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An Overview of Data Mining Techniques 
Applied to Power Systems 

Jefferson Morais, Yomara Pires, Claudomir Cardoso and Aldebaro Klautau  
                 Signal Processing Laboratory (LaPS) Federal University of  Pará (UFPA)  

Belém  PA  Brazil 

1. Introduction 

The growth of available data in the electric power industry motivates the adoption of data 
mining techniques. However, the companies in this area still face several difficulties to 
benefit from data mining. One of the reasons is that mining power systems data is an 
interdisciplinary task. Typically, electrical and computer engineers (or scientists) need to 
work together in order to achieve breakthroughs, interfacing power systems and data 
mining at a mature level of cooperation. Another reason is the lack of freely available and 
standardized benchmarks. Because of that, most previous research in this area used 
proprietary datasets, which makes difficult to compare algorithms and reproduce results. 
This chapter has two mains goals and, consequently, is divided in two parts. In the first part, 
the goal is to present a brief overview on how data mining techniques have been used in 
power systems. There are several works, such as (Mori, 2002), that introduce data mining 
techniques to people with background in power systems. In contrast, this text assumes 
previous knowledge of data mining, describes some fundamental concepts of power 
systems and illustrates the  kind of problems that the electric industry tries to solve with 
data mining.  
The second part of the work presents a thorough investigation of a specific problem: 

classifying time series that represent short-circuit faults in transmission lines.  Studies show 

that these faults are responsible for 70% of the disturbances and cascading blackouts 

(Kezunovic & Zhang, 2007).  Besides, there is a large and growing number of publications 

about this problem. 

Two types of fault classification systems are discussed: on-line and post-fault. On-line fault 

classification must be performed on a very short time span, with the analysis segment (or 

frame) being located approximately at the instant the fault begins. Post-fault classification 

can be performed off-line and its input consists of a multivariate time series with variable 

length (duration). Post-fault is a sequence classification problem, while in on-line 

classification the input is a fixed-length vector. Both fault classification systems (and most 

data mining applications) require a preprocessing or front end stage that converts the raw 

data into sensible parameters to feed the back end (in this case, the classifier). 

Besides its practical importance, one reason for the popularity of fault classification is that it 

is relatively easy to artificially generate a dataset through simulators. Here, the well-known 

Alternative Transients Program (ATP) (ATP, 1987) simulator was used to create a public and O
pe
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comprehensive labeled dataset. Such datasets are key components to allow reproducing 

research results in different sites, which is crucial given the large number of parameters to 

be tuned in a fault classification system. Therefore, in order to promote reproducible 

research, this work also provides detailed information about the adopted parameters. 

The chapter is organized as follows. In Section 2 a brief description of data mining 

applications in power systems is provided. The section also introduces basic concepts of 

power systems. For a more detailed treatment, the reader is refereed to (Casazza & Delea, 

2005). The second part begins in Section 3, which poses the fault classification problem and 

discusses solutions. Section 4 presents simulation results and is followed by the conclusions. 

2. Power systems for data miners 

2.1. Concepts of interest 
A typical power system is represented in Figure 1 and can be divided into three parts: 

generation, transmission and distribution. The distribution system delivers power to the end 

users (loads). Most systems adopt three phases (A, B and C), using three conductors to carry 

sinusoidal voltage waveforms that have an offset in time equivalent to 120 degrees. While 

the customers need low voltage values (hundreds of Volts), the transmission system 

typically uses much higher values for efficiency. The transformers are responsible for the up 

and down conversions of voltage values and are located in different parts of the system.  
 

 

Fig. 1. An example of an electric power system. 

