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Abstract

Programmed cell death (PCD) is a conserved cellular process, which is essential dur-
ing embryonic development, morphogenesis and tissue homeostasis. PCD participates 
in the elimination of unwanted or potentially harmful cells, and contributes in this way 
to the precise shaping of the developing embryo. In this review, the current knowledge 
related to the role of PCD during zebrafish development is described and an overview is 
provided about the main actors that induce, control and execute the apoptotic pathways 
during zebrafish development. Finally, we point out some important issues regarding the 
regulation of apoptosis during the early stages of zebrafish development.
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1. Introduction

What would today be called genuine apoptotic cells were first observed by German scien-

tist Carl Vogt in 1842. He was studying the morphogenesis of the tadpole notochord of the 

midwife toad Alytes obstetricans when he observed the formation and subsequent disappear-

ance of vesicular nuclei of the embryonic notochord cells. The idea that cell death could be a 

fundamental inherited process was first proposed more than century later by Lockshin and 
Williams. They proposed that rather than a sporadic event, cell death appears in defined spa-

tiotemporal windows during development [1]. In 1972, Kerr et al. used the term “apoptosis” 

meaning “to fall away from” (apo = from, ptosis = a fall), previously used to describe the 

falling of leaves in autumn to describe a relatively conserved set of morphological features 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



observed in a wide variety of cell types during physiological episodes of cell death [2]. About 

12 different types of programmed cell death (PCD) have been described to date, depend-

ing on the morphological features and the molecular pathways that lead to the execution of 

the PCD. Apoptosis, also called programmed cell death type I, is an inherited metabolically 

active process during which the cell dies without induction of inflammatory response. Cells 
undergoing apoptosis exhibit typical morphological features. Apoptotic cells appear to be 

shrunken and rounded shaped, without any more pseudopodia like cytoplasmic extensions. 

At the cytoplasmic level, mitochondria undergo fragmentation with a concomitant loss of 

their transmembrane potential (ΔΨm) [3, 4]. At the nuclear level, apoptosis is characterized 

by typical chromatin condensation and fragmentation giving rise to pyknotic nuclei, which 

can be easily observed using specific dyes such as DAPI or Hoescht. Chromatin fragmentation 
appears to be induced by intracellular endonucleases such as caspase-activated deoxyribo-

nuclease (CAD) and Endonuclease G (EndoG) which preferentially cut DNA strands between 
nucleosomes resulting in the typical “ladder pattern” observed by electrophoresis [5].

An important feature of apoptosis is the absence of inflammatory response. Indeed, the apop-

totic cell maintains its plasma membrane integrity during the whole cell death process, thus 

preventing the intracellular proteins to interact with surrounding cells. However, phosphatidyl-

serine (PS), an anionic phospholipid usually found at the inner leaflet of the bilayer, is exposed 
outwardly in apoptotic cells [6]. This morphological feature allows macrophages to detect these 

cells via specific PS receptors, which is then followed by rapid internalization and phagocytosis.

In vertebrates, there are two main molecular cascades for apoptosis induction [7]. The first 
one, called the extrinsic pathway, activates cell death by the transduction of external death sig-

nals through plasma membrane death receptors. The second one is called the intrinsic (mito-

chondrial) apoptosis pathway, which essentially leads to the mitochondrial outer membrane 

permeabilization (MOMP) and the release of apoptotic agents. Although presented at first as 
individual pathways, these cascades are actually interconnected. Here, we will describe the 

current knowledge related to the role of the apoptosis during zebrafish development.

2. The apoptotic machinery of the zebrafish embryo

2.1. Caspases

Caspases (for Cysteine ASPartate proteASE) are intracellular cysteine proteases belonging to the 

family of the interleukine-1β converting enzymes (ICE) family of proteases [8]. Members of the 

caspase family, share similar 3D conformation and are synthesized as inactive precursors called 

zymogens (or pro-caspases) containing a prodomain, composed of a p20 large subunit and a 

p10 small subunit. Caspase activation is achieved by proteolytic cleavage between the large and 

small subunits and removal of the N-terminus prodomain. This post-translational modifica-

tion leads to a new conformational state in which caspase homodimers are fully active. The p20 

subunit contains the active site of the enzyme harboring a ‘QACXG’ pentapeptide motif [9]. 

Although caspases are primarily cytosolic, they can also be found at mitochondrial and endo-

plasmic reticulum (ER) membranes. Caspases have been divided into three groups: interleukin 

activating caspases and two additional subgroups participating in the initiation and the execu-

tion of the apoptosis, respectively.
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To date, 17 caspases family members have been identified in zebrafish, including initiator 

and effector caspases (Table 1). Initiator Caspases (2, 8, 9 and 10) are characterized by the 

presence of a long N-terminal prodomain. Zebrafish genome contains one ortholog for each 
of the three Caspases 2, 9 and 10, genes with conserved synteny with the human genome 

[10]. It also encodes for three Caspase 8 homologous genes. Caspases 8 and 10 possess two 

death effector domain (DED) domains in the N-terminus whereas Caspases 2 and 9 contain 
one caspase recruitment domain (CARD). These domains interact with adaptor proteins and 

are crucial for caspase activation. Importantly, Caspase 8 was identified as an actor of the 
death receptor pathway (cf. Section 2.3) whereas Caspase 9 belongs to the mitochondrial 

apoptosis pathway. In zebrafish, Caspases 2 and 8 have been identified as important regula-

tors of vascular development. Indeed, silencing of tumor necrosis factor receptor superfam-

ily member 1A (TNFRSF1A) expression using morpholinos led to the aberrant activation 
of Caspases 2 and 8 (but not of Caspase 3), resulting in apoptosis of endothelial cells [11]. 

