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Abstract

Gender differences in frontotemporal lobar degeneration (FTLD) have been reported in 
the literature but not well characterized or explored. In the present work, we propose 
that steroid hormone estrogens delay the onset of FTLD in pre-menopausal women 
compared to age equivalent men, and may provide neuroprotection in the early post-
menopausal period. We present a model wherein estrogens serve a regulatory role in 
attenuating the microglia conversion from the benign to active form in response to cell 
stress that might otherwise trigger an inflammatory response. Via microglia stabiliza-
tion, estrogens preserve the homeostasis of both the ubiquitin-proteosome degradation 
system and lysosome-autophagy recycling system. Both systems have been implicated 
in the genetic forms of FTLD, with the latter system recognized to be associated with the 
majority of them.

Keywords: frontotemporal lobar degeneration (FTLD), gender differences, estrogens, 
autophagy, microglia, neuroprotection

1. Introduction

FTLD is second only to Alzheimer’s disease as a leading cause of primary degenerative 
dementia in those under age 65 [1, 2]. Researchers estimate that it is responsible for one out 
of six cases of pre-senile dementia in post-mortem confirmed cases of individuals under age 
70 [3]. FTLD symptoms range from motor and language impairment to profound behavioral 
changes and deficits [4, 5], including severely attenuated initiative to profound impulsivity 
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[6]. FTLD is characterized by three subtypes: behavioral variant frontotemporal dementia 
(bvFTD), semantic dementia (SD), and primary progressive aphasia agrammatic variant 
(PPA-agrammatic), although there remains ongoing discussion about their classification [5, 7].  
As the most prevalent form of pre-senile dementia after early onset Alzheimer and vascu-
lar dementia [8], gender differences in onset and characteristics of FTLD have received little 
attention in comparison to older onset Alzheimer’s dementia. The initial conclusions of the 
Women’s Health Initiative Memory Study (WHIMS) associated long-term estrogen replace-
ment in women ≥65 years of age with increased risk of senile dementia but not mild cognitive 
impairment (MCI) [9]. MCI, as the Alzheimer’s dementia prodrome, is known to remain stable 
in 1/2 to 2/3 of patients, with stability largely dependent upon the absence of apolipoprotein 
E e4 (APOE e4) alleles [10]. Consistent with this, estrogen replacement risk of senile dementia 
has been shown to be dependent upon the presence of the APOE e4 gene. In their longitu-
dinal evaluation of the cognitive status of 12,612 participants of the Nurses’ Health Study 
(≥70 years old) over 4 years, Kang and Grodstein [11] found that participants on hormone 
replacement since menopause onset, who were carriers of the APOE e4 allele demonstrated a 
significantly worse rate of cognition decline than nonhormone users. In the absence of APOE 
e4, the cognitive status of participants was equivalent, regardless of hormone replacement 
status. While findings did not demonstrate any significant benefit from hormone replace-
ment in this cohort, the authors point out that this was a relatively homogeneous population 
of highly educated female nurses. Cognitive reserve may have protected nonestrogen users 
from declines into dementia during the 4 year period of study.

With respect to FTD, Ratnavalli and colleagues [12] found that men were four times more 
likely than women to be affected by bvFTD. They posited that this may have been an artifact of 
their small sample size, but also referred to older research documenting higher rates of FTLD 
in men [13] and encouraged further exploration. Johnson and colleagues [14] also reported 
sex differences. They found that more men had bvFTD and SD, while more women had pro-
gressive nonfluent aphasia. They noted that this may be due to sex-specific vulnerability to 
neurodegeneration for women in the left frontal region and men in right frontal and bilateral 
temporal regions. Bede and colleagues [15] recently evidenced gender differences in amyo-
trophic lateral sclerosis (ALS), considered to be a motor variant of FTLD on a clinical contin-
uum [16, 17] with characteristics of FTLD in the absence of dementia in up to 50% of cases [18].