Under normal conditions, the voltage waveform x(t) has a pre-established frequency (e.g., 

60 or 50 Hz). Knowing the nominal value of the amplitude (e.g., 500 kV), it is convenient to 

normalize x(t) by this value and report the amplitude in p.u. (per unity). In this case, the 

ideal waveform could be expressed by x(t) = cos(2 π f t + θ), where f is the frequency and θ 

the initial angle. Figure 2(a) illustrates a segment of the ideal voltage waveform for a 

frequency f = 60 Hz and θ = 0 radians. Figure 2(b) depicts simultaneously all three voltage 

waveforms in a segment containing a fault recorded by an oscillograph recording equipment: 

a short circuit between the conductor corresponding to phase B and ground (G). It can be 

seen that, besides phase B, the other two phases are also disturbed. Such faults belong to a 

category of events that is called transients because they tend to disappear after proper 

operation of the system to recover normal conditions, as occurs after approximately 0.05 

seconds in Figure 2(b). 

In order to properly operate it, a power system contains several data acquisition 

equipments. For example, some of these equipments register the status of logical (boolean) 

variables at each minute, while others store waveforms digitized at relatively high sampling 
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rates (e.g., 5 kHz).  In many cases it suffices to monitor the root mean-square (RMS) value of 

each waveform estimated at each second. Figure 3 illustrates the information about the 

voltage amplitude that is provided by the RMS estimation. 

 

 
 

Fig. 2. a) Example of ideal normalized voltage waveform of one phase. b) All three phases 
with short-circuit between phase B and ground, as registered by an oscillograph 
equipment.  

 

 

Fig. 3. Example of the RMS waveforms superimposed to the voltage waveforms in a fault 
between phase B and ground. It can be seen that the voltage in phase B drops to a value 
ower than 1 p.u., while phases A and C achieve values above the nominal. 
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In summary, most power systems data can be considered as multivariate time series, but the 

sampling frequencies may differ significantly and the variables are eventually categorical 

(not numerical). Roughly, one can organize the data originated in power systems into three 

categories: 

a. Raw waveforms (voltages and currents) sampled at relatively high sampling 
frequencies; 

b. Pre-processed waveforms (e.g., RMS) typically sampled at low sampling frequencies; 
c. Status variables (e.g., if a relay is opened or closed) typically sampled at low sampling 

frequencies. 
Due to its higher volume of information, the first category data is sometimes organized in 

specific databases, such as the oscillographic database, which stores all data from 

oscillographs. The other two categories are sometimes organized in the so-called 

Supervisory Control And Data Acquisition (SCADA) systems (Boyer, 1999). SCADAs are 

complex systems that periodically store several thousands of heterogeneous variables and 

are an important source of information for data mining. For example, automatically mining 

cause-effect relationships in SCADA data is an  incipient but promising activity. Some 

power systems are affected by events that repeatedly cause troubles but their causes remain 

undetected. However, most of the times it is necessary to organize a data warehouse in 

order to be able to mine data from a SCADA, and fewer works use such data when 

compared to the first category. 

Data mining can also alleviate another problem in power systems: when a disturbance is 

detected, a large amount of messages and alarms are generated. Protection equipments are 

responsible for detecting a problem, and act appropriately, isolating the defective part of 

system, for example. Part of this operation is automatic, but some tasks depend on a 

specialist.  The amount of information regarding the problem cannot be excessive but 

should be enough for making decisions. Data mining techniques can be used to filter alarms 

and messages and provide the important information to the operator. 

Failures in the performance of protection equipments, remote terminal, communications 

link and acquisition of date online, and variations in the voltage levels after of the 

occurrence disturbance, are factors that difficult the assessment and diagnosis in real time 

initial cause of power off.  

Another problem of interest to the electric power industry is load forecasting, in which the 

goal is to predict the demand for power in specific regions. This can be cast as a 

conventional regression problem. Power quality is another area that can benefit from data 

mining. Here the goal is to help characterizing how close to the ideal (nominal) parameter 

values the system is operating. Small and large deviations are categorized by detection and 

classification modules. The location where a power quality event happened is also of 

interest. 

The next section describes tasks and techniques used in data mining.  