Furthermore, Caspase 8 was found to be a downstream effector of the Yaf2 apoptosis regula-

tor, a zinc finger-containing protein shown to interact with the DED domain of Caspase 8 
and to inhibit apoptosis. Injection of zebrafish embryos with yaf2 targeting morpholino did 

not affect gastrulation but compromised somitogenesis, which could be rescued by inhibit-
ing Caspase 8 [12].

Effector caspases are characterized by a short N-terminus end devoid of a recruitment domain. 
They are activated via proteolytic cleavage by initiator caspases. Among effector caspases, 
Caspase 3 is critical for the execution of apoptosis, being activated by both, Caspases 8 and 

9. In addition, Caspase 3 is capable of feed-back self-activation, thus accelerating apoptosis. 

Caspase 3, by targeting a wide range of vital cellular components, behaves actually as a gen-

uine apoptosis executor. Activation of Caspase 3 is often considered as a no-return point of 

apoptosis. Among the substrates cleaved by Caspase 3, are found cytoskeleton proteins, anti-

apoptotic factors, metabolic enzymes and several nucleases. For example, proteolytic cleavage 
of the inhibitory domain of CAD endonuclease (ICAD) leads to CAD activation and subsequent 

DNA fragmentation, a typical feature of the apoptotic process. The zebrafish genome encodes 
two Caspase 3 homologs, namely Caspases 3a and 3b [13, 14]. In fact, Caspase 3 activity has 

been first assessed in stressful conditions following cycloheximide or staurosporine treatments 
at mid-gastrula stage. In these conditions embryonic development is rapidly blocked, with 

Caspase 3 being activated within 8 h [15]. Furthermore, Yamashita and colleagues generated a 
transgenic zebrafish strain expressing full length pro-Caspase 3 to study the role of Caspase 3 in 
embryonic development. Indeed, these transgenics exhibited a marked increase in the number 

of apoptotic cells specifically in the retina, the notochord, the heart and the yolk sac, suggesting 
an essential role of Caspase 3 in numerous morphogenetic processes. Interestingly, silencing of 

caspase 3 using specific morpholinos did not lead to any significant developmental defects, sug-

gesting some redundancy with other effector caspases, such as Caspases 6 and 7 [16].

In addition, the zebrafish genome encodes for two caspases belonging to the interleukin acti-

vating caspases. These caspases known as Caspy (Caspy and Caspy2) contain N-terminal 
pyrin domains [17]. In the case of Caspy, the pyrin domain was found to be essential for its 

interaction with the apoptosis-associated speck-like protein containing a CARD (zAsc). In 

effect, zAsc binding to Caspy led to its activation and apoptosis execution in cellulo. In zebraf-

ish, both genes are specifically expressed in the pharyngeal arches, caspy silencing resulting in 

developmental defects in this particular region.
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Type Mammalian protein Zebrafish homologs Accession number

Death receptor 

ligands

TNF (TNFSF2) Tnfa (Tnf1) NM_212859

Tnfb (Tnf2) NM_00102444

CD95/FasL (TNFSF6) Faslg (Fas ligand) NM_001042701

Apo2L/TRAIL (TNFSF10) Tnfsf10 (Tnfsf10l2) NM_001002593

Tnfsf10l (DL1a) NM_131843

Tnfsf10l3 (DL1b) NM_001042713

Tnfsf10l4 (DL3) NM_001013283

APP Appa NM_131564

TL1A si:ch211-158d24.4

(tnfsf15)

NM_001123259

Death receptor TNFR1 (TNFRSF1A) Tnfrsf1a NM_213190

CD95/Fas (TNFRSF6) Fas XM_021467407

TNFRSF10A and B (DR4 and 
DR5)

Hdr (ZH-DR) NM_194391

TNFRSF10A and B (DR4 and 
DR5)

