated risk

factors on a scale-by-scale basis, we find that only four factors can be viewed as significantly

evaluated by the market [16].

In the following section, we describe the respective analysis in detail for the European corpo-

rate bond market.

3. Estimation techniques

Wavelet analysis estimates the frequency structure of a time series and in addition to that it

keeps the information when an event of the time series takes place. This way an event can be

localized in the time domain with regards to its time of occurrence although frequencies are

analyzed as well. The functions at the heart of our analyses are wavelets. In contrast to co-sine

functions (waves), wavelets are not defined over the entire time axis but have limited support.

In order to achieve the ability to analyze relationships for different time periods, the wavelets

are moved over the time axis and at the various scales the support is accordingly. By doing so it

is possible to allow for changing regime shifts and the problem of parameter constancy is less

severe which removes the necessity to eliminate extreme market moves from a purely statisti-

cal point of view. The length (width) of a wavelet on a certain scale represents an investment

period of interest. The maximal overlap discrete wavelet transform (MODWT) increases the

support of the dilated wavelet with increasing scale, thereby increasing the investment period.

The advantage of this form of discrete wavelet transform is that it can be applied to any

number of observations of the time series of interest.

Wavelets (ψj, k and ϕJ,k) when multiplied with their respective coefficients at a certain level “j”

or “J” are called atoms Dj,k and SJ,k (i.e., dj,k*ψj,k = Dj,k and sJ,k*ϕJ,k = SJ,k) with ψj,k and ϕJ,k being

the wavelet and scaling functions at level “j” or “J” and “k” indicating the location of the

wavelet on the time axis. The sum of all atoms SJ,k(t) and Dj,k(t) over all locations on the time

axis k = 1, …, n
2j
at a certain level “j” or “J” are given by Eqs. (7) and (8).

SJ tð Þ ¼ ϕJ,k at level J (7)

Dj tð Þ ¼
X

n

2j

k¼1

dj,kψj,k∀j ¼ 1,…, J (8)
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Defining the importance of information to be valid for a specific time period only, the time

series are decomposed into their respective resolutions in time (time scales). The time series are

then approximated using only parts of the coefficients and their respective wavelets, i.e., the

multiresolution decomposition is applied to the time series which are then in turn

reconstructed using only the significant portions at the various scales.

The wavelets used in the analysis are “symmlets.” Those wavelets are best suited for the

analyses because their characteristics are closest to the functions used in the classical Fourier

analysis in that they are symmetric and do not contain jumps. This makes most sense if our

goal is to analyze the time series in the time and frequency domain. As co-sine functions, the

chosen wavelets should not require an interpretation in itself. In that sense, those wavelets are

the most “neutral” functions so that no other wavelet functions are considered that would

require additional explanations. Our goal is to be able to allow for an analysis on different

scales but we would like to keep as much structure of the original time series as possible. The

decomposition of the data is done by identifying significant wavelets at certain scales, i.e.,

wavelets with a specific support on the time axis. The search for significant wavelets is then

repeated on the next higher scale (lower frequency). With each increase of the wavelets´ widths

a new scale is defined. The number of scales used in this analysis equals four (i.e., J = 4) which

is a direct result of the number of observations available. For an explanation of how many

levels are recommendable, see [24]. Level “j” wavelet coefficients are associated with periods

[2j, 2j+1]. The sums of all atoms at all levels—one to four—result in the original time series.

We perform the regression analysis at each level. Asset returns are regressed on risk factors at

different time scales, i.e., the factor pricing equations are estimated at every time scale 1, …, J

using the reconstructed time series as outlined before (see Eqs. (9) and (10)):

cstð Þ dj

� 	

¼ aþ b xtð Þ dj

� 	

þ ut for all d1 to d4 (9)

cstð Þ s4½ � ¼ aþ b xtð Þ s4½ � þ ut s4 (10)

The proportion explained by the risk factors is therefore estimated at each time scale.