2.2 Review of data mining applications in power systems 
This section briefly describes typical applications of data mining in electrical power systems 
via a collection of 18 papers. Table 1 lists the technique, task and application area.  
Among the several applications listed in Table 1, the second part of this work concentrates 
in fault classification, as discussed in the next section. 
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Reference Technique Task Application Area Problem 

Ramos, 2008 Decision tree Classification 
Distribution 

system 

Characterization 
and classification 

of consumers 

Hagh, 2007 
Neural 

network 
Classification 

Transmission 
lines 

Faults 
classification and 

locations 

Saibal, 2008 WN1 Classification 
Distribution 

system 
Classification of 

transients 

Chia-Hun & 
Chia-Hao  

2006 

Adaptative 
wavelet 

networks 

Detection and 
discrimination 

14-bus power 
system 

Power-quality 
detection for 

power system 
disturbances 

Pang  & 
Ding  2008 

wavelet 
transform 
and self-

organizing 
learning 

array 

Power quality 
disturbances 
classification 

Distributed power 
system 

Power-quality 
detection for 

power system 
disturbances 

Bhende, 2008 
Neural 

network 
Classification Not defined 

Detection and  
classification of 
Power quality 
disturbances 

Figueiredo, 
2005 

Decision tree Classification 
Distribution 

system 
Electric energy 

consumer 

Silva, 2006 
Neural 

network 
Detection and  
classification 

Transmission 
lines 

Faults detection 
and  classification 

Costa, 2006 
Neural 

network 
Classification 

Transmission 
lines 

Fault classification 

Dola, 2005 
Decision tree 
and neural 

network 
Classification 

Distribution 
system 

Faults 
classification 

Tso, 2004 
Statistical 
analysis 

Detection 
Transmission and 

distribution 
systems 

Detection the 
substations most 
sensitive to the 
disturbances 

Mori, 2002 

Regression  
tree and 
neural 

network 

Forecasting 
Distribution 

system 
Load forecasting 

Dash, 2007 
Support 
Vector 

Machine 

Classification 
identification 

Transmission 
lines 

Classification and 
identification of 

series-
compensated 

                                                 
1Wavelet Networking (WN) can be considered as an extension of perceptron  networks. 
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Monedero 
2007 

Neural 
network 

Classification Not defined 

Classification of 
electrical 

disturbances in 
real time. 

Vasilic, 2005 
Fuzzy/ 
neural 

network 
Classification 

Transmission 
lines 

Faults 
classification. 

Vasilic, 2002 
Neural 

network 
Classification 

Transmission 
lines 

Faults 
classification. 

Kezunovic, 
2002 

Neural 
network 

Detection and 
diagnostic 

Transmission 
lines 

Detection and 
diagnosis of 
transient and 

faults. 

Huisheng, 
1998 

Fuzzy/ 
neural 

network 
Classification 

Transmission 
lines 

Faults 
classification. 

Table 1. Summary of tasks, techniques and applications of data mining in power systems. 

3. Classification of time series representing faults 

As mentioned, most transmission systems use three phases: A, B and C. Hence, a short-
circuit between phases A and B will be identified as “AB”. Considering the possibility of a 
short-circuit to “ground” (G), the task is to classify a time series into one among ten 
possibilities: AG, BG, CG,AB, AC, BC, ABC, ABG, ACG and BCG. The ABC and ABCG 
faults are typically not distinguished because in well-balanced circuits (or ATP simulations) 
there is no current flow through the ground (Anderson, 1995). Algorithms to solve this 
classification problem are used by digital fault recorders (DFRs), distance relays and other 
equipments (Luo & Kezunovic, 2005).  
The signal capturing equipments are typically located at both endpoints of transmission 

line. Most of them are capable of digitizing both voltage and current waveforms. It is 

assumed that a trigger circuit detects an anomaly and stores only the interval of interest: the 

fault and a pre-determined number of samples before and after the fault. The trigger is out 

of the scope of the present work and the simulations assumed a perfect trigger algorithm, 

with the fault endpoints being directly obtained from the simulator.  

The next subsection describes the front end, the stage that is responsible for providing a 

suitable parametric representation of the time series. At some points the notation may look 

abusive, but there are many degrees of freedom when dealing with time series and a precise 

notation is necessary to avoid obscure points. 