Tnfrsfa (OTR) NM_131840

TNFRSF21 (DR6) Tnfrsf21 (DR6) NM_001042688

Adaptor protein FADD Fadd XM_001923858

Initiator caspases Caspase 2 NM_001042695

Caspase 4 Caspy NM_131505

Caspy 2 NM_152884

Caspase b, like NM_001145592

zgc:171731 NM_001109712

Caspase 8 Caspase 8a NM_131510

Caspase 8 l1 NM_001098619

Caspase 8 l2 XM_680338

Effector caspases Caspase 3 Caspase 3a NM_131877

Caspase 3b NM_001048066

Caspase 6 Caspase 6a NM_001020497

Caspase 6b NM_001005973

Caspase 6c NM_001039980

Caspase 7 Caspase 7a NM_001020607

Inhibitor of caspases c-FLIP (c-FLAR) Cflara (Cflar) NM_001313772

Birc 2 Birc 2, IAP 1 NM_194395

Birc 4 Birc 4, XIAP NM_194396
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Type Mammalian protein Zebrafish homologs Accession number

Birc 5 Birc 5a, Survivin NM_194397

Birc 5b, Survivin 2 NM_145195

Birc 6 Birc 6 XM_009293036.3

Birc 7 Birc 7 NM_001098768

Hsp 70 Hsp70 AB062116.1

BCL-2 family

(BCL-2 like)

Bcl-xL zBlp1 NM_131807

Bcl-2 zBlp2 NM_001030253

Mcl-1 Mcl-1a NM_131599

Mcl-1b NM_194394

Nrh, Bcl-2 l10 Nrz NM_194398

(BAX-like) Bax Baxa, zBax1 NM_131562

Baxb, Zbax2 NM_001013296

Bok Boka NM_001003612

Bokb NM_201185

— Bcl-wav, Bcl-2 l16 NM_001172402

Bcl-2 l13, Bcl-rambo Bcl-2 l13 NM_001044891

(BH3-only) Bad Bada XM_005161364

Badb NM_001270595

Bbc3, Puma zPuma, Bbc3 NM_001045472

Noxa, Pmaip1 zNoxa, Pmaip1 NM_001045474

Bim zBim, Bcl2-l11 NM_001135791

Bid zBid NM_001079826

Bik zBik NM_001045038

Bmf zBmf1 NM_001045224

zBmf2 NM_001045473

Bnip1 Bnip1a XM_684156

Bnip1b XM_001333689

Bnip2 Bnip2 NM_201218

Bnip3l Bnip3la, Nix NM_001012242

Bnip3lb, Nip3a NM_205571

Bnip4l Bnip4l, Nip3b NM_212693

Bnipl NM_001128394
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2.2. Caspase inhibitors

Since the discovery of viral caspase inhibitors, it became clear that multicellular organisms were 

also able to make their own caspase inhibitors. These proteins called inhibitors of apoptosis 

proteins (IAPs) are characterized by one or more baculoviral IAP repeats (BIR), allowing them 

to prevent caspase activation and apoptosis. The IAPs can also possess a RING domain with an 
ubiquitin-ligase activity at their C-terminus end. This feature allows the IAPs not only to block 

caspase activity but also to promote their degradation by the proteasome [18]. It should be noted 

that six IAP proteins are found in zebrafish [19]. Zebrafish IAPs including survivins (BIRC5a 
and BIRC5b) appear to play a role in embryonic development. Indeed, the knockdown of birc5a 

leads to multiple defects including in the nervous system, the cardiovascular system and the 

hematopoietic system. Interestingly, this phenotype was rescued by ectopic expression of both 

birc5 paralogs, suggesting the existence of functional redundancy during embryogenesis [20, 21].

Another well characterized caspase inhibitor is the Hsp70 chaperone. Actually, under stress-

ful conditions, the cell can protect itself from the uncontrolled activation of the apoptosis by 

increasing Hsp70 levels. This protein can bind to and block the recruitment of initiator Caspase 

9 into the apoptosome complex [22]. In zebrafish, injection of hsp70 targeting morpholinos 

resulted in “small eye” phenotype. Close analysis of this phenotype identified a significant 
increase in apoptotic cells specifically in the developing lens of the zebrafish embryo [23, 24].

Cellular FLICE-like inhibitory protein (c-FLIP) is another example of a cellular caspase inhibi-
tor. This structural analog of Caspase 8 is devoided of proteolytic activity and, is able to bind 

to DD and prevents the activation of Caspase 8 downstream of the death receptors pathway 

[25]. c-FLIP is specific to the vertebrate lineage. The knockdown of c-flip in zebrafish results 
in important cardiovascular abnormalities, including cardiac edema and irregular blood flow 
consecutive to the formation of blood clots in the vessels [26].

2.3. Molecular actors linked to the death receptor pathway

The cell-extrinsic (or death receptor) pathway of apoptosis is activated by the binding of 

extracellular ligand proteins belonging to the tumor necrosis factor (TNF) superfamily to 

Type Mammalian protein Zebrafish homologs Accession number

MIRAF* Cytochrome C Cytochorome C, Cycsb NM_001002068

EndoG EndoG NM_001024214.1

AIF AIF, Aifm1 NM_200102.2

Smac/Diablo Diabloa NM_200346

Diablob NM_001243034

HtrA2/Omi LOC110437853 XM_021472675.1

Others Apaf-1 Apaf-1 NM_001045243

P53 p53, TP53 NM_131327

Accession numbers from NCBI database were presented on the left.
*MIRAF, mitochondria released apoptotic factors.