4. Empirical analysis

4.1. The data

The credit index data used in this analysis are taken from Bank of America/Merrill Lynch. We

use monthly OAS spreads of corporate bond indexes for the time period January 2000 to

January 2013. We analyze EMU corporates in the rating category BBB-A (all EMU Corporates).

The analysis is performed by using the indexes for various times to maturities 1–3, 3–5 in case

of investment grade corporates. The differentiation is necessary to address the phenomenon

that short maturities of investment grade corporate bonds depict a higher extend of the credit

spread puzzle. For the Euro high yield market we use the Euro high yield index which

contains firms with credit ratings BB and lower. Due to concerns with regards to biases caused
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by low liquidity we do not distinguish the high yield index with regards to time to maturity.

As explanatory variables, the level, slope and volatility of the bond markets are calculated

from the monthly time series for European government term structures of interest rates avail-

able from the same source. Data with regards to the stock index Dax are included in the

analysis to capture risk characteristics present in the stock markets. Volatility for the stock

market is calculated from that time series. Data with regards to European corporate default

probabilities are taken from Moody’s. Monthly 1-year and 5-year default rates for European

investment grade and Caa-C rated companies are available from January 2000 to April 2012.

Due to data availability and quality of the data, the 5-year default rates are combined with 1-

year default rates.

4.2. Wavelet analysis

We decompose each time series using the maximal overlap discrete wavelet transform

(MODWT), i.e. the time series European credit spreads, Government Yields, Slopes, Volatil-

ities, monthly return of Dax, volatility of monthly return of Dax, and Moody’s default rates for

European Investment Grade Corporates and CCC-Lower-Rated Corporates are decomposed

to their respective time and frequency domain components as explained in section 3. Calculat-

ing the volatility from the monthly return data, the number of monthly observations we are left

to be able to use is 132 (January 2001 to April 2012). As a result of the number of observations

the number is set to four. The MODWT estimates the wavelet coefficients “d1” to “d4” and

“s4” scaling coefficients.

The decomposition of the time series and the amount of variation explained with Crystals (sum

of wavelets and their estimated coefficients at levels j = 1,…, 4) are summarized in Table 1.

The risk factors are well explained by coarse scales (low frequencies, e.g., “s4”). The only

variable that has different features is the return of the DAX index. In that case the high

“d1” “d2” “d3” “d4” “s4”

EMU corporates all maturities spread 0.3 0.4 2.2 5.5 91.5

EMU corporates 1–3 year maturity spread 0.4 0.6 2.7 7.2 89

EMU corporates 3–5 year maturity spread 0.3 0.5 2.4 5.6 91.2

Euro high yield spread 0.4 1 2.1 4.6 92

DAX return 46 25 12 8 8

DAX volatility 0.1 0.4 2.4 3 94.1

Euro government 10-year yield 0.1 0.1 0.3 0.4 99

Euro government yield curve slope 0.4 0.5 1.4 1.7 96

Euro government yield volatility 0.1 0.3 1.9 4.4 93.2

European investment grade default rates 0.1 0.2 0.3 1.7 97.7

European high yield default rates 0.5 0.7 1.6 6.8 90.3

Table 1. Variation of the time series explained by crystals (in %).
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frequencies contribute the most in explaining the variation of the time series. The other vari-

ables are best explained by time scales ranging from “d4” to “s4,” whereas the return of the

DAX is best explained by time scales “d1” to “d3.”

At each scale “j” the coefficients are associated with time periods [2j, 2j+1]. The decomposition of

the monthly data allows us to extract components of the data that prevail in the medium or long

term. At the highest frequency of the monthly data—at scale “d1”—coefficients approximate

reactions to information for the time period of 2–4 months. At scale two, three, and four, the

respective time periods are 4–8 months, 8–16 months, 16–32 months. We associate the scales

“d1,” “d2,” and “d3” with the medium term (short medium term equals 2–4 months, medium

term 4–8 months, and longer medium term 8–16 months). The remaining two scales at the lower

frequencies represent long-term behavior (1.3–2.6 years and longer). Extracting the components

of the data that are influential in the medium or long term allows us to detect patterns that can be

a result of different investment behavior or different information used in forming expectations,

i.e., we are able to allow for inefficiencies in the credit market as outlined above.