3.1 Front end 

Each fault is a variable-duration multivariate time series. Then n-th fault nX in dataset 

(oscillography records, for example) is represented by a nTQ ×  matrix. A column of tx , 

n,T,t …1= , is a multidimensional sample represented by a vector of Q  elements. For 

example, if we consider voltage and current waveforms of phases A, B and C, then 6=Q  in 

the experiments. In some situations, it is possible to obtain synchronized samples from both 
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endpoints of a given line. In these cases the sample is an augmented vector with twice the 

dimension of the single endpoint scenario. For the previous example, the sample dimension 

for double endpoint measures would be 12=Q .  
A front end converts samples into features for further processing. An example of a modern 
front end algorithm is the wavelets decomposition (Vertelli & Kovacevic, 1995). 
Independent of the adopted parametric representation, a single sample typically does not 
carry enough information to allow performing reasonable decisions. Hence, it is useful to 

consider that a front end converts the matrix X  in to a matrix Z  with dimension NK × , as 

depicted in Figure 4 (the processing is performed on Z , not X ), where K  is the number of 

features and N  the number of feature vectors.  
 

 

Fig. 4. The input and output matrices of the front end stage. Q  and K are the  dimensions of 

the sample and feature vectors, respectively, while 
n

T  is the number of samples. 

A front end is called raw when it outputs features that correspond to values of the original 

samples, without any processing other than organizing the samples into a matrix Z .  In the 
framed raw front end, this organization is obtained through an intermediate representation 

called frame. A frame F has dimension LQ × , where L  is the number of samples called 

frame length and their concatenation [ ]nFFZ ,,1 …=ˆ  is a matrix of dimension LNQ × , 

where N  is the number of frames. 

The frames can overlap in time such that the frame shift S , i.e., the number of samples 

between two consecutive frames, is less than the frame length. Hence, the number of frames 

for a fault nX  is: 

 ( )⎣ ⎦SLnTnN /1 −+=   (1) 

where ⎣⎦.  is the flooring function. 
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The frames F  (matrices) are conveniently organized as vectors of dimension QLK = , and 

Ẑ  resized to create [ ]NzzZ …1=  of dimension NK × . 

It should be noticed that, if LS =  (no overlap) and a frame is a concatenation of samples 

 ])1(5.0,,1,,1,,)1(5.0[ −++−−−= LttttLt xxxxxF ……  (2) 

the matrices X  and Ẑ  would coincide,  i.e., XZ =ˆ . 
For example, in (Kezunovic & Zhang, 2007) the frames are composed by the concatenation 

of raw samples and vectors Z  have dimension 198=K . In more details, for example, If 

6=Q  (currents and voltages), a concatenated raw front end could obtain frames F  of 

dimension 56 ×  by concatenating to each central sample its four neighbours, two at the left 

and two at the right. In this case, assuming a fault with 10=T  samples and 5== LS , one 

would have 30=K  and 2=N , such that XZ =ˆ . In  this case, Ẑ  and Z would have 

dimensions 10 6×  and 230 × , respectively. Figure 5 illustrates the segmentation in vectors 

z of features for one fault (ABG) with 4 frames. In this example, 3=L , 1=S  and this leads 

to three vectors z , each of dimension 18=K . 
 

 

Fig. 5. Organizing feature vectors z  in a concatenated raw front end. In this case, the ABG 

fault with a total of four frames, 3=L  and 1=S  lead to two vectors z  of dimension  

18=K .  

As an alternative to the raw front end, the wavelet transform provides information via a 
multi-resolution analysis (MRA) (Vertelli & Kovacevic, 1995). When adopting this front end 
special care needs to be exercised to fully describe the processing, given their large number 
of degrees of freedom. 