Table 1. Summary table of apoptosis-associated genes found in the zebrafish genome.
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specialized receptors, the death receptors called TNF receptors [27]. In mammals, six death 

receptors have been characterized together with five “death-inducing” ligands. The death 
receptors are characterized by at least one extracellular cystein-rich domain (CRD) allowing 

the recognition between the ligand and the receptor and by an intracellular conserved domain 

called the death domain (DD). Activation of death receptor pathway induces clustering of the 

receptors through their pre ligand-binding assembly domain (PLAD) [28]. This clustering 

triggers the recruitment of adaptor proteins such as Fas-associated protein with death domain 
(FADD) which interact with the DD of the receptor but also with initiator caspases (Caspases 

8 and 10) thus forming the death-inducing signaling complex (DISC) [29]. DISC formation 

then induces activation of initiator caspases leading to the activation of effector caspases and 
apoptosis execution [30]. DISC-dependent caspases activation can be inhibited by c-FLIP [25].

In zebrafish, on the basis of phylogenetic analysis, orthologs of the five death receptors ligands 
have been identified (Table 1). CD95/FasL, APP and TL1A each possess one zebrafish ortholog 
(faslg, appa and 158d24.4, respectively) while TNF possesses two orthologs (TNFa and TNFb) 
and Apo2L/TRAIL five of them (TNFSF10L, TNFSF10L2, TNFSF10L3 and TNFSF10L4) [31, 32].

The genes encoding death receptors have also been identified in zebrafish. Based on the pres-

ence and organization of their CRD and DD, clear orthologs of TNFR1 (TNFRSF1A), CD95/
Fas (Fas) and DR6 (TNFRSF21) were characterized. Notably, a selective interaction between 
TNFa and TNFRSF1 were confirmed by immunoprecipitations [31]. Two other DD-containing 

receptors, HDR and TNFRSFA, have been described in zebrafish [33, 34]. Extracellular 

domains of these receptors are close to the one of CD95/Fas but their DD are more similar to 
DR4 and DR5 DD. However, the observation that HDR and TNFRSFA both bind three ortho-

logs of Apo2L/TRAIL (TNFSF10L, TTNFSF10L2 and TTNFSF10L3) and that they are required 
for apoptosis induced by these ligands in zebrafish embryos strongly suggests that HDR and 
TNFRSFA are in fact orthologs of DR4 and DR5 [31]. Finally, so far, no zebrafish ortholog of 
DR3 have been characterized but the existence of an ortholog of TL1A suggests that a zebraf-
ish DR3 will be identified shortly.

In addition to death receptors and their ligands, the components of DISC are also conserved 

in zebrafish. A clear ortholog of FADD, containing a DD and a death effector domain (DED), 
has been identified as well as an ortholog of Caspase 8, casp8a [31, 35]. The latter possesses an 
N-terminal DED which allow association with FADD and a QACQG active-site motif that is 
characteristic of Caspases 8 and 10 in mammals. Caspase 8a and FADD are both required for 
apoptosis induced by Apo2L/TRAIL orthologs in zebrafish embryos. Moreover, Caspase 8a is 
functionally conserved as it restores death receptor-induced apoptosis in mouse cells lacking 

endogenous Caspase 8 [35]. Two other genes related to casp8a exist (casp8l1 and casp8l2) but 

their possible involvement in the cell-extrinsic pathway is unclear. Indeed, Caspase 8l1 has a 

QACQG active-site motif but no DED whereas Caspase 8l2 possesses an N-terminal DED but 
its active site is similar to the one of Caspase 2. Finally, a zebrafish ortholog of c-FLIP, referred to 
as Cflar, able to inhibit apoptosis induced by Apo2L/TRAIL orthologs have also been described 
[31].

In mammals, the cell-extrinsic apoptosis pathway is essential for the functioning of the 

immune system. However, this has not been clearly established in zebrafish as yet. One study 
revealed that apoptosis is important for T and B cells homeostasis as overexpression of Bcl-2 in 

these cells increased their number, but this work did not show a role for the extrinsic pathway 
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in lymphocyte homeostasis [36]. In contrast, the death receptor HDR appears to be involved 

in red blood cells homeostasis. Indeed, HDR is specifically expressed in hematopoietic lineage 
and its inhibition, using either a dominant negative mutant or antisense morpholinos, leads to 

abnormal accumulation of erythroid cells [34, 37].

During early development, hdr, tnfrsfa and fadd are expressed in the notochord suggesting 

that they might play a role in this structure [31]. Fas and FasLg are also present in developing 
notochord and their knockdown via morpholinos leads to prolonged expression of notochord 

specific genes and to an abnormally enlarged notochord at 4 days post-fertilization (dpf). As 

apoptosis plays a role in notochord regression, this suggests that extrinsic pathway may be 

involved in this process [38].

During development, TNFRSFA and its ligands TNFSF10L2 and TNFSF10L3 are expressed in 
particular in neuromasts that contain hair cells which turnover is regulated by apoptosis [31, 39]. 