2. The role of estrogen in the brain

Beyond their role as reproductive hormones, estrogens, specifically 17β estradiol, exert a neu-
roprotective role in the brain through estrogen receptors widely distributed in the male and 
female brain. Multiple estrogen signaling pathways are now recognized in the human brain 
that are involved in the protection of brain from cognitive decline, emotional dysregulation, 
and neurodegeneration [19]. Moreover, the neuroendocrine response to stress is gender- 
specific and associated with the presence of gender-specific gonadal steroids [20]. Estrogen 
has been shown to be involved in cortical and subcortical hypothalamic-pituitary-adrenal 
(HPA) function [21], with activation of HPA arousal circuitry evidenced to be regulated in 
adult women by the hormonal cycle [21, 22].
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All three subtypes of FTLD (bvFTLD, SD, and PPA-agrammatic) are associated with altera-
tions in arousal, characterized by apathy. Our recent findings from a national, multicenter 
study of nondemented ALS with cognitive impairment and/or behavioral impairment were 
consistent with this, while evidencing a significantly greater incidence of impulsivity and jocu-
larity in males, as well as personal neglect in females [23]. We contend that this distinction is 
due to the involvement of ventromedial natural reward and dominance circuitry in the emerg-
ing neurodegenerative disease process and the role of estrogen therein (Figures 1 and 2).  

Figure 1. Mesostriatal pathway: natural reward–dominance neural system.

Gender Differences in Frontotemporal Lobar Degeneration (FTLD) Support an Estrogenic Model…
http://dx.doi.org/10.5772/intechopen.74158

71



More recently, we evidenced greater cognitive and behavioral stability in 78 women from this 
cohort, based upon both site of disease onset (midbrain vs. spinal cord) and estrogen status 
(high vs. low).

Figure 2. Mesocortical pathway: natural reward–dominance–motivation neural system; PN = paranigral nucleus, PBN = 
parabrachial pigmented area, PFR = parafasciculus retroflexus area, VTT = ventral tegmental tail, DLPFC = dorsolateral 
pre-frontal cortex, FCC = frontocingulate cortex, ACC = anterior cingulate cortex, and rACC = rostral ACC.
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Given that midbrain onset females in our study demonstrated estrogen neuroprotection with 
respect to cognitive executive functions, we expanded our model of midbrain involvement in 
FTLD to involve the role of the cerebellum in executive functioning decline, based upon our 
own findings and recent imaging evidence [24] (Figure 3).

It has been widely established that ovarian gonadosteroidal hormones provide protection 
against brain injury and degeneration and provide cognitive maintenance [25–27]. Evidence 
of estradiol (the primary ovarian estrogen) neuroprotection comes from histopathological 
studies in rats [28] as well as healthy human females [29]. The release of neuroestradiol from 
the stalk median eminence (SME) of the hypothalamus in ovarectomized female monkeys 
has recently been evidenced [30]. Electrical stimulation of the medial basal hypothalamus 
resulted in release of both gonadotrophin releasing hormone (GnRH) and estrodial. This sug-
gests its vital role as a neurotransmitter involved in regulation of GnRH release.

In recent neuroimaging data, the evidence of estrogen regulation of anterior cingulate cor-
tex (ACC)-associated motivation in healthy human females was evidenced by examining the 
effects of estrogen on the neural correlates of emotional response inhibition. Applying an 