In a next step we regress the credit spreads on the explanatory variables on a scale-by-scale

basis, i.e., we restrict features of the data to be of importance in the medium (“d1” to “d3”) or

long term (“d4” to “s4”). After decomposing the regression variables, we reconstruct the time

series using features of the time series at the respective resolutions 1, …, 4 only, thereby

restricting their variation to the respective time scale. On the other hand, it allows for the

possibility that information from more than just the previous period continues to be of influ-

ence in explaining credit spreads. By analyzing the amount of the variation explained in a

regression (R2) of the decomposed data at various time scales, we can infer which of the above

outlined possible expectation formations is significant in the medium and long run. Table 2

summarizes the regression results for regressing European investment grade and European

high yield credit spreads on the explanatory variables when the data are decomposed, i.e.,

when the time series are reconstructed to represent behavior present at scales “d1” to “s4.”

Determining significant components gives us insights into how long time periods are for

processing information. For the short medium term (2–4 months), we find that the default rate

is either not significant (“d1” for EMU Corporate all maturities, and “d1,” and “d2” for EMU

high yield) or even of negative influence. This is a strong indication that the fundamentals are

influential for longer time periods only, but do not explain well the variation in investment grade

credit spreads for shorter time periods. The credit spread puzzle therefore manifests itself if the

data are analyzed on time scales and in that the default rate is not significant in explaining credit

spreads at all at some time scales. At the time scales that carry most of the energy, the default rate

is significantly positive in explaining the investment grade credit spreads, i.e., for time periods

(1.3–2.6 years). For high yield spreads, the default rate is significant only for a longer time

horizon (8 months and above). We find that the influence of other explanatory variables changes

at the various time scales as well. At the coarsest scale “s4,” we find all explanatory variables of

significant influence for the credit spreads. However, at scale “d3” (i.e., for a time period of 8–

16 months), the variables that capture the volatilities in the stock and bond markets cannot be

viewed as being significant variables. The volatility of the DAX, although of importance in the

aggregate data, loses its significance for investment grade credit spreads on several scales. It
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continues to be important in explaining the high yield spreads though (with the exception of

“d3”), which is another indication for the fact that stock market characteristics are more influen-

tial in the high yield bond markets than in the investment grade bond markets. The R2 supports

the fact that has to be performed allowing for inefficiencies in the markets. We find that the

amount of the variation in credit spreads explained by the identified risk factors is highest for

time horizons from 1.3 to 2.6 years and above. The R2 at these time horizons in case of the

investment grade bonds is 85–98%. Similar results are achieved to the high yield spreads. For

shorter time periods, the amount of variation explained is much lower.

We therefore conclude that if information from the fundamental risk factors is allowed to be of

influencing longer time periods (1.3–2.6 years and above), then the variables from Eqs (9) and (10)