Finally, the death receptor pathway seems to be involved in zebrafish eye development as FADD 
is required for slowing cell growth during this process [40].

2.4. Molecular actors linked to the intrinsic pathway

The intrinsic pathway of apoptosis also called the mitochondrial pathway can be induced 

by various signals including DNA damage, chemotherapy, viral infection or growth factors 
deprivation. The mitochondrial pathway of apoptosis is mainly controlled by the Bcl-2 fam-

ily of proteins, which is described in more detail in the next chapter. The mitochondrion is 

a membrane-enclosed organelle found in most eukaryotic cells [41]. The diameter of these 

organelles falls under the 0.5–10 μm range. Mitochondria are often referred as the “power-

house” of the cell because they generate most of the cell’s supply of adenosine triphosphate 
(ATP). In addition to their bioenergetic function, mitochondria are involved in a number of 

other processes, such as signal transduction, cell differentiation, cell cycle and cell growth 
[42]. Mitochondria are also major “decision centers” for the execution or prevention of apop-

tosis. Indeed, a number of pro-apoptotic molecules appear to be stored in the existing space 

between the inner mitochondrial membrane (IMM) and the OMM. At the mitochondrial level, 

the induction of apoptosis leads to the OMM permeabilization, which leads to the irrevers-

ible release into the cytosol of pro-apoptotic factors that promote caspase activation, DNA 
fragmentation and ultimately the death of the cell. Belong to this toxic molecular “cocktail” 

among others: Cytochrome C, AIF, EndoG, Smac/Diablo and HtrA2/Omi.

2.4.1. Mitochondria released apoptotic factors

Cytochrome C is a small heme protein (approximately 12 kDa), exhibiting a positive net 

charge, located in the intermembrane space (IMS) where it can be loosely attached to the 
IMM. Cytochrome C is synthesized inside the cytosol, and subsequently transported into the 

IMS. Bioenergetically, Cytochrome C is a component of the mitochondrial electron transport 

chain. The heme molecule of cytochrome C accepts electrons originating from complex III 

and transfers them to the cytochrome oxydase complex, thus cytochrome C is indispensable 

for the oxidative phosphorylation and the maintenance of cellular energy fluxes. Cytochrome 
C plays an additional role in the context of apoptosis, as it is now well established by a large 
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number of in vitro and in vivo studies [43–46]. The release of Cytochrome C is a rapid and 

complete process, irrespective of the intensity of the death-inducing signal or the tempera-

ture, indicating that this is a non-enzymatic phenomenon obeying an “all or nothing” law. 

When released in the cytosol, Cytochrome C interacts with the adaptor protein apoptosis 

protease activating factor (Apaf-1) in presence of ATP. Apaf-1 was first characterized by Wang 
and collaborators [47]. It is a 130 kDa multidomain protein, containing a CARD domain at its 

N-terminus end, sharing homology with the CARD domain of Caspase 9, an ATPase domain 
as well as two WD-40 repeats at the C-terminus end. The Wang laboratory discovered the exis-

tence of a multiprotein complex called the apoptosome, comprising Cytochrome C, Apaf-1 

and Caspase 9, which was found to be able to activate Caspase 3 [48]. The apoptosome was 

crystallized by Acehan and collaborators in 2002 [49]. Although the existence of the zebrafish 
apoptosome has not been directly demonstrated, its genome encodes for all functional com-

ponents of this complex. Furthermore, treatment with drugs converging toward the intrinsic 
pathway was found to lead to Caspase 3 activation [50, 51].

Apoptosis-inducing factor (AIF) is a 57 kDa flavoprotein with NADH oxidase activity which is 

located in the mitochondrial IMS [52, 53]. As Cytochrome C, AIF is encoded by a nuclear gene, 
which is imported into the mitochondria after being synthesized in the cytosol. In response to 

diverse death stimuli, AIF is released into the cytosol and transferred to the nucleus where it 
binds to chromatin [54]. The binding of AIF to DNA induces chromatin peripheral condensa-

tion and subsequent fragmentation. Wang and colleagues showed that this process is due to 

AIF-dependent activation of endogenous nucleases such as endonuclease G and CAD. AIF is 
unable to induce the fragmentation of the DNA on its own. To this end, AIF needs the help of 
endonuclease G. EndoG is a mitochondrial nuclease of 30 kDa which is required for the repli-
cation of the mitochondrial chromosome. During apoptosis, EndoG is released from the mito-

chondria into the cytosol and subsequently enters into the nucleus. In this compartment, EndoG 
cleaves the DNA into nucleosomal fragments [55]. AIF and EndoG orthologs are both expressed 
during zebrafish embryonic development but their functional implications remain to be ana-

lyzed. Second mitochondria-derived activator of caspase/direct IAP-binding protein with low 

pI (Smac/Diablo) is a mitochondrial protein, which resides in the intermembrane space [56, 