It is assumed a γ-level dyadic wavelet decomposition, which has γ stages of filtering and 

decimation (Vertelli & Kovacevic, 1995) and transforms each of the Q  waveforms into γ+1 

waveforms. More specifically, the q-th waveform is decomposed into approximation 
q

a  

and details 
qqq
γ21 ,,, ddd … , for Q,,1…=q . For simplicity, the dependence on q is omitted 

hereafter.    
Some works in the literature use only one of the details or calculate the average power of the 
coefficients (Morais et al., 2007). In contrast, the framed wavelet front end keeps all the 
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coefficients by taking in account that for 1>γ they have different sampling frequencies and 

organizing them as matrix Z . For that, instead of using a single L , the user specifies a value 

minL for the waveforms with lowest sf  ( a and γd ) and a large value 2
i

L L
min

γ −=
i

, where 

minS  is another user-defined parameter.  

The values are organized in a Frame F  of dimension LQ × , where minLL
γ

2= . The 

number of frames for this organization of a wavelet decomposition is 

 ( )⎣ ⎦minSminLaTN /1 −+=  (3) 

where Ta is the number of elements in a.  

The notation is flexible enough to easily describe several wavelet front ends, such as the 

concatenated wavelet  (wavelet-concat, for which minSminL = ) and wavelet-energy described  

in (Morais et al, 2007).  
Many recent works adopt the wavelet front end ((Saibal, 2008); (Silva, 2006); (Costa, 2006); 
(Chia-Hun & Chia-Hao,  2006); (Pang  & Ding,  2008)). However, some of these works do not 
compare the wavelet with other (and eventually) simpler front ends. In Section 4, some 
results are presented with a simple RMS-based front end. It consists in taking the minimum 
RMS value of each phase during the whole fault duration. As a first step, a normalization is 
adopted (Morais et al., 2007) to to represent the voltage values in p.u. Because the feature 
vectors have dimension 3, it is relatively simple to visualize them. Figure 6 illustrates 1,000  
 

 

Fig. 6. Vector of features obtained with a simple RMS front end, which represents each fault 
by a three-elements vector. The color and shape indicate the fault category according to the 
legend. 
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of these vectors obtained via different simulations (more details in Section 4) with the color 
indicating the kind of fault. It can be seen, for example, that the monophasic faults (AG, BG 
e CG) and the triphasic fault (ABC) can be distinguished from the biphasics faults. 
Moreover, the biphasic faults that do not involve the ground are relatively similar to those 
biphasic faults involving ground. 

3.2 On-line and post-fault classification 
Fault classification systems can be divided into two types. The first one aims at performing a 

decision (classification) for each feature vector z  or, equivalently, a frame F  (giving that z   

is just a representation F  as a vector). This is typically the goal in on-line scenarios, at the 
level of, e.g., a protection relay (Kezunovic & Zhang,  2007). Alternatively, the decision can 
be made at a supervisory center in a post-fault stage. The latter case makes a decision having 

available the whole matrix Z  of variable dimension K×Nn, where n distinguishes the 
individual faults, which having distinct durations in the general case. The on-line and post-
fault systems try to solve problems that can be cast as conventional classification (Witten  &  
Frank, 2005) and sequence classification (Ming & Sleep, 2005) problems, respectively.  

On-line fault classification must be performed on a very short time span with the frame 

located in the beginning of the fault. It is often based on a frame corresponding to half or 

one cycle of the sinusoidal signal (typically of 60 or 50 Hz). For example, assuming 60 Hz 

and a sampling frequency of 2=sf kHz, one cycle corresponds to 602000=L  

approximate 33 samples. 
As mentioned, on-line classification corresponds to the conventional scenario, where one is 

given a training set ( ) ( ){ }MyMy ,,,1,1 zz …  containing M  examples. Each example ( )y,z  

consists of a vector 
κℜ∈z called instance and a label { }Yy ,,1…∈ . A conventional classifier 

is a mapping { }YK
,,1: …→ℜΦ . Some classifiers are able to provide confidence-valued 

scores ( )zif  for each class Yi ,,1…=  such as a probability distribution over y . For 

convenience, it is assumed that all classifiers return a vector y  with Y  elements. If the 

classifier does not naturally return confidence-valued scores, the vector y  is created with a 

unitary score for the correct class ( ) 1=zif while the others are ( ) 0=zif , yi ≠  . With this 

assumption, the final decision is given by the max-wins rule. 

 ( )zz
i
f

i

F maxarg)( =  (4) 

Contrasting to the on-line case, a post-fault module has to classify a sequence Z . The 

classifier is then a mapping { }YNK
,,1: …→×ℜϕ  and the training set 

( ) ( ){ }MyMy ,,,1,1 zz …  contains M  sequences and their labels. The technique adopted in 

this work is the frame-based sequence classification   (FBSC) (Morais et al., 2007). 

In FBSC systems, the fault module repeatedly invokes a conventional classifier  )(zF  (e.g., a 

neural network or decesion tree) to obtain scores ( ) ( )( )zzy Yff ,,1 …=  for each class. To 

come up with the final decision, the fault module can then take in account the scores of all 
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frames. Two possible options consist  in calculating an accumulated score ( )Z
i

g  for each 

class and then using the max-wins rule 

 ( )ZZ
i

g

i

G maxarg)( =   (5) 

Where: 

 ( ) ( )∑
=

=
N

n
ni

f
i

g

1

zZ  (6) 

or 

 ( ) ( )( )∑
=

=
N

n
ni

f
i

g

1

log zZ  (7) 

The accuracy of the system )(ZG  can be evaluated according to the misclassification rate 

and it is clearly dependent on the accuracy of the classifier )(zF . The misclassification rates 

are sE  and fE  , for the post-fault (sequence) and on-line (frame) modules, respectively.   In 

the case of post-fault systems, in spite of sE  being the actual figure of merit, it is sometimes 

useful to also calculate Ef. However, one should note that estimating fE  takes in account all 

frames that compose a fault (frames in the beginning, middle and end of the fault). In on-

line applications, such as relaying, taking a decision in the beginning of the fault is the most 

important. In order to take this situation in account, this work defines oE as the 

misclassification rate obtained when one considers only the first frame of the fault. 
The next section presents simulation results for fault classification. 

4. Simulation results 

The experiments used the UFPAFaults4 dataset, which can be downloaded from 

www.laps.ufpa.br/freedatasets/UfpaFaults. The UFPAFaults4 dataset is composed by 5,500 

faults, organized into five sets of 100, 200, . . ., 1000 faults each. The division into these sets is 

to facilitate obtaining sample complexity curves (Vapnik, 1999). The sample complexity 

indicates how many training examples are required to train the classifier. It can be evaluated 

by observing how the performance varies with the number of training examples. 

Each fault in the dataset corresponds to three voltage and three current waveforms stored as 
binary files with an associated text (ASCII) files, which stores a description of the fault (its 
endpoints, label, etc.). The waveform samples are stored as real numbers represented as the 
primitive type float in Java (big-endian, 32-bits, IEEE-754 numbers). 
The faults are generated with the software AMAZONTP (Pires et al., 2005). Some 

parameters for the simulations are randomly generated. The values of all four resistances 

were obtained as i.i.d. samples draw from a uniform probability density function (pdf) 

U(0.1; 10), with support from 0.1 to 10 Ohms. The begin and duration (both in seconds) of 

the fault were draw from U(0.1; 0.9) and U(0.07; 0.5), respectively. The location was draw 

from U(2; 98) (percentage of the total line length). Eleven types of faults (AG, BG, CG, AB, 

AC, BC, ABC, ABG, ACG, BCG, ABCG) were generated using a uniform distribution. 
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The voltage and current waveforms generated by the ATP simulations had a sampling 

period equal to 0.25 microseconds, corresponding to a sampling frequency 40=sf kHz. It 

is possible to obtain versions with smaller values for sf  by decimating the original 

waveforms. This operation requires low-pass filtering to avoid aliasing. Details about 

decimation and filtering can be found in digital signal processing textbooks,  e.g. 

(Oppenheim, 1989).   

