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Abstract

In the last two decades, due to disasters happening around the world have been recorded 
precisely. People have begun to understand that earthquakes fall under several catego-
ries. Most of the earthquake-induced catastrophes, including fallen bridges, building col-
lapses, soil liquefaction, and landslides, can only appear in shear banding zones induced 
by tectonic earthquakes. It is important to mention that tectonic earthquakes are different 
from other earthquakes because, in addition to the seismic vibration effect present in all 
earthquakes, tectonic earthquakes have a shear banding effect. In a tectonic earthquake, 
the shear banding energy can be more than 90% of the total earthquake energy, and the 
primary cause of earthquake disasters is the presence of the shear banding. In the past, the 
cause of earthquake disasters has been generally identified by structure dynamics research-
ers, without any proof, as the insufficiency of seismic-vibration resistant forces. Therefore, 
the modification of building codes and specifications has only focused on increasing these 
resistance forces. However, this type of specification modification cannot guarantee that an 
earthquake-resistant design structure would not fail due to shear banding. Thus, it is the 
objective of this study to present appropriate earthquake disaster prevention methods for 
a tectonic earthquake.

Keywords: tectonic earthquake, disaster, shear banding, seismic-vibration, major effect

1. Introduction

The China Earthquake Disaster Prevention Center [1] pointed out that earthquakes can be 

divided into five different types, namely, tectonic earthquakes, volcanic earthquakes, collapse 
earthquakes, induced earthquakes, and artificial earthquakes. Of these, tectonic earthquakes 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



are the most prevalent, accounting for about 90% of the total number of earthquakes around 

the world. Their destructive power is also the strongest.

Due to the mutual interaction of tectonic plates, lateral compression or lateral extension phe-

nomena may exist. Once the shear strain enters the plastic range, Drucker [2], Hill [3], Mandel 

[4], Rice [5], Rudnicki and Rice [6], and Valanis [7] addressed that the localization of deforma-

tions will appear due to the loss of ellipticity, and further derived the shear bands shown in 

Figure 1.

During shear banding, excess pore water pressure is highly concentrated in a shear band, as 

shown in Figure 2. In addition, repeated stick-slip phenomena will be induced, as shown in 

Figure 3. When the sticking action continues to raise the friction resistance up to the maximum 

value of the static friction resistance, the sticking phenomenon will then change to slipping. At 

this point in time, the friction resistance changes from static friction to kinetic friction. While 

the slipping action continues until the sticking reappears, the friction resistance will drop to the 

minimum value of the kinetic friction resistance. Thereafter, the static friction resistance will 

increase again. When the stick-slip phenomenon repeatedly appears in shear bandings, and the 

Figure 2. Contours of excess pore water pressures related to Figure 1b [8].

Figure 1. An actual shear band and numerical simulation results [8]: (a) an actual shear band that occurred in Zhushan, 

Taiwan, during the 921 Jiji earthquake; (b) shear bands produced by the finite element method.
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state changes from sticking to slipping, the shear banding will accelerate; conversely, when the 

state changes from slipping to sticking, the shear banding will decelerate. Therefore, in shear 

banding, the ground acceleration time-history curve, as shown in Figure 4, can be recorded by 

a seismometer installed on the ground surface.

It can be concluded from Figures 1 to 4 that: (1) shear bands are induced by applying lateral 

compression or lateral extension on a tectonic plate; (2) highly concentrated excess pore water 

pressure can be induced in a shear band; and (3) ground vibration is induced by shear band-

ing. Thus, the primary cause of earthquake disasters is shear banding.

2. Bridge disaster caused by shear banding

Figure 5a shows the Jianmin bridge which collapsed during the Jiji earthquake. Figure 5b 

shows the rebuilt bridge in 2001 using the new seismic zone division updated in 1999. During 

Typhoon Fanapi in 2010, the new bridge collapsed again (details in Figure 5c). Figure 5d shows 

that the bridge was rebuilt again in 2012 using the new seismic zone divisions updated in 2005. 

Figure 5e shows the exposed pile cap of the bridge only two months after reconstruction.

Figure 3. Stick-slip phenomenon in shear banding (modified from [9]).