57]. The human gene is called smac whereas the mouse ortholog is called diablo. Smac/Diablo 

is synthesized as a precursor protein containing a 55 residue N-terminal mitochondrial target-
ting sequence. During the translocation of Smac/Diablo to the mitochondria, this sequence is 

cleaved which uncovers an IAP-binding motif (IBM) required for apoptotic activity. Indeed, in 

the presence of an apoptotic stress, the mitochondria release Smac/Diablo in the cytosol where 

it participates indirectly in the activation of caspases by binding IAP proteins. The binding of 

Smac/Diablo to IAP disrupts IAP-Caspase interactions. Thus, released caspases can then be acti-

vated and execute the cell death program. The Smac/Diablo-IAP complex formation appears 

to be a regulated process since IAP can ubiquitinate Smac/Diablo and drive it for proteasomal 

degradation [18]. In zebrafish, Smac/Diablo gene is mainly expressed in the late developmental 
stages with the most prominent expression in the heart, the lens and the liver. However, the 

possible implication of this IMS factor in the morphogenesis of these organs remains unknown.

High temperature requirement A2 (HtrA2/Omi) is a heat shock protein first identified in 
Escherichia coli [58]. Its ortholog in mammals, called Omi was initially described as an ER protein 
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[59, 60]. However, it seems that this protein is mainly mitochondrial in non-apoptotic cells [61]. 

When the OMM is permeabilized, Omi is released into the cytosol where it binds to IAP and irre-

versibly inhibits its activity by proteolytic cleavage [57]. Thus, it seems that Omi is a more potent 

inhibitor of IAP than Smac/Diablo which blocks IAP reversibly. Currently, there is no data about 

the possible implication of HtrA2/Omi functional implication in zebrafish have not been assessed.

2.4.2. Bcl-2 family of proteins

The Bcl-2 family of proteins is a group of intracellular eukaryotic proteins best known for their 

implication in MOMP. The founding member of this family, the bcl2 (B-cell lymphoma/leuke-

mia 2) gene was discovered in a study on a chromosome translocation frequently observed in 

human B-cell follicular lymphomas. Tsujimoto and colleagues showed that the translocation 

between chromosome 18 (q21) chromosome 14 (q32), t (14;18), results in the relocation of the 

bcl2 ORF downstream of the enhancer promoter region of the igh heavy chain immunoglobulin 

gene [62–64]. This translocation results in transcriptional upregulation of bcl2 gene expression 

[65]. The Bcl-2 family comprises proteins with antagonistic functions with respect to apoptosis 

regulation. Structurally, all Bcl-2 proteins contain in their primary structure one or more con-

served Bcl-2 homology (BH) domains. Based on this criterion, three subgroups have been iden-

tified: (1) the anti-apoptotic multidomain members containing all four BH domains (BH1–4); 
(2) the pro-apoptotic members containing three BH domain (lacking BH4) and (3) the pro-

apoptotic BH3-only members containing only the sole BH3 domain. In addition, Bcl-2 proteins 

may contain a transmembrane anchoring domain (TM domain) at the C-terminus end. Bcl-2 

multidomain pro-apoptotic members (Bax and Bak) are the effectors for MOMP. Through their 
oligomerization, they form pores at the MOM and promote the release of apoptotic factors 

including Cytochome C, AIF and EndoG [66]. Anti-apoptotic Bcl-2 members block their activ-

ity and promote cell survival, whereas BH3-only proteins play the role as intracellular judges 

as they can inhibit anti-apoptotic members and/or promote Bax/Bak oligomerization.

Bcl-2 homologs of all three subgroup of Bcl-2 family have been identified and molecularly 
characterized in zebrafish [67–69]. Due to genomic duplication, the zebrafish genome pos-

sesses several Bcl-2-related paralogs including Mcl-1a, Mcl-1b, Bax1, Bax2, Boka, Bokb and 

Bmf1 and Bmf2. Interestingly, the ortholog of the bak gene has been lost in the teleost lineage. 

Instead the zebrafish genome harbors bcl-wav (an acronym for Bcl-2 homolog found in water 

living anamniotes), a bcl-2 homolog only found in fishes and anurans [70]. With the exception 

of the BH3-only protein Bik, all Bcl-2 related genes in zebrafish are maternally inherited since 
their corresponding mRNAs were detected before the mid-blastula transition [67].