4.1 Normalization  
The elements of feature vectors z may have very different dynamic ranges (e.g., voltage in  
kV and currents in Amperes). This can cause the learning algorithms to perform poorly.  
Therefore, as a pre-processing stage, it is important to apply a normalization process. There 
are many algorithms for normalization of time series. This work adopted the so-called 
allfault (Morais et al., 2007), which takes in account all duration of the waveforms for getting 
the maximum and minimum amplitudes of each phase, and the converting the values to the 
range [-1, 1]. A distinct normalization factor is calculated for each of the Q waveforms.  

4.2 Model selection  
Often, the best performance of a learning algorithm on a particular dataset can only be 
achieved by tedious parameter tuning. This task is called model selection and corresponds, 
for example, to choosing parameters such as the number of neurons in the hidden layer for a 
neural network. A popular strategy for model selection is cross-validation (Witten & Frank, 
2005). This is a computationally intensive approach, but avoids tuning the parameters by 
repeatedly evaluating the classifier using the test set. The test set should be used only once, 
after model selection, such that the error rate on this test set is a good indicator of the 
generalization capability of the learning algorithm.  When dealing with frames extracted 
from sequences, it should be noted that, in conventional classification, the examples are 

assumed to be i.i.d. “samples” from an unknown but fixed distribution ( )yP ,z . Because 

examples are independent, they can be arbitrarily split into training and test sets. Similarly, 
when organizing the folds for cross-validation, examples can be arbitrarily assigned to the 
training and validation fold. However, the i.i.d. assumption becomes invalid, for example, 

when examples ( )y,z  are extracted from contiguous frames of the same sequence given the 

relatively high similarity among them. Hence, in practice it is important to use cross-
validation properly, to avoid overtting due to a training set with similar vectors extracted 
from the same waveform.  
This work performed model selection via a validation set, disjoint to both training and test 
sets. A grid (Cartesian product) of model parameters is created and the point (set of 
parameters) that leads to the smallest error in the validation set is selected. For each 
coordinate, the user specifies the minimum and maximum values, the number of values and 
chooses between a linear or logarithmic spacing for the values. 

4.3 Results 
The simulations in this work relied on Weka (Witten & Frank, 2005), which has many 
learning algorithms. Specifically, the work used decision trees (J4.8, which is a Java version 
of C4.5 (Witten & Frank, 2005)), multilayer artificial neural network (ANN) trained with 
backpropagation, naïve Bayes and K-nearest neighbor (KNN). The choice of these classifiers 
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was based in the fact that they are popular representatives of different learning paradigms 
(probabilistic, lazy, etc.). 
The parameters obtained by model selection for each classifier are summarized in Table 2. 
The KNN used the squared-error as distance measure and K = 1 neighbors. The naïve Bayes 
used Gaussian pdfs and does not have parameters to be tuned. For the ANN, H is the 
number of neurons in the hidden layer, N the maximum the number of epochs, L the 
learning rate and M the momentum (Witten & Frank, 2005). For J4.8, C is the confidence and 
M the minimum number of examples in a leaf. 
 

Front end  L S K ANN J4.8 

1 1 6 -H 8 -N 1500 -L 0.2 -M 0.3 -C 0.35 -M 10 

5 5 30 -H 20 -N 1500 –L 0.2 -M 0.3 -C 0.5467 -M 10 

7 7 42 -H 26 -N 1500 –L 0.2 -M 0.3 -C 0.7433 -M 10 

9 9 54 -H 32 -N 1500 –L 0.2 -M 0.3 -C 0.35 -M 10 

11 11 66 -H 38 -N 1500 –L 0.2 -M 0.3 -C 0.5467 -M 10 

Raw 

33 33 198 -H 104 -N 1500 -L 0.2 –M 0.3 -C 0.35 -M 10 

RMS 33 33 3 -H  30 –N 2000 –L 0.1 –M 0.2 -C 0.35 –M 5 

Table 2. Summary of parameters for the front ends and two classifiers. 

The results for frame-based classification using the concatenated raw front end are shown in 
Figure 7. The best results were obtained by the ANN, followed by the J4.8 classifier. The best 

frame length was 9=L . It is interesting to note that for 1=L , ANN achieved an error rate 

more than three times the one achieved by J4.8, which could be due to problems in 
convergence. 
 