Figure 3. Cerebellar regulation of the mesocortical pathway: regulation of the natural reward-dominance-motivation 
neural system.
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in-subject design involving 20 right-handed female subjects of average age 25.4 years, Amin 
and colleagues [31] combined 3.0 T functional magnetic resonance imaging (fMRI) with quan-
titative analysis of ovarian hormones. All participants evidenced stability of mood across the 
menstrual cycle. Subjects were scanned during the early follicular phase, when levels of estro-
gen and progesterone were low, and during the mid-luteal phase, when levels of estrogen 
and progesterone were high. Subjects were scanned while they were engaged in a verbal go/
no-go task involving positive, negative, and neutral stimuli. This task was chosen because it 
was already evidenced in the literature to activate the dorsolateral prefrontal cortex (DLPFC) 
and the ACC. Cycle phase and condition were within-subject independent variables, while 
mean reaction time and accuracy of response were independent variables. During the follicu-
lar phase (low hormones), women exhibited significantly decreased activation in the bilateral 
ACC and some portions of the left PFC in response to positive distracters, relative to positive 
targets. During the luteal phase (high hormones), however, women exhibited decreased acti-
vation in the ACC in response to negative distracters and increased activation in the DLPFC 
in response to positive distracters. The investigators noted that the luteal phase findings were 
consistent with literature associating human female estrogen levels with positive affect. They 
further noted that their findings of negative correlation between estradiol levels and acti-
vation in response to negative distractors, relative to negative targets, were consistent with 
previous research [21]. This contention is further supported by more recent findings from the 
KEEPS longitudinal clinical trial focused on the potential for estrogen neuroprotection in 693 
younger post-menopausal women of average age 52.6 years old and 1.4 years past their last 
menstrual period [32]. Following 4½ years, the estrogen replacement subgroups (N = 693) 
evidenced significant improvements in depression and anxiety in comparison to a placebo 
subgroup (N = 262). Cognitive status remained stable with monitoring to assess dementia 
incidence with aging ongoing.

3. Estrogen regulation of the stress response as a model of 

neuroprotection

Goldstein and colleagues [21] applied an fMRI paradigm to examine the effect of estrogen on 
brain regions involved in the stress response by using aversive affective stimuli in a group of 
12 right-handed women, ages 36–40. Their imaging data evidenced an association between 
the early follicular phase (low estrogen) and significantly increased activation to neutral stim-
uli, relative to negative targets, in the central amygdala nuclei, paraventricular hypothalamic 
nuclei, peripeduncular nuclei, orbital frontal cortex, and AC gyrus (ACG). In comparison to 
the early follicular phase, the luteal phase (high estrogen) was associated with decreased acti-
vation in the central amygdaloid, ventromedial hypothalamic, orbital frontal, and cingulate 
nuclei in response to negative vs. neutral stimuli. With respect to FTLD, we propose a model 
whereby estrogen provides neuroprotection by mediation of the neuroimmunological and 
neuroendocrinological stress response (i.e., release of anti-inflammatories and stress associ-
ated hormones) (Figure 4).
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Figure 4. Estrogen binding to microglia induces feedback inhibition of the inflammatory cascade, resulting in neuro-
protection. Mice models of toxic demyelination evidence estrogen induction of insulin-like growth factor 1 (IGF-1) 
expression by astrocytes. IGF-1 then promotes proliferation of oligodendrocyte precursors and their differentiation into 
mature remyelinating oligodendrocytes.
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4. Lysosome and proteosome homeostasis: estrogen mitigation of the 

microglia inflammatory response in neurodegeneration

As disorders of aging, many neurodegenerative diseases demonstrate significant gender dif-
ferences in their prevalence, symptomatology, and prognosis, implicating gonadal steroidal 
hormones in their pathophysiology [33, 34]. Parkinson’s disease (PD) has for a long time been 
recognized to be more prevalent in males than in females, with a relative male to female ratio 
ranging from 1.4 to 3.7. Evidence suggests that levels of estrogens or progesterone or dif-
ferences in their respective receptor levels could account for this gender difference [35, 36].  
Particularly with respect to early onset dementia, emerging with onset of menopause or 
andropause, endogenous estrogen regulates brain physiology through a concerted action 
on diverse cell types and molecular targets [37]. Women who undergo surgical removal of 
the ovaries before menopause clearly demonstrate that oophorectomy is associated with an 
increased risk of cognitive impairment and dementia [38]. Women’s Health Initiative (WHI) 
data, taking into consideration the time between menopause onset and hormone therapy ini-
tiation, showed beneficial effects of estrogens when therapy was initiated early after meno-
pause, with detrimental effects associated with treatment started several years following 
menopause [39]. This supports the theory of estrogen as a neuroprotective agent while under-
scoring the limitations of the approach. Estrogen protection has a ‘window-in-time’: poten-
tially effective if applied around the menopause period and maintained for a 5–10 year period 
of clinical effectiveness, given the absence of significant cancer or dementia risk factors [40], 
including the presence of the APOE e4 gene [11].