Of note during zebrafish early development physiological apoptosis is not observed suggest-
ing that at least some of the Bcl-2 family members may have additional non-apoptotic roles 

during early embryogenesis. In this respect, Zhong and colleagues recently demonstrated 
that the zebrafish ortholog of the BH3-only protein Noxa (zNoxa) not only controls apoptosis 
during late stages of gastrulation but also plays role in cell cycle in the developing blastula 

[71]. Indeed znoxa knockdown led to a significant decrease in the number of mitotic cells. This 
phenotype seems to be dependent on the Wnt signaling pathway since znoxa knockdown led 

to increase of zwnt4b expression. In addition silencing of zwnt4b rescued zNoxa phenotype 
and restored a WT count of cells in G2/M phase.
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Using the zebrafish model, we demonstrated that a Bcl-2 homolog, referred to as Nrz (Nr-13 
ortholog in zebrafish), is critical during the early stages of zebrafish development [72]. In 

zebrafish, Nrz protein possesses a dual subcellular localization at the ER and the mitochondria 
[73]. Its functional invalidation causes embryo development arrest followed by detachment 

of the entire blastomeres from the yolk sac. By performing a series of time-lapse and confocal 

microscopy experiments, we demonstrated that this phenotype is due to the premature for-

mation of the actin-myosin contractile ring, a supramolecular structure, which squeezes and 

halves the embryo at the level of the margin. Furthermore, by using single subcellular localiza-

tion (SSL) Nrz mutants, we showed that the ER-resident Nrz but not mitochondrial-resident 
Nrz was critical for its physiological function. Indeed, at the ER membrane, Nrz interacts with 
the Ca2+ channel inositol trisphosphate receptor type 1 (IP

3
R1) via its BH4 domain [73, 74]. In 

this way, Nrz slows down the release of Ca2+ into the yolk sac, which consecutively allows 

controlling the formation of the contractile actin-myosin ring via the Calmodulin-MLCK path-

way. Overall, our results highlighted for the first time that a Bcl-2 family member is able to 
orchestrate cellular migration events by controlling intracellular Ca2+ fluxes.

In addition, we identified the new Bcl-2 family member Bcl-wav [75]. The bclwav gene is expressed 

throughout zebrafish early development; it encodes a pro-apoptotic Bcl-2 family member with 
strict mitochondrial localization. However, bclwav silencing in zebrafish causes a specific apop-

tosis independent phenotype at 24 hpf. Macroscopically, this phenotype is characterized by an 

embryo anterioposterior axis reduction as well as notochord deviation. Using time-lapse micros-

copy, we demonstrated that this phenotype affects the convergence and extension movements 
which underlie the establishment of the embryonic axes. Indeed, in bclwav-silenced embryos, 

mesodermal cells migrated erratically compared to cells from control embryos, which moved 

in a coordinated fashion. In vivo analysis of the actin cytoskeleton revealed that these migration 

defaults correlated with randomization of F-actin protrusion dynamics. Interestingly, bclwav 

silencing was correlated with a decrease of mitochondrial Ca2+ levels and concomitant increase 

of cytosolic Ca2+. Together these results indicated that Bcl-wav controls the dynamics of the actin 

cytoskeleton by regulating intracellular Ca2+ homeostasis at the mitochondrial level. Indeed, at 

the mitochondria, Bcl-wav interacts with the voltage-dependent anion channel (VDAC) channel 

and enhances mitochondrial Ca2+ uptake, which in turn controls actin polymerization and cell 

migration. It is important to note that, mitochondrial calcium uniporter (mcu) knockdown pheno-

copies bclwav-silenced embryos. Indeed, MCU downregulation leads to decreased mitochon-

drial calcium uptake and impaired actin dynamics giving the first insights into the critical role 

of the mitochondrial Ca2+ oscillations in the vertebrate development [70].

Put into a broader context, the results demonstrate that members of the Bcl-2 family are able 

to control cell migration in a calcium-dependent manner via their direct interaction with intra-

cellular Ca2+ channels independently of their involvement in the regulation of cell death [76].

2.4.3. P53

P53 is a transcription factor considered as the main tumor suppressor regulating cell fate deci-

sions. Indeed, p53 is the most frequently mutated and/or inactivated gene in human cancer 

modulating cell responses to DNA damage, oncogenic signaling and hypoxia in order to pre-

serve genome integrity. The zebrafish p53 ortholog is highly conserved with 48% of sequence 
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identity compared to the human sequence [77]. P53 is highly and ubiquitously expressed 

during early zebrafish embryo development, then predominantly expressed in the brain dur-

ing the pharyngula stage before to decrease in expression after 48 hpf [77–79]. P53 tumor 

suppressor activity has been confirmed in the zebrafish model by the characterization of a 
p53 mutant harboring a missense mutation in the DNA-binding domain, M214K, leading 
to the development of multiple organ tumors at around 8.5 months [80]. The mechanism of 

action of p53 has been widely studied in mammals and similar results have been obtained in 

the zebrafish model [81]. During different cell stresses, p53 expression is stabilized leading to 
its activation and accumulation in the nucleus, and subsequently to cell cycle arrest and the 

intrinsic pathway of apoptosis [82].

Its role in DNA damage and apoptosis has been well studied in the zebrafish model [82]. It 

has been shown that increased DNA damage leads to the stimulation of p53 transcription 
and an increase of p53 protein level [79]. In addition, knockdown of p53 decreases apoptosis 

induced by different stimuli including gamma and UV irradiation, camptothecin treatment or 
altered DNA replication [83–85].