DAX DAXV Yield Yield slope Yield vola. Default rate R2

EMU corporates all maturities credit spread

d1 �275 2.3* 40.9 �131 890 257 0.1

d2 �16 0.1* �21.3* 39.9* �264.6* �7079* 0.53

d3 �418* 0.03 �19.8 72.9* 19.3 �10662* 0.61

d4 �365.7* 0.01 �77* 21.7* 323.4* 14632* 0.85

s4 �2278* 0.4* �114* 65.2* �645.2* 5518* 0.98

EMU corporates maturity 1–3 years credit spread

d1 1.1 �0.0 �52.2* 46.2* �18.1 �4219* 0.48

d2 20.7 0.1* �18.1* 57* �317.2* �8857* 0.55

d3 �336* 0.02 �34.7* 86* 12.7 �6722* 0.61

d4 �399* 0.0 �96.5* 36.8* 368.3* 16641* 0.85

s4 �2201* 0.45* �112* 83.7* �670.5* 5381* 0.98

EMU corporates maturity 3–5 years credit spread

d1 �26 0.05 �42.9* 24.8* �53.1 �3471* 0.44

d2 �27 0.1* �29.9* 40.6* �243.5* �7071* 0.53

d3 �410* 0.03 �23.4* 76.1* 14.2 �10330* 0.64

d4 �348* 0.0 �79.5* 23.2* 306.5* 14859* 0.87

s4 �2610* 0.4* �111* 59* �520* 4130* 0.98

EMU corporates high yield credit spread

d1 �275 2.2* 40.9 �132 890 257 0.09

d2 �792 2.3* 109.9 �333.5 �1025 1029 0.12

d3 �6267* 0.2 �71.1 700.7* 117.9 2622* 0.38

d4 �4765* 1.3* �135.9 �404.3* 5096* 4224* 0.84

s4 �9471* 2.8* �411* 340* �4762* 6988* 0.96

*Indicates significance at a 5% confidence level.

Table 2. Regression results for the European investment grade and high yield credit spreads on explanatory variables

using reconstructed time.
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are significantly linked and the amount of variation explained is high. This means if we allow

information from the previous 1.3–2.6 years at scales “d4”and “s4” to be relevant, the propor-

tion of credit spreads explained by risk factors is higher. At the short horizon, technical trading

is perceived to be the most important influence in forming expectations; therefore, the insig-

nificance of the default rate to explain credit spreads for shorter time period is in line with

previous results and market data.

We conclude that aggregating over time scales “d1” to “s4” results in misleading interpreta-

tions of the influence of the various risk factors in explaining credit spreads. Only at time scales

that represent medium terms, the default rate is of significant, positive influence. The amount

of variation explainable with the fundamental risk factors is highest at that time scales. This

supports the fact that fundamental considerations are more important in longer time periods

and that inefficiencies in the credit markets are present at shorter time periods.

5. Conclusion

In this chapter, we give an overview of factor models that are applied to major capital markets.

Ross’ arbitrage pricing theory is chosen as the theoretical background for the stock and bond

markets, since it allows to test for significant risk factors even if there are non-stationary

features present in the data. In case of the corporate bond markets, Merton’s approach is used

to motivate which fundamental factors are chosen to explain market observations. We argue

that the assumptions made in standard econometric procedures to test for significantly evalu-

ated risk factors are responsible for the failure of finding the risk factors explain a higher

proportion of developments on those markets in practice. We use the maximal overlap discrete

wavelet transform to decompose the data into their time-scale components to allow for ineffi-

ciencies on capital markets and to allow for different time periods for adjustments to new

information. The decomposition of the time series with wavelets in the time domain enables us

to interpret data having features at different investment periods. This way we analyze the

influence of various variables at different time scales. We examine the significance of risk

factors and evaluate the proportion of variation explained at various time scales and find that

fundamental factors are especially significant at longer time periods. Wavelet application

allows for a thorough discrimination of various time horizons. The analysis is performed by

the author for all major capital markets and we present new empirical research with regards to

the European corporate bond market in detail as an example. A high percentage of variation in

credit spreads explained by fundamental factors can be found in the medium terms (1.3–

2.6 years) for investment grade and high yield corporates. We conclude that the adjustment

time period to new information is crucial for explaining the credit spreads by risk factors.

Aggregating over the time scales veils the fact that a higher proportion in variation of credit

spreads is explainable with the fundamental factors for the medium term and that the short

term is driven by other factors. These findings confirm our previous findings for major capital

markets where estimation and identification of significant fundamental risk factors improved

when the analyses were done on a scale-by-scale basis.
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