 

Fig. 7. Error rate fE  for several classifiers and frame lengths L  using the concatenated raw 

front end. 

The results obtained with RMS front end (Figure 8 ) were inferior to the ones in Figure 7, for 
the raw front ends. But it is interesting to note that the described RMS front end, which uses 
only three numbers obtained reasonable results.  
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Fig. 8. Error rate sE  using RMS front end for several classifiers and frame length .33=L . 

Besides, the interpretation of decision trees trained with the RMS parameters provides a 
good insight about the problem. Figure 9 shows an example. In this case, the participation of 
a phase in the short circuit can be inferred by a relatively low minimum RMS value. For 
example, if this minimum value is above the threshold estimated from the data, then the 
corresponding phase should not be involved in the short-circuit. 
 

 
 

Fig. 9. Decision tree for the RMS front end that represents each fault with only three 
parameters: VA, VB and VC, which correspond to the minimum RMS value of each phase. 
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a) 

 

 
 

b) 

Fig. 10. Results for post-fault classification. a) Error ES  for post-fault classification. The 

ANN-based FBSC achieved ES = 0 for 1>L . b) Difference Ef – ES between the erro rates for 
frame-by-frame and sequence classification. 

Figure 10 shows results for post-fault classification. Figure 10 a) shows absolute values 
while Figure 10b) indicates the difference between ES and Ef. As expected, post-fault 
classifiers can achieve smaller error rates than the ones that operate at one frame only. One 

can see that the ANN-based FBSC achieves %0=sE  for all values of L  but 1=L . The 

classifier J4.8 achieves %1.0=sE  with a computational cost smaller than the ANN. 
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Fig. 11. Sample complexity for frame-based classification (the error is Ef) with 9== SL . 

The figure shows the average and standard deviation. It can be seen that approximately 

700=M examples suffices to train the classifiers. 

 

Fig. 12. Sample-complexity for one-frame-based classification with 9== SL  (error oE ).  

The figure shows the mean and standard deviation. It can be seen that the error has a more 
erratic behavior than in Figure 11. 

www.intechopen.com



An Overview of Data Mining Techniques Applied to Power Systems 

 

435 

Figures 11 and  12  show, respectively, the results for sample complexity of frame-by-frame 

Ef and one-frame E0 classification with 9== SL . Model selection was used for each value 

of M, given that the best parameters for the classifier typically depend on the number of 

training examples (Rifkin & Klautau, 2004) . Comparing Figures 11 and 12 one can conclude 

that more examples are needed to train a classifier that observes only the first frame of the 

fault and its misclassification rate E0 is typically higher than Ef under the simulated 

conditions. 

5. Conclusions 

This work presented an overview of data mining techniques used in power systems. 

Among several data mining tasks, fault classification is popular especially because it is 

relatively easy to generate artificial data using simulators such as ATP. Other applications 

of data mining will potentially impact the electric power industry, but this will require 

data warehouses to cope with preprocessing and organizing heterogeneous and large 

datasets. 

Even within fault classification, the research methodology needs improvement for an easier 

conversion of academic results into effective products. One important issue is the robustness 

of proposed algorithms to distinct power system constituent elements, such as the 

transmission line lengths. Several algorithms are tested with only one simulated scenario. 

This work shows that a very simple RMS front end, which represents each fault by only 

three values, can lead to misclassification rates under 1% in controlled conditions. Hence, it 

is important to improve benchmarks with publicly available datasets, such as the 

UFPAFaults4, and use them to properly evaluate new approaches. 

This chapter also presented results comparing different figures of merit for evaluating fault 

classification systems. It was shown that post-fault classifiers, which can take the whole fault 

segment in account to make a decision, achieve smaller error rates than classifiers based on a 

fixed-length (and short) frame. In fact, neural networks precisely classified all test examples 

(zero error) in some configurations. Another aspect that was emphasized is that, as vastly 

discussed in the machine learning literature, the number of examples to train a classifier 

depends on the learning algorithm and the domain (dataset). 
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