Finally, an undesirable effect of p53 activation-induced cell death has been characterized and 
associated with off-target effects triggered by morpholino antisense oligonucleotides technolo-

gies. These off-target effects have been assimilated to p53 signaling pathway-dependent apop-

tosis [86, 87]. Indeed, the most commonly off-target reported phenotype is characterized by 
an increase of neural cell death at 22 hpf [86]. Even if the precise molecular mechanism is still 

unclear, it has been attributed to the activation of p53 leading to the apoptotic cell death. Indeed, 
the role of p53 in this phenotype has been shown by the characterization of smo and wnt5 mor-

phant embryos, where simultaneous knockdown of p53 in these embryos rescued neuronal 

apoptosis [87]. These results highlight the extremely cautious, which has to be employed when 

potential actors of the apoptotic program are studied by the morpholino strategy. In addi-

tion to the use of different morpholino sequences targeted, the same gene and crucial rescue 
experiments, co-expression of p53 morpholino is now commonly used to discern between gene-

specific and off-target effects [19]. Indeed, p53 is not required for proper early embryos devel-

opment and p53 morpholino does not interfere with other gene-specific phenotypes [87, 88].

3. Developmental control of apoptosis in the early zebrafish embryo

Following fertilization and during early stages of embryonic development, embryo relies 
entirely on the maternal inherited mRNAs and proteins which were accumulated during 
oogenesis. After several synchronous divisions, which lack G1 and G2 phases, the cell cycle 
slows down and divisions become asynchronous. This step, referred to as the mid-blastula 

transition (MBT), corresponds to the beginning of the expression of zygotic genes. Ikegami 

and colleagues first noticed that zebrafish embryos treated before the MBT with microtu-

bule destabilizing agent nocodazole or DNA-damaging molecules such as camptothecine, 
hydroxyurea or aphidicoline did not result in direct apoptosis activation. Instead, the cell 

cycle was arrested with the apoptotic program being executed several hours later, during 

the mid-gastrula stage [50, 51]. This phenomenon is not restricted to zebrafish as a similar 
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apoptotic control also operates in the Xenopus embryo [89]. These observations suggested 

that key molecular components of the apoptotic program were either missing or inactivated 

during early development. In this respect, one report using a proteomics approach identified 
that Apaf-1 was missing before the MBT suggesting that a functional apoptosome may be set 

up after the MBT transition [90]. However, these later data do not explain why inhibition of 

protein synthesis using cycloheximide is not able to slow the apoptotic program in the zebraf-

ish gastrula [15]. Furthermore, our laboratory demonstrated that ectopic expression of zBax 
through recombinant mRNA injection in one cell stage embryos actually led to ΔΨm loss and 
Caspase 3 activation as early as the blastula stage [91]. Importantly, this apoptotic phenom-

enon specifically occurs in an extraembryonic structure referred to as the yolk syncytial layer 
(YSL). The YSL results from the fusion of blastomeres physically connected with the yolk cell 
by cytoplasmic bridges [92]. Fusion of margin blastomeres with the yolk leads to the release 
of cell nuclei and other cellular components including a dense network of active mitochondria 

interconnected with ER membranes. Purified YSL mitochondria can undergo MOMP and 
Cytochrome C release. This was demonstrated by performing in vitro Cytochrome C release 

assay using recombinant human truncated Bid protein. Indeed, Bid is a BH3-only protein 

which once cleaved by Caspase 8 translocates to the MOM and activates Bax oligomerization. 

Thus it is tempting to speculate that at least at the level of the YSL mitochondria harbor suf-
ficient amount of Bax in order to initiate MOMP following BH3-only stimulus.

Altogether these results showed that zebrafish early embryo possesses a functional apoptotic 
machinery. Thus the tight apoptotic control observed by Ikegami et al. may be exerted at 

the post-translational level through protein-protein interactions. In this respect, Kratz and 
colleagues demonstrated that manipulation of the ratio between pro- or anti-apoptotic Bcl-2 

proteins determines the capacity of early zebrafish embryo to undergo apoptosis. Notably, 
overexpression of BH3-only or zBax paralogs induced rapid Caspase 3-dependent cell death 

whereas co-expression of Bcl-2-related anti-apoptotic members effectively counteracted early 
embryo mortality [67].

4. Conclusion

Apoptosis represents a key cellular process that maintains tissue homeostasis and shapes the 

embryo. Impairment or a contrario overactivation of cell death often leads to severe devel-

opmental abnormalities and lethal phenotypes. Thus, the tight spatiotemporal control over 

apoptosis induction is critical for orchestrating embryonic development. The fact that zebraf-

ish genome encodes for the majority of apoptosis actors found in the human genome makes 

zebrafish a valuable model for understanding the contribution of apoptosis regulators during 
embryonic development in vertebrates. The use of antisense chemically modified nucleotides, 
most notably morpholinos, allowed to assess the implication of many apoptosis regulators 

in the developmental process. However, the possible off targeting and unspecific activation 
of the p53 pathway can be a drawback in some instances. In this respect, the development of 

new genome editing approaches such as CRISPR/Cas9 will allow in the near future to assess 

the precise role of each and every member of the cell death machinery during embryogenesis.
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