The neuroendocrine system is a powerful regulator of the inflammatory response in health 
and disease states [41]. In addition to regulating peripheral immune responses, steroid hor-
mones, including glucocorticoids and gonadal steroids, support anti-inflammatory properties 
in the brain [42]. Steroid hormone protective actions in the nervous system range from stabi-
lizing the blood brain barrier (BBB), alleviating brain edema, dampening pro-inflammatory/
supporting anti-inflammatory processes, activating anti-apoptotic pathways, stimulating 
survival-promoting factors, counteracting oxidative stress, promoting respiratory chain func-
tion, and reducing glutamate excitotoxicity [43–48].

Estrogens are known to exert their actions through members of the nuclear hormone receptor 
superfamily, ERα [49], and the more recently identified estrogen receptor–ERβ [50–52]. Estrogen 
is recognized to exert an inhibitory response to neuroinflammation, with specificity of bind-
ing to microglia, resulting in the attenuation of the inflammatory response [53]. 17β-estradiol 
and progesterone have also been shown to mediate anti-inflammatory activity and improve 
neuronal survival [44, 54–56]. 17β-estradiol targets many pathways active in secondary injury; 
including oxidative stress, inflammation, apoptosis, and ischemia [57] (Figure 4).

Detecting the expression of the two estrogen receptors ERα and ERβ in cells of the mono-
cyte-macrophage lineage, Vegeto and colleagues first evidenced the role that estrogens 
play in inflammatory diseases [58] with several laboratories later demonstrating that these 
gonadal steroid hormones act in a variety of macrophage-like cells to regulate the inflam-
matory response triggered by diverse inflammatory stimuli [59, 60]. In addition to having a 
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 regulatory role in the immune system, ERβ is involved in tumor suppression [61]. Thus, in 
recent years, pharmaceutical companies have generated selective agonists for ERα and ERβ, 
with ERβ research ongoing for ERβ development as a cancer preventative, as an anti-inflam-
matory drug and for the attenuation of neurodegenerative diseases [62].

Microglia are mediators of the innate immune defense, acting as antigens and scavenger cells 
during brain inflammation, acute central nervous system (CNS) injury, and neurodegenera-
tion in the course of aging [63]. As such, they represent the resident macrophages of the CNS, 
comprising 5–15% of total cells in the brain [64]. As the brain-resident immunocompetent 
cells, microglia are critical for proper innate immune responses in the brain [42]. In the steady 
state, they perform housekeeping chores via autophagy [65] and may participate in postna-
tal neuronal development, whereas following trauma or pathogenic insult; they initiate the 
inflammatory response as part of the brain immune defense [66]. In the course of this, they 
increase their release of several inflammatory-associated substances, including reactive oxy-
gen intermediates, nitric oxide (NO), and (inflammatory) cytokines [interleukin-1 and 6 (IL-1 
and IL-6), interferon-g (IFN-g), and tumor necrosis factor-α (TNF-α)] [67].

Microglia cells express a set of classical and non-classical steroidal hormonal receptors, includ-
ing ERα, ERβ, progesterone receptors (PR), glucocorticoid receptors (GR), and mineralocorti-
coid receptors (MR) [42, 68]. The central role of ERα and ERβ in the regulation of the microglia 
inflammatory response, in conjunction with the recent discovery of medial basal hypotha-
lamic neuroestradiol, suggests the potential of estrogens to mitigate the pathogenesis and 
progression of neuroinflammation and neurodegeneration [69]. In particular, two gonadal ste-
roid hormones, 17α-estradiol and progesterone, provide robust neuroprotection in a variety 
of experimental brain injury models [43, 54, 70, 71] and under neurodegenerative conditions 
[72–74]. It is possible that 17α-estradiol is an effective neuroprotective agent due to its actions 
as an anti-oxidant, anti-inflammatory, and anti-apoptotic steroid hormone [42, 57, 75–77].

Given the role of estrogenic steroids in modulating neurogenesis and the generation of den-
dritic spines and neuroprotection, Jellinck and colleagues [66] explored the question of whether 
microglia might serve as a regional source for estrogenic steroids. With respect to neuroprotec-
tion, dehydroepiandrosterone (DHEA) is considered to exert its positive influence via con-
version to estrogen (estrone and estradiol). However, this conversion is slow and limited in 
brain cell cultures, with the exception of microglia [66]. These researchers were able to demon-
strate the presence of the enzyme necessary for the rate limiting step of this conversion within 
microglia cells, supporting their contention that microglia are integral to regional regulation of 
adult estrogen-dependent brain plasticity and neuroprotection.

In the healthy CNS, microglia appear in a “resident state” with a ramified morphology (Figure 4). 
However, microglia are very susceptible to changes in the CNS milieu and become rapidly 
activated in response to CNS insult. Attracted by endogenous and other chemical messenger 
factors, microglial cells demonstrate the capacity to migrate toward the site of brain injury. 
Upon activation, microglia undergo morphological and functional changes such as hypertro-
phy and up-regulation of major histocompatibility complex (MHC) antigens. Activated cells 
secrete inflammatory mediators, including cytokines and chemokines [78, 79]. Microglia can 
also produce different types of free superoxide radicals and prostanoids [55].
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As a first line of defense, activated microglia perform phagocytosis of apoptotic neuronal cell 
bodies via the lysozyme-autophagy recycling system. However, chronic activation of microg-
lia with associated excess pro-inflammatory response in the aftermath of CNS insult may 
overwhelm this natural recycling system of the cell, resulting in cytotoxicity [80]. In the after-
math of stroke, for example, microglial activation is one of the earliest responses; requiring 
several hours to fully develop, while persisting for up to several days [81, 82]. The microglia 
inflammatory response, therefore, needs to be tightly controlled to avoid collateral damage 
within intact brain tissue. Estrogen appears to provide this level of regulation.

Microglia express steroid hormone receptors that include ER-α, with immunoreactivity evi-
denced by electron microscopy studies [35, 42, 68, 83–86]. Indeed, the neurodegenerative process 
of several CNS diseases, including amyotrophic lateral sclerosis, frontotemporal lobar degen-
eration, multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease are associated with 
the activation of microglia cells, which drive the resident inflammatory response [17, 87–89].  
In addition, a number of pro-inflammatory mediators are elevated in the CNS or cerebrospi-
nal fluid of neurodegenerative disease patients [30]. Given this, it is particularly important to 
recognize that estrogen is understood to maintain microglia in the benign form, associated 
with suppression of the inflammatory response, suggesting its protective role in the aging 
brain against ubiquitin-proteosome mediated degradation.

Estrogen signaling is characterized by cell-specificity and dose dependent responsiveness. 
Divergent effects of estrogens have been reported for T cell activation [90], microglia modula-
tion, and astroglia effects based upon different hormone concentrations [91, 92]. 17β-estradiol 
inhibits microglial activation following exposure to bacterial lipopolysaccharides [53], with 
estrogen-induced neuroprotection from autophagy lysis or proteasome degradation related 
to declines in TNF-α expression and NO production [43, 53]. NADPH oxidase represents one 
important source of free radicals in activated microglia [92], which catalyzes the reduction of 
oxygen to superoxide radical [93]. 17β-estradiol has been shown to decrease lipopolysaccha-
rides-induced superoxide production and release in N-9 microglia cell lines [94].

ERα and ERβ are intracellular proteins, which activate a multitude of genomic as well as 
nongenomic effectors in neural cells [87]. Through the use of an estrogen receptor antagonist 
[ICI 182780], hormone action in microglia has been attributed to the activation of endog-
enous ERs, since antagonist binding was able to block the effect of estradiol, suggesting 
a receptor-mediated effect of the hormone [35, 53, 95, 96]. Using estrogen receptor knock 
out mutant mice, several investigators have described the selective involvement of ERα in 
the anti-inflammatory and neuroprotective activity of estradiol against neuroinflammatory 
and vascular pathologies of the brain [97–100]. In ICI 182780 studies, ERα appeared to be 
selectively involved in estradiol anti-inflammatory activity in microglia, a finding later con-
firmed by additional experimentation using primary cultures of microglia as well as cell 
lines [97, 101].

Estrogen-dependent attenuation of microglia activation has been demonstrated to involve 
reduced lysosome-phagocytic activity, production of reactive oxygen and nitrogen species 
and other factors of the inflammatory cascade [35, 94, 102–104]. The inhibitory activity of 
estrogens on microglia-associated neuroinflammation may prove to be a beneficial  therapeutic 
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opportunity for delaying the onset and progression of early onset neurodegenerative diseases 
such as FTLD, with replacement offsetting menopause associated declines.

Importantly, estradiol does not alter the inflammatory signaling cascade in microglia if it is 
administered after inflammatory stimuli [94, 97, 101]. Moreover, prolonged hormonal depri-
vation has been evidenced to affect estrogen protective activity in ischemia; resulting in a null 
or even pro-inflammatory response following administration of exogenous hormone [105]. 
Collectively, the experimental evidence indicates that the efficacy of estrogenic molecules as 
anti-inflammatory agents is confined to a therapeutic window and that their use should be 
considered only as preventive pharmacological strategies. Applied during the pre-clinical or 
prodrome stage, estrogen represents a therapeutic opportunity to forestall the onset and miti-
gate the progression of pre-senile neurodegenerative disease processes, particularly those like 
FTLD that typically emerge in mid-life, prior to or throughout the course of menopause and 
andropause. With the advent of personalized medicine, it may eventually be possible to iden-
tify genotypically high risk individuals and intervene with hormone replacement therapy 
while the neurodegenerative disease process remains at the sub-clinical level.

5. Estrogen interaction with cellular signaling molecules

Estrogen exerts an indirect effect on microglia through specific interactions with cellular sig-
naling molecules. Nitric oxide synthases, a family of enzymes catalyzing the production of NO 
from l-arginine, are important cellular signaling molecules. The inducible isoform, inducible 
nitric oxide synthase (iNOS), serves a number of roles, including involvement in the immune 
response, with production of NO as an immune defense mechanism, due to its free radical nature. 
It is the proximate cause of septic shock and may function in autoimmune disease [106, 107].  
In rats and microglia cell lines, the expression of iNOS and release of reactive oxygen species 
is reduced in certain cell types through the action of estrogen, including microglia [53, 76, 94], 
while expression of endothelial and neuronal subtypes of iNOS are increased [108].

After immunostimulation by lipopolysaccharides, estrogen but not progesterone has been 
shown to attenuate microglial superoxide release and phagocytotic activity as well as iNOS 
expression [94]. These effects are transmitted through an estrogen receptor-dependent acti-
vation of the MAP-kinase signaling system. Using a transient focal ischemia animal model, 
investigators have shown that estrogen and progesterone prevent the hypoxia-induced attrac-
tion and activation of local microglia and their morphological transition into an activated phe-
notype in the cortical penumbra [109]. The reduced stimulation of microglia is considered 
to result from diminished cytokine and interleukin expression and release in local astroglia, 
consequent to the close concerted communication between these two glial cell types during 
tissue stress. Focal ischemic mouse model experiments further evidence diminution of the 
penumbra of estrogen/progesterone-treated animals, along with reduction in chemokine lev-
els, central microglia, and recruited monocytes. Ischemic mouse model data are confirmed by 
several other studies, which have demonstrated that these steroid hormones affect local cyto-
kine production during brain inflammation in microglia [53, 76, 110], in astroglia [111, 112], 
and in unidentified cell types [113].
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Mitogen-activated protein kinases (MAPKs) are involved in directing cellular responses 
to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock, and microglia 
generated pro-inflammatory cytokines (e.g., TNFα, IL-6, and IL-1β) [114]. MAPKs regu-
late proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis 
[115]. Several MAPK pathways, including p42/44 MAPKs, are known to be activated by 
17β estradiol [116]. Moreover, studies have evidenced the importance of activated p42/44 
MAPK pathways in estrogen-mediated neuroprotection and microglia homeostasis [117]. 
When activated in response to inflammation, microglia release large amounts of oxygen and 
nitrogen radicals. Proteosomes clear oxidized and damaged proteins from cells, serving as a 
microglia compensatory response to activation. In the mouse model, the p42/44 MAPK path-
way participates in estrogen-mediated proteasome activation, with estrogen up-regulation 
of proteosome activity considered to be one way estrogen potentially promotes microglial 
viability [117, 118].

Calcium-dependent protease with papain-like activity, or calpain, is a cytoplasmic cysteine 
protease that is activated by calcium [119]. Calpain is involved in neurodegeneration in a 
variety of injuries and diseases [120]. Calpain cleaves many substrates, including cytoskeletal 
proteins, axonal, and myelin proteins, and pro-apoptotic Bax causing mitochondrial cyto-
chrome c release, activation of caspase-3, and activation of microglia [121–123]. Studies indi-
cate that estrogen attenuates Ca2+ influx via modulation of L-type Ca2+ channels and the Na+/

Ca2+ exchanger [124]. Estrogen has also been shown to reduce calpain expression and activity, 
resulting in reduced axon degeneration and neuronal apoptosis in vitro [125].

Finally, estrogen is involved in regulation of microglial matrix metalloproteinases [126]. 
Metalloproteases secreted from microglia mediate inflammation and tissue degradation 
through processing of pro-inflammatory cytokines and damage to the BBB [127]. Progestins 
and estrogens affect matrix metalloproteinase enzyme activity in microglial cells, reducing 
indications of microglial inflammation [97, 126, 128].

6. Evidence of estrogenic effects in FTLD

Although few studies known to-date have focused on estrogenic effects in FTLD, indirect evi-
dence comes from physiological studies in both normal and genetically disordered individu-
als. In this regard, it is notable that FTLD is associated with over a dozen genetic mutations 
that include the ALS-associated X linked UBQLN2 variant [129]. Neuropathologically, FTLD 
is primarily represented by two subtypes: one involving aberrant inclusions of microtubule 
protein tau, and one involving inclusions of TAR DNA binding protein [130].

6.1. Appetite regulation

Both bvFTD and SD are associated with changes in appetite and eating habits, with overeat-
ing and a preference for sweets and excessive seasonings, including salt [131–133]. Appetite is 
recognized to be modulated by gonadal steroid hormones, including peripheral and central 

Sex Hormones in Neurodegenerative Processes and Diseases80



mediating mechanisms [131, 134, 135]. In the healthy adult, sex differences in eating exist, 
regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Little is known about the direct 
effect of testosterone on eating, while the effects of 17β-estradiol, the primary estrogen, have 
been well characterized. Hypothalamic centers are recognized to be intimately involved in 
the regulation of appetite, with extensive neuronal control reflected in their innervation by 
axons expressing all the major neurotransmitters [136, 137]. Hypothalamic centers are known 
to play a vital role in neuronal action of insulin and adipose tissue-secreted leptins. Estrogen 
binding (i.e., estradiol-triggered calcium influx) results in appetite suppression, with parv-
abumin potentially serving a protective role in the attenuation of calcium overload-associated 
neuronal degeneration (see Sinchack and Wagner for a detailed review) [138].

The posterior hypothalamus contains nuclei that play a critical role in regulating feeding 
behavior [136, 137]. Recent in vivo structural neuroimaging demonstrated a relationship 
between deterioration in the posterior hypothalamus and appetite disturbances in FTLD, an 
early sign of disease onset evident within 2 years of diagnosis [133]. Post-mortem analysis 
further evidenced sparse TDP-43-immunoreactive neurites within TDP-43 positive cases, 
with occasional intracytoplasmic inclusions in posterior hypothalamic neurons [133]. In 
their analysis of the differential effects of peripheral hormones vs. hypothalamic pathology 
on eating behavior in FTLD, Ahmed and colleagues [131] found higher levels of the hypo-
thalamic derived satiation hormone agouti-related peptide in the serum of bvFTD and SD 
patients, with both groups having elevated scores on a questionnaire of eating behaviors. 
Atrophy of the posterior and total hypothlamus was found only for the bvFTD subgroup 
[131]. Interestingly, gender differences could not be examined, due to the relatively low num-
bers of females in both the bvFTD (4/15) and SD (8/18) subgroups, in comparison to gender 
matched controls (12/11).

6.2. Motivation regulation

As a bvFTD subtype, apathy is characterized by inertia and loss of volition, as well as apathy, 
in association with pathology within the dorsolateral convexities of the frontal lobe [139]. As 
an amotivational syndrome, apathy is also well recognized to be associated with disruptions 
to the ventral anterior cingulate cortex [139, 140]. In addition, regions known to be associated 
with Apathy include the medial dorsal nucleus of the thalamus, caudate nucleus, ventral 
medial striate (nucleus accumbens) and globus pallidus; with the cortical-striatal-thalamic-
cortical circuit being the circuit most implicated in the Apathy syndrome [141]. Apathy neu-
ral circuitry is linked to the richly dopaminergic nonmotor limbic loop of the basal ganglia, 
with adaptive behaviors requiring a combination of reward evaluation, associative learning, 
and ability to develop appropriate action plans [142]. Dopamine deficiencies are often char-
acteristic of FTLD. Clinical trials involving the use of dopaminergic psychostimulants have 
evidenced improvements in symptomology ranging from apathy to disinhibition and risk 
taking behaviors [143]. With respect to the potential for estrogen derivatives to mitigate apa-
thy in FTLD, the responsiveness of dopamine neurons to estrogens has long been established, 
with inducement of dopamine synthesis and release, as well as dopamine neuron differentia-
tion [144–147].
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6.3. Turner syndrome

The overarching role of gonadal steroidal regulation of brain anatomy and physiology with 
respect to cognitive and affective executive functioning comes from studies of Turner syn-
drome, one of the most common sex chromosome-associated genetic disorders. Turner syn-
drome results in females from the complete or partial loss of one X chromosome, with partial 
loss involving the distal tip of its short arm [148, 149]. Turner syndrome individuals retain a 
healthy sense of desire for social interaction, while experiencing disruption in social salience 
in association with a right hemisphere learning disability. Turner syndrome is typically asso-
ciated with early loss of ovarian function, leading to gonadal steroid deficiencies that result in 
pubertal delay and lack of developmental maturation. On a cognitive level, Turner Syndrome 
results in attentional deficits, disruptions to arithmetic reasoning, visuospatial processing, 
and executive functions. fMRI studies of Turner Syndrome adults provided with estrogen 
replacement to allow for physical maturation have implicated the parietal, amygdala and 
prefrontal areas in this condition, in association with tasks of working memory, as well as 
interpretation of facial emotional expressions, and mediation of arousal by affective stimuli. 
Provision of estrogen replacement to stimulate developmental maturation thus has the indi-
rect effect of mitigating many cognitive and behavioral abnormalities also characteristic of 
cognitive and behavioral declines seen in emerging FTLD in females [23, 24, 150].

7. Summary

Early researchers found no evidence that FTLD affects men and women differentially [151, 152].  
However, recent work has demonstrated hormonal differences in FTLD females not seen in 
either male FTLD or Alzheimer’s patients [153]. Moreover, a multitude of genes have been 
identified associating FTLD characteristics with ALS, a motor variant of FTLD. ALS is known 
to have a greater percentage of males among patients who present with disease onset prior 
to mid-life and to have fMRI evidenced distinct patterns of neurophysiological change with 
ALS disease progression [15], up to half of whom potentially evidenced signs of FTLD associ-
ated cognitive and/or behavioral decline [18]. With respect to concerns about the association 
between estrogen replacement therapy and increased dementia risk in older women, raised 
by the results of the Woman’s Health Initiative studies of the 1990s, estrogen replacement risk 
of senile dementia has been shown to be dependent upon the presence of the APOE e4 gene 
[11]. In the present effort, we present evidence that estrogen, in the absence of the APOE e4 
genetic risk factor for Alzheimer’s dementia, serves a neuroprotective role in females, includ-
ing an association between female estrogen levels and cognitive and behavioral stability in 
emerging FTLD. The potential for estrogen replacement to delay disease onset in females vul-
nerable to FTLD, a condition typically emerging in midlife, is in need of further exploration.
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