Figure 4. Seismometer record of the ground acceleration time-history curve.
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Figure 5a clearly shows that the riverbed around the Jianmin bridge was seriously fractured 

during the Jiji earthquake. Figure 6 indicates the shear textures, including the principal defor-

mation shear, D; the thrust shear, P; the Riedel shear, R; the conjugated Riedel Shear, R’; and 

the compression texture, S, in the total width of a shear band. Thus, even though the vibration 

resistance forces were increased, both the old and new Jianmin bridge collapsed due to the 

effects of shear banding.

Figure 5. History of the Jianmin bridge in Taichung, Taiwan: (a) bridge collapsed during the Jiji earthquake, 1999 [10]; 

(b) bridge rebuilt in 2001 [11]; (c) bridge collapsed again in 2010; (d) bridge rebuilt again in 2012; (e) the exposed pile 

cap of the bridge [12].
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3. Building disasters caused by shear banding

3.1. Case study 1

After the 921 Jiji earthquake, Kuangfu Junior High School in Taichung was maintained as an 

earthquake memorial museum for shear banding, ground uplift, and school building collapse, 

thereby, preserving the historical facts of the earthquake and providing students and the pub-

lic educational earthquake material. In 2001, the school was renamed as the 921 Earthquake 

Education Park. Although the establishment of the museum is well intentioned, the explanations 

within the museum do not discuss the primary effect, and thus it is difficult to achieve the desired 
educational function. Taking the Kuangfu Junior High School building as an example, the build-

ing collapse is depicted in Figure 7. The actual mechanism for such a localized collapse, shown in 

Figure 8, was the occurrence of shear banding during a tectonic earthquake. However, under the 

guidance of the park instructor, currently, the students and members of the public who have vis-

ited consider that the primary cause of the building collapse was the excessive seismic vibration.  

Figure 6. A shear band near the Jianmin bridge (background satellite image was cited from [11]).

Figure 7. The collapse of the Kuangfu junior high school building during the Jiji earthquake: (a) front view; (b) rear view.
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It is to be stressed that this kind of discourse makes it difficult for people to understand why there 
are buildings left intact by the same earthquake within the school district.

With this in mind, correctly stipulating and amending the seismic design specifications of build-

ings and correctly executing earthquake education are both required to guarantee that buildings 

will remain stable during tectonic earthquakes, with magnitudes less than the design magnitude.

3.2. Case study 2

The Weiguan building was completed in 1994. It remained stable during the Jiasian tectonic 

earthquake with a magnitude of M
L
 = 6.4 in 2010 (refer to Figure 9a), but collapsed during the 

magnitude M
L
 = 6.4 Meinong tectonic earthquake in 2016 (refer to Figure 9b).

Figure 8. Schematic diagrams of the building construction process and collapse mechanism: (a) tilted slopes caused by 

shear banding; (b) ground leveling; (c) building constructed on shear bands; and (d) building collapsed by shear banding.

Figure 9. The Weiguan building: (a) before the collapse [11]; (b) after the collapse [13].
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It was found from the monitor record images that before the collapse of the Weiguan build-

ing, a 2 m diameter pipe burst in the tap-water supply trunk pipe, embedded under the road 

adjacent to the building. After the pipe burst, a hole with a 4 m depth suddenly appeared. 

Because of the sudden appearance of the hole, the conditions of the side walls surrounding 

the basement, previously constrained, were partially unconstrained.

Since the soil under the road was sandy silt, such a soil layer still retained considerably high 

shear force resistance in a dry state, which caused Block G to recline on the road’s ground 

surface after the collapse of the Weiguan building (details in Figure 10). In addition, sandy silt 

shear resistance strength drops significantly in a saturated state, which caused Block A to fall 
2.5 m deep into the ground after the collapse. When the soil under the road adjacent to Block 

A lost lateral support, the bottoms of all the columns in the first floor deviated from the fixed 
end conditions established in the structural analysis model.

As for the cause of the damage to the large-scale water supply pipe, Liu [14] and Hsu et al. [15]  

pointed out that the peak ground acceleration (PGA) was not the main cause for its damage 

during the earthquake; the main cause was shear banding. From this, we can conclude that 

the bursting of the tap-water supply trunk pipe on the road adjacent to the Weiguan building 

was actually mainly caused by shear banding.

3.3. Procedure for building failure identification

Since tectonic earthquakes are the most prevalent and their destructive power is also the stron-

gest, all earthquakes that cause major disasters are tectonic earthquakes. A procedure for the 

identification of building failures that occurred in a tectonic earthquake is proposed as follows:

Step 1: Ensure that the earthquake is a tectonic earthquake.

Step 2: Use satellite images, GPS velocity vectors, or in situ topography features to find the 
locations of shear bands.

Figure 10. Schematic diagram of the Weiguan building after the collapse [16].
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Step 3: If shear banding is located under the foundation of the building, the reason for causing 

the failure is directly related to the shear banding.

Step 4: If shear banding is located near the building, the cause can be found only after con-

ducting a structural dynamic analysis for a structural model of the whole building, subjected 

to the effects of both shear banding and seismic vibration.

Step 5: If the building failure did not occur in a previous tectonic earthquake, the cause of the 

failure can only be found after identifying the differences in conditions between the first and 
second tectonic earthquake.

3.4. Application of the procedure for building failure identification

The above-listed procedure is applied to the Weiguan building as follows:

Step 1: The collapse of the Weiguan building occurred during the Meinong earthquake, which 

has been proven by the Taiwanese Central Weather Bureau to be a tectonic earthquake.

Step 2: The GPS velocity vectors shown in Figure 11 indicate that shear banding did occur 

near the Weiguan building. The pipe burst is another piece of evidence for shear banding. 

Figure 11. The GPS velocity vectors produced by the Meinong earthquake [17].
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Note, however, that such a shear banding phenomenon did not occur during the 2010 Jiasian 

earthquake.

Steps 3–5: Since shear banding near the Weiguan building did not occur in the 2010 Jiasian 

earthquake, but did occur in the 2016 Meinong earthquake, a structural dynamic analysis for 

a structural model of the whole building subjected to the seismic vibration effects with or 
without the shear banding effect is conducted.

A structural model of the whole building, including all elements of both the upper and the 

lower structures, is used, as shown in Figure 12. It is important to mention that the cross sec-

tions and material properties used in the analyses are similar to those adopted by the original 

designer. The side walls surrounding the basement are constrained by springs, with their 

elastic modulus determined by values of N from standard penetration tests. When the pipe 

burst is to be considered (or not considered), the springs for the side walls near the pipe burst 

area are removed (or not removed), such that the effect of shear banding can be determined 
numerically. The loading conditions included both static loads and seismic vibration forces; 

the static loads include a live load 200 kgf/m2 and a dead load 150 kgf/m2, in addition to the 

body forces of the structural elements. The seismic vibration forces are generated by the accel-

eration history taken from Station No. CHY063, as shown in Figure 13.

Since the major concern for the Weiguan building disaster is that the whole building initially 

tilted toward the X-direction near the bottom joints of the first floor, the numerical results 
focus on the four nodes shown in Figure 14.

Figure 12. The structural model used in the dynamic analyses.
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The maximum displacements for the four joints shown in Figure 14 from the structure dynamic 

analyses with and without the shear banding effect are shown in Table 1. Case 1 includes the 

shear banding effect and Case 2 does not.

Since no failure occurred during the 2010 Jiasian earthquake, the results of Case 2 are consid-

ered to be the displacement safety values. Whether the results of Case 1 can be used as safety 

values will depend on the fraction, F
12

 calculated by dividing the displacements of Case 1 by 

Figure 14. The four major nodes of concern in the structure model.

Figure 13. The acceleration history adopted in the analyses [18]: (a) X-direction; (b) Y-direction; (c) Z-direction.
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those of Case 2. The resulting F
12

 fractions are shown in Table 2. From Table 2, the shear band-

ing effect is very significant for nodes N1 and N2 and less significant for nodes N3 and N4.

It should be mentioned that only for values of F
12

 of less than about 1.4, for the total displacement 

vector, will the building structure remain under stable conditions. However, the largest value 

of F
12

 for the total displacement vectors is 1.87. Since the worst conditions occurred at nodes N2 

and N1, the tilting of the Weiguan building should begin from the side that was more under the 

influence of shear banding. Afterward, the tilting quickly propagated to the other side.

4. Soil liquefaction disaster caused by shear banding

Soil liquefaction will result in building damage during an earthquake. Thus, design engi-

neers must carry out evaluations of the potential of soil liquefaction. For different locations 
with identical horizontal seismic coefficient, k

h
, geological condition, and groundwater table, 

the results of conventional liquefaction potential evaluations will be the same. Taking Tainan 

City, Taiwan as an example, with k
h
 = 0.33 and the groundwater table close to the ground sur-

face, the conventional soil liquefaction potential diagram published by the Central Geological 

Survey, MOEA is as shown in Figure 15. Figure 15 reveals that all areas covered by the allu-

vial soil layer in Tainan City have high, moderate, or low soil liquefaction potential.

The actual location of soil liquefaction in Tainan City took place during the Meinong Earthquake 

on February 6, 2016, as shown in Figure 16. Figure 16 also shows that: (1) soil liquefaction is 

Node number Maximum displacement during a tectonic earthquake (cm)

X-direction component Y-direction component Z-direction component Total vector

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

N1 13.85 7.09 9.08 3.96 12.21 7.98 20.57 11.38

N2 9.15 4.44 9.01 4.11 8.92 5.50 15.63 8.34

N3 4.99 4.45 7.37 4.12 5.44 5.61 10.43 8.26

N4 8.12 7.09 7.00 3.96 7.73 8.02 13.21 11.41

Table 1. Numerical results for the structural model with and without the shear banding effect.

Node number X-direction component Y-direction Component Z-direction component Total vector

N1 1.95 2.29 1.53 1.81

N2 2.06 2.19 1.62 1.87

N3 1.12 1.79 0.97 1.26

N4 1.15 1.77 0.96 1.16

Table 2. Calculated values of fraction, F
12

.
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merely a kind of localized phenomenon; (2) the actual area of soil liquefaction is far less than 

the area of conventional soil liquefaction potential proposed by the Central Geological Survey, 

MOEA; and (3) the actual locations of soil liquefaction were mostly outside the areas with high 
liquefaction potential. Thus, we know that the conventional cause of soil liquefaction is differ-

ent than the cause of localizations of soil liquefaction.

Localizations of soil liquefaction can be divided into tubular soil liquefaction and striped soil 

liquefaction. Tubular soil liquefaction results from a tectonic plate equipped with tubular 

water channels, similar to piping [20]. Hsu and Chiu [21] believed that this tubular water 

channel is formed by the intersection of shear textures of different strikes. Meanwhile, the 
striped soil liquefaction results from a tectonic plate equipped with striped water channels, 

which is the shear band under plane strain conditions (as shown in Figure 1b).

As for areas adjacent to soil liquefaction areas, even though they have identical conditions, the 

localizations of soil liquefaction do not exist because highly concentrated excess pore water 

pressure and groundwater channels were not induced during the earthquake.

Causes of localizations of soil liquefaction include: (1) high shear resistance of foundation soil 

led to strain softening behavior; (2) shear banding led to tectonic local uplift of the ground 

surface; (3) loosening of the shear band soil due to brittle fractures; (4) the expanded pore 
space of the shear band soil becomes the channel for upward groundwater flow with frag-

ment entrainment; and (5) the upward flowing water with fragment entrainment will further 
loosen the shear band soil.

Figure 15. Conventional distribution of soil liquefaction potentials in Tainan, Taiwan [8, 19].
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A comparison of the various causes of conventional and localizations of soil liquefaction is 

shown in Table 3. It appears that the cause of conventional soil liquefaction is completely dif-

ferent from the cause of localizations of soil liquefaction. Obviously, the cause of localizations 
of soil liquefaction corresponds more closely to those of actual soil liquefaction.

Figure 16. Comparison between the locations of soil liquefactions induced by the Meinong earthquake and the distri-

bution of conventional liquefaction potential [8, 19].

Conventional soil liquefaction Localizations of soil liquefaction

Soil conditions Loose or perfectly plastic Dense or strain softening

Type of earthquakes causing soil 

liquefactions

Not specified Tectonic earthquake

Inducing factor for the excess pore 

water pressure

All-around vibrations Localizations of deformations

Change of soil conditions All soil changed from a loose 

state to a dense state

Only the shear band soil is changed from a 
dense state to a loose state

Highly concentrated excess pore 

water pressure

Does not exist Exists in shear bands

Discharged water path for 

groundwater to flow upward
Does not exist The expanded pore space in the shear band 

soil

Table 3. Comparison among various causes of conventional soil liquefaction and localizations of soil liquefaction [8].
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The building collapse pattern induced by localizations of soil liquefaction during a tectonic 
earthquake is shown in Figure 17. This kind of damage pattern is totally different from the 
pattern caused by foundation punching shear failure or local shear failure.

Different damage patterns will require different disaster prevention methods, so the build-

ing damage induced by foundation punching shear failure or local shear failure must not be 

misidentified as soil liquefaction damage.

Figure 17. Building disaster caused by localizations of soil liquefaction during the Jiji earthquake, 1999: (a) schematic 

diagram of the building collapse pattern; (b) actual building collapse pattern [22].

Type of liquefaction Prevention methods

Conventional soil 

liquefaction [23]

Method 1. Building’s design follows the revised standard of building earthquake resistance 

design, created on Dec. 29, 1999

Method 2. Foundation of the building located in non-liquefaction stratum (such as a clay layer, 

a gravel layer, or a bedrock, etc.)

Method 3. Buildings with more than three floors of basement

Method 4. The building foundation is of the pile type

Method 5. Buildings with mat foundation or buildings not higher than three floors

Localizations of soil 

liquefaction

Shear banding 

liquefaction area

Step 1: Ensure that shear banding does not reach the ultimate bearing 

capacity area. Verification tests can be conducted on a faulting table to 
confirm that the shear banding is compensated in each layer of synthetic 
block. After that all shear banding should be compensated by design.

Step 2: Calculate the bearing capability of the foundation under the 

designed tectonic plate vibration conditions during an earthquake. 

Make sure the safety factor of the foundation bearing capability under 

earthquake conditions is FS
E
≧1.2.

Non-shear banding 

liquefaction area

Calculate the bearing capability of the foundation under the designed 

tectonic plate vibration conditions during an earthquake, and make sure 

the safety factor of the bearing capability under earthquake conditions 

is FS
E
≧1.2.

Table 4. Comparison of prevention methods for conventional soil liquefaction and localizations of soil liquefaction.
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The prevention methods for conventional soil liquefaction and those for localizations of soil 

liquefaction are summarized in Table 4. It is apparent that the prevention methods provided 

by the Construction and Planning Agency of the Ministry of the Interior [23] for conventional 

soil liquefactions are totally different from those for localizations of soil liquefaction. Since 
the prevention methods for conventional soil liquefaction only take into account the vibration 

effect, buildings will collapse under the action of shear banding. To diminish the threat of soil 
liquefaction to buildings, it is necessary to separate shear banding soil liquefaction areas and 

non-shear banding liquefaction areas, and then provide necessary prevention methods for 

these two different areas individually.

5. Conclusions

Presently, tectonic earthquakes are known as the most hazardous type of earthquake. The 

primary effects of tectonic earthquakes are shear bands, followed by seismic vibrations. 
However, recent earthquake resistance design, verification tests, and liquefaction potential 
evaluations all focus on seismic vibration. Thus, buildings cannot be completely protected 

from damage during a tectonic earthquake. Furthermore, the disasters’ cause is not appro-

priately identified. With this in mind, the phenomena occurring during a tectonic earthquake 
are listed: shear bands, highly concentrated excess pore water pressure, and seismic vibration. 

Then, the primary role of shear banding in earthquake disasters is discussed. With reference 

to case studies of earthquake disasters, the author draws the following three conclusions:

1. Collapsed bridges only occur locally in an earthquake and are caused by the dislocations of 

shear bands induced by localized deformation. When seismic vibration is the only focus of 

the bridge earthquake-resistance design standard, a rebuilt bridge would still be damaged 

under the effects of shear band dislocations, even though a dramatic improvement of the 
seismic vibration resistance has been implemented.

2. If a construction site is located on a leveled shear band slope, when shear band dislocations 

occur during a tectonic earthquake, buildings may collapse due to the presence of the shear 

bands. Water pipes beneath the roads could burst due to shear band dislocations, and buildings 

next to the burst water pipes could also collapse, since the basement walls lose lateral support.

3. Recent soil liquefaction potential diagrams are drawn based on all-around seismic vi-

brations. For countries on the earthquake band, if areas have a similar alluvial sand soil 

content, similar groundwater table depths, and similar earthquake magnitudes, those ar-

eas will have the same liquefaction potentials. Since soil liquefaction only occurs during 

tectonic earthquakes, and can be only induced by highly concentrated excess pore water 

pressures in shear bands, current conventional soil liquefaction potential diagrams do cor-

respond with the localizations of soil liquefaction. Furthermore, soil liquefaction preven-

tion methods based on all-around seismic vibrations can enhance a building’s foundation 

bearing capacity, but cannot eliminate the shear banding effects. In this regard, only by 
applying prevention methods based on localizations of soil liquefaction can the damage 

induced by soil liquefaction be effectively alleviated.
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