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Abstract

High entropy alloy (HEA) is a multi-principal alloy having at least five principal elements in
the concentration range of 5–35 at.%. HEAs having excellent mechanical properties and
further these properties can be altered by the addition of different alloying element. For
example with the addition of Al in base alloy make them a ductile and the addition of Co, Ti,
etc. transforms base alloy to brittle material. This characteristic of HEAs makes them a
promising technologically important material. A soft magnetic material should have good
mechanical property, structural stability at high temperature and low coercivity with high
magnetization. Recently, reported FeCoNiMn0.25Al0.25 and CoCrFeNiM (M = Cu, Mn) HEAs
got attention as a better soft magnetic material because these HEAs having good soft
magnetic characteristics along with good mechanical and excellent structural stability at
high-temperature. Recent reports described that the mechanical as well as magnetic charac-
teristics of these alloys can be tuned by the variation and/or the addition of alloying element
in the base alloys. The magnetic characteristics of these alloys basically depend on the
alloying element and compositional variation of the magnetic element present in particular
HEAs. We have summarized the key results of magnetic characteristics of some recently
investigated promising high entropy alloys.

Keywords: high entropy alloy, magnetic properties, soft magnetic materials, alloying

1. Introduction

For centuries alloy design has been a hot topic for metallurgists and material scientists.

The design concepts of alloys is based on only one or two principle elements, while minor

fraction of other elements are added for property enhancement. This classical definition

has been broken by the Yeh et al. in 2004 by the suggestion of a new alloy design concept,

referred as multicomponent alloys named as high entropy alloys (HEAs) [1]. They defined

the HEAs in two ways one is based on composition and other on entropy. Under the

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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compositional definition, HEAs are defined as those alloys having at least 5 principle ele-

ments [4]. The each with a concentration range of 5–35 at.% [1–4]. From the entropic point of

view, the HEAs are defined as those alloys having configurational entropy larger than 1.5R

(where R is the gas constant) [1–4]. Moreover, it should be noted that rather than the

principle element in HEAs, some minor element (having concentration less than 5 at.%) have

also been added to optimize the properties presence of multiple principal elements in HEAs

is not merely a compositional difference compared to the conventional alloys, but it has a

fundamental effect on the system characteristics that leads four core effects: high entropy,

severe lattice distortion, sluggish diffusion and cocktail effects [2–4]. Due to these character-

istics it has been reported that HEAs are a good candidate of structural as well as functional

engineering materials that have high strength and hardness, excellent corrosion and wear

resistance, as well as great fatigue resistance [2–6].

Previous studies discovered that HEAs generally exhibit simple solid solution structures such

as body centered cubic (BCC), face centered cubic (FCC), hexagonal close packed (HCP) or

mixture of the above rather than the intermetallic compounds due to the high entropy effect.

However, minor fractions of intermetallic phases are observed in some HEAs [7]. The forma-

tion of solid solution phases in HEAs are governed by several thermodynamic parameters.

These are entropy of mixing (∆Smix), enthalpy of mixing (∆Hmix) and atomic size difference (δ)

[8]. These parameters are defined as follows:

∆Smix ¼ �R
X
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Here, Ci and ri denotes the atomic fraction and atomic radius of the ith element respectively.

Guo et al. reported that HEAs forms simple solid solution phases when �22 ≤ ∆Hmix ≤ 7 kJ/ mol,

11 ≤ ∆Smix ≤ 19.5 J/K mol and δ ≤ 8.5%. Moreover, it has been found that the most critical factor

that decides whether the formed simple solid solution phases are FCC or BCC in HEAs is the

valence electron concentration (VEC) [9]. It has been observed that for VEC < 6.87 and VEC ≥ 8.0

BCC and FCC phases are formed respectively, while both phases (i.e., mixture of FCC and BCC)

will coexist when 6.87 ≤ VEC ≤ 8.0 [9].
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The typical synthesis routs used for traditional alloys can also be applied for the synthesis of

HEAs. On the dependence of how the constituent elements are mixed, the processing routs

are classified into four categories [10–13]: (1) from the liquid state (arc melting), (2) from

solid state (mechanical alloying), (3) from the gas state (sputtering), and (4) from electrode-

position process. It has been found that for the same composition of the alloys, different

synthesis rout produced distinct microstructure that leads different properties. For example,

CoCrFeNiTi HEA synthesized through arc melting has mixture of FCC, BCC and minor

fraction of an intermetallic phase [14]. However, when it was synthesized through mechan-

ical alloying (MA), it has only single FCC phase [15]. In addition to the synthesis rout,

selection and composition of constituent elements also plays a critical role in deciding the

microstructure and phase composition that influenced the properties of the HEAs [16–18].

Addition of Ti into CoCrFeNi leads the formation of intermetallic phases such as Laves and

σ-phases and enhanced the hardness and compressive strength [16]. Moreover, Shun et al.

reported that as the content of Mo increased from 0 to 0.85 into CoCrFeNiMox, the crystal

structure changed from single FCC to mixture of FCC with (Mo, Cr)-rich σ and μ phases,

correspondingly the hardness and compressive strength of the system increased up to 68 and

40% as compared to initial sample [17]. Liu et al. also reported that addition of Nb into

CoCrFeNi changes the microstructure from the initial single FCC to mixture of FCC+ Nb-rich

Laves phase. It has been found that the fracture and yield strength of the system increased

from 413 to 1004 MPa and 147 to 637 MPa with the addition of Nb [18]. Apart from the

mechanical property of the HEAs, functional properties of HEAs such as magnetic property,

electrical resistance, etc. attracted great attention during last 5 years [19]. Recent reports

showed that the soft magnetic characteristics along with optimal mechanical behaviour of

HEAs can be obtained through carefully selection of constituent elements [20–22]. The

magnetic characteristics of the alloys are sensitive to the base alloy, addition of alloying

elements, resulting phases and their volume fractions [23, 24]. For example, Zuo et al.

reported that the addition of Si in CoFeNi reduced the value of Ms more significantly from

151.3 to 80.5 emu/g than Al (from 151.3 emu/g to 101.8 emu/g) [23]. Moreover, Kao et al.

reported that the magnetic nature of AlxCoCrFeNi HEA turned from paramagnetic to ferro-

magnetic, when the crystal structure changed from FCC (at x = 0) to BCC (at x = 2.0) [24].

Thus as a consequence the selection of alloying elements, their composition and the type of

resultant crystal structure are the dominant factor for controlling the mechanical as well as

magnetic properties of HEAs. In this chapter we have discussed and described the magnetic

behaviour of recently developed multicomponent HEAs.

2. Effects of constituent elements on magnetic characteristics of different

HEAs

Soft magnetic materials are widely used in the electrical power generation and transmission,

electric motors, electromagnets, etc. However, conventional alloys have certain limitations,

such as brittleness, weak mechanical behaviour and low electrical resistivity of FedNi alloys.

However, some FeCoNi based HEAs have better soft magnetic characteristics along with
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excellent mechanical properties [20–22, 25]. These combined properties of FeCoNi based HEAs

are rarely seen in conventional alloys. Moreover, it has been found that the optimal balance of

magnetic and mechanical properties of HEAs is dominantly affected by the alloying elements

and their composition [20–22, 25]. Among all the studied alloys the ternary equiatomic FeCoNi

alloy having single FCC structure exhibits higher saturation magnetization (Ms) (151 emu/g)

with low coercivity (Hc) (1.52 Oe) [23]. Any addition of other paramagnetic or diamagnetic

elements will affect its resultant magnetic characteristics. Since, it is well known that the

magnetic characteristics of the alloys are very sensitive to the composition, alloying elements

and the resultant phase structure [26]. For example, addition of Cr in FeCoNi base alloy

changed its magnetic nature from ferromagnetic to paramagnetic. However, further addition

of Al or Pd in CoCrFeNi alloy, the paramagnetic nature of base alloy changed to ferromagnetic.

It has been reported that FeCoCrNiAl alloy has the value of the Ms = 13 emu/g and value of Ms

for FeCoCrNiPd2 alloy was found to be 34 emu/g [26]. In addition to the increase in saturation

magnetization, Lucas et al. also found that with the addition of Al and Pd in CoCrFeNi alloy,

the Curie temperature increased up to 157 and 230�C respectively. Enhancement of Curie

temperature with Pd addition makes this alloy useful for magnetic refrigeration near room

temperature [26].

Zhang et al. investigated the magnetic and mechanical properties of most widely studied

equiatomicAlCoCrCuFeNiHEA in as cast and annealed state [27]. They reported that both alloys

exhibit soft magnetic characteristics.Moreover, after annealing, the value ofMs andHc decreased

from 38.18 to 16.08 emu/g and 45 to 15 Oe respectively. The decrement of Ms is associated to the

structure coarsening and phase transformation [27]. For detail study, Singh et al. investigate the

microstructure of AlCoCrCuFeNi HEA in three different states (splat-quenched, as cast and aged

at 600�C) [28]. They reported that the ferromagnetic characteristic of HEAs is correlated to the

decomposition of the CrdFedCo rich regions into FedCo-rich and Cr-rich regions. It has been

found that splat-quenched alloy exhibit better soft magnetic characteristic than the as cast and

aged HEAs. This was associated to the initial stage decomposition of CrdFedCo region,

resulting in clustering of Fe-rich and Cr-rich domain. However, the aged alloy exhibit high value

of Ms, Hc and remanence ratio as compared to the as cast HEA due to a higher degree of

decomposition in CrdFedCo rich regions. Additionally, they also pointed out that the aged

alloy exhibits no ferromagnetic phase transition up to temperature of 400 K at 1 T [28].

Wang et al. investigated the effect of milling duration and composition on microstructure

and magnetic properties of FeSiBAlNi and FeSiBAlNiNb HEAs [29]. Initially amorphous

HEA has been synthesized by MA method. They found that the addition of Nb enhanced

the milling duration for the formation of full FeSiBAlNiNb amorphous phase and also

decreased the glass forming ability. Moreover, the resultant alloy has higher thermal stability

and heat resistance properties. They reported that as milled FeSiBAlNiNb powders have low

coercivity and, hence behave as a soft-magnetic material. As the milling duration increases

Ms decreased and become lowest when the amorphous HEAs are formed. It is found that as

milled products with solid solution phase having better soft magnetic characteristics as

compared to fully amorphous phases. Moreover, the addition of Nb does not improve the

soft-magnetic characteristics FeSiBAlNi HEA. Also both the amorphous HEAs have similar

soft magnetic characteristics after prolong milling.
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Xu et al. also investigate the effect of addition of C and Ce on magnetic characteristics of

FeSiBAlNi (based-W5) HEAs [30]. Amorphous HEAs has been synthesized through MA. They

found that addition of Ce reduced the MA time for the formation of amorphous phase and

hence enhanced the glass forming ability (GFA) of the parent HEA. With the addition of C in

FeSiBAlNi the formation of amorphous phase and a small amount of Si nanocrystals has been

found by the authors. By the addition of both(C and Ce) the thermal stability of the alloy is

enhanced. They found that with addition of C the value of Ms increased appreciably. However,

with the addition of Ce the value of Ms decreased. This happened because, the addition of Ce

promoted the formation of single BCC phase at initial milling time, while for the case of parent

alloy BCC and FCC phases was formed. It is well known that BCC phase having lower atomic

packing density as compared to FCC solid solution and hence having less ferromagnetic

element and a lower total magnetic moment per unit volume as compared to FCC solid

solution. Hence yield lower value of Ms with the addition of Ce in base alloy [20]. Moreover

the value of Ms decreased as the milling duration increased, because remarkable change may

occur in the magnetic moment through the change of the neighbor configuration of the

ferromagnetic elements. The decrease in Ms may also be related to the enhanced density of

grain boundaries and to the volume fraction of amorphous phase. For the synthesized sam-

ples, Hc has been found in the range of 50–378 Oe, indicating that the studied samples having

semi-hard magnetic property. Different composition and microstructure together with lattice

distortion due to the presence of C and Ce inevitably affect the magnetic domain wall and

hence affect the Hc. Moreover, the particle size of FeSiBAlNiCe is less as compared to

FeSiBAlNiC also responsible for the higher Hc of FeSiBAlNiC as compared to FeSiBAlNiCe

HEA. While constant Hc has been reported after 140 h MA suggested due to the stable particle

size and proportion of amorphous and solid solution phase with prolong milling duration.

Xu et al. studied the effects of addition Co, Cu and Ag on the microstructure, thermal

property and magnetic properties of mechanically alloyed FeSiBAlNi HEAs [31]. They

reported that as milled HEAs showed semi hard magnetic characteristics. Moreover, the

value of Ms decreased with the addition of elements in base alloy. They concluded that the

coexistence of FCC and BCC phases is beneficial to give rise to the semi hard magnetic

characteristics than the fully amorphous or mixture of amorphous plus FCC phase. Further,

Zhu et al. investigated the effect of annealing on microstructure thermal stability and mag-

netic characteristics of MA FeSiBAlNiM (M = Co, Cu, Ag) amorphous high entropy alloys

(HEAs) [32]. High phase stability during heating process has been observed with the addi-

tion of Co and Ag in FeSiBAlNi. They found that at high annealing temperature HEAs

possessed better semi-hard magnetic characteristics. They also reported that the formation

of FeSi-rich and FeB-rich phases after annealing is beneficial for the enhanced magnetic

characteristics of annealed HEAs. Moreover, they reported that for FeSiBAlNiCo HEAs

annealing near re-crystallization temperatures was beneficiatial for the semi-hard magnetic

characteristics.

Wei et al. investigated the effect of cooling rate on phase formation and magnetic character-

istics of Fe26.7Co28.5Ni28.5Si4.6B8.7P3 HEA [33]. They found amorphous phase was formed with

melt spinning at high cooling rate, whereas FCC solid solution phase has been formed at low

cooling rate. The better soft magnetic characteristics have been reported for amorphous phase
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(saturation magnetization (Bs) of 1.07 T and coercivity (Hc) of 4 A/m) as compared to solid

solution phase (Bs of 1.0 T and Hc of 168 A/m). They concluded that Bs is more sensitive

towards the composition and atomic level structure and less dependent on the grain size [20].

As compared to amorphous alloy without symmetry, the low Bs has been found for the solid

solution phase because high symmetry of FCC phase neutralized the atomic magnetic

moment as compared to the amorphous phase. Moreover, Hc is sensitive to grain size, larger

grain having high Hc [20, 34, 35].

Zuo et al. prepared equiatomic CoFeMnNi based HEA and investigated the effect of addition

of non-magnetic element (Al, Cr, Ga and Sn) on crystal structure and magnetic characteristics

[36]. They pointed out that for CoFeMnNi base alloy the value of Ms and Hc are found to be

18.14 emu/g and 119.9 A/m respectively. The addition of Al, Ga and Sn in CoFeMnNi sepa-

rately increased the saturation magnetization from 18.14 to 147.86, 80.43 and 80.29 emu/g

respectively. Furthermore, addition of Cr in base alloy dramatically reduced the value of Ms

(1.39 emu/g) and enhanced the Hc up to 10,804 A/m. They reported that the apparent enhance-

ment in Ms of FeCoMnNiX (Al, Ga and Sn) HEAs is associated to the dramatic change in

crystal structure, which accordingly influenced the electronic and magnetic structures. They

assumed that the antiferromagnetism of Mn atoms in CoFeMnNi base alloy is suppressed to

favor the ferromagnetism due to the doping of Al, Ga and Sn. Further, Na et al. substituted the

Mn element to Cr and studied the ferromagnetic transition and magnetic behaviour in

equiatomic FeCoNiCrX (X = Al, Ga, Mn and Sn) HEAs [37]. They reported that FeCoNiCrMn

and FeCoNiCrSn exhibited paramagnetic behaviour. While, addition of Al and Ga in

FeCoNiCr base alloy changed the magnetic state from paramagnetic to ferromagnetic. Further,

it has been found that with the addition of Al and Ga in base alloy, the value of Ms and Tc

increased from 0.5 (Tc = 104 K) to 25 emu/g (Tc = 277 K) and 38 emu/g (Tc = 703 K) respectively.

They pointed out that the enhancement in Ms is associated to the partial phase transition

(formation of BCC phase).

3. Effects of compositional variation on magnetic characteristics of

different HEAs

Apart from the elemental effect on magnetic characteristics of HEAs, the composition of alloying

elements also play an important role on magnetic properties of the HEAs [19]. Wang et al.

investigated the effect of addition of Ti on microstructure, mechanical property and magnetic

characteristics of CoCrCuFeNiTix (x = 0, 0.5, 0.8 and 1.0) HEA [38]. Both CoCrCuFeNi and

CoCrCuFeNiTi0.5 HEAs form a single FCC structure, while as the content of Ti increased in the

base alloy, an intermetallic Laves phase of Fe2Ti type has been evolved along with FCC. They

pointed out that both CoCrCuFeNi and CoCrCuFeNiTi0.5 HEAs have low value of Ms and

exhibits paramagnetic nature. However, CoCrCuFeNiTi0.8 and CoCrCuFeNiTi have superpara-

magnetic nature with the value of Ms of 1.36 and 1.51 emu/g respectively. The superpara-

magnetic nature of these HEAs is due to the nanoprecipitation.

Zhang et al. substituted Cu from Al and studied the effect of addition of different Al concen-

tration and annealing on mechanical, electrical and magnetic properties of CoCrFeNiTiAlx
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(x = 0, 0.5, 1.0, 1.5 and 2.0) HEA [39]. They reported that as the content of Al increased, the

value of electrical resistivity of as cast HEAs varied from 107 to 60 μΩ cm. All the as cast and as

annealed HEAs exhibit high electrical resistivity as compared to the relative pure elements. It

has been found that all annealed HEAs exhibit high electrical resistivity than the as cast HEAs.

The enhancement in electrical resistivity after annealing has been associated to the evolution of

phase composition and lattice distortion. Zhang et al. also pointed out that the saturation

magnetization of the as cast CoCrFeNiTiAlx HEAs firstly increased as the content of Al

increased from x = 0 to 1.0 and then decreased for x = 2.0. The as cast CoCrFeNiTiAl1.0 HEA

exhibits the best magnetic characteristics having high Ms (14.75 emu/g) with low coercivity

(Hc = 22 Oe) than the other as cast HEAs. However, after vacuum annealing at 1000�C for 2 h

the value of Ms decreased as compared to their as cast ones. While, the value of Ms for

CoCrFeNiTiAl2.0 HEA increased from 0.76 (as cast) to 15.74 emu/g and exhibited better mag-

netic characteristics as compared to the as cast and as annealed CoCrFeNiTiAlx HEAs. The

value of Hc of annealed HEAs lies in the range of 20–285 Oe. They concluded that the as cast

and as annealed CoCrFeNiTiAlx HEAs exhibited semi hard magnetic characteristics and these

materials can be used in magnetic relayers, magnetic hysteresis motors and signal memory

devices.

Kao et al. investigated the electrical and magnetic properties of Cu and Ti free CoCrFeNiAlx
(x = 0–2.0) HEAs at various temperature range from 4.2 to 300 K [24]. It has been found that as

the content of Al increased the structure of the alloy changed from a single FCC to a mixture of

FCC and BCC and then it transformed into a single BCC phase. They studied the magnetic

properties of these alloys in homogenized condition (denoted as H-x) at three different tem-

peratures. All the homogenized alloys (H-x) exhibit ferromagnetic nature at low temperature

(5 and 50 K). In addition to this the value of Ms for H-1.25 and H-2.0 HEAs exceeds at low

temperature than that of the H-0 and H-0.25 alloys. This indicated that at low temperature, the

BCC phase has a higher value of Ms than the FCC phase. At room temperature (300 K), the

homogenized HEAs H-0, H-0.25 and H-0.75 exhibit paramagnetic behaviour, while H-0.5, H-

1.25 and H-2.0 remain ferromagnetic. Kao et al. calculated the phase contribution of both FCC

and BCC phases for H-0.50 and H-0.75 HEAs at 5 K. It has been found that the value of Ms for

FCC phase is higher than the BCC phase. The reason for MsBCC < MsFCC is associated to the

existence of Al or AlNi-rich phase. The value of Ms decreased in the range of 0 ≤ x ≤ 0.25 and

1.25 ≤ x ≤ 2.00. The value of Ms for H-0.25 alloy is smaller than that of the H-0 HEA, indicating

that the addition of Al reduces the magnetic moment. Besides this, H-2.0 alloy has smaller

value of Ms than the H-1.25 HEA. Kao et el. pointed out that this is due to the high content of

ordered BCC phase. It has been observed that H-2.00 alloy is mainly composed of AlNi-rich

ordered BCC phase, whereas the H-1.25 alloy has less content of AlNi-rich ordered BCC phase.

They concluded that the addition of Al reduced the ferromagnetic nature of single FCC and

single BCC H-x alloys. In single BCC phase the reduction in the value of Ms is associated to the

high content of AlNi-rich ordered BCC phase.

In a similar manner, Vrtink et al. also investigated the magnetic behaviour of CoCrFeNiZrx
(x = 0.40, 0.45 and 0.50) eutectic HEAs at different temperatures (5, 100 and 300 K) [40]. They

reported that two magnetic structures, a disordered ferromagnetic (F) and a superparamagnetic-

like (S) coexist in the CoCrFeNiZrx HEAs. The CoCrFeNiZrx = 0.40,0.45,0.50 HEAs exhibit the
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paramagnetism at 300 K, whereas at low temperature (5 and 100 K) it shows ferromagnetism. In

addition to this, they also reported that at low temperature CoCrFeNiZr0.45 and CoCrFeNiZr0.50
HEA exhibit negligible coercive field as compared to the CoCrFeNiZr0.40. Vrtinke et al. explained

that this difference in the coercive field is associated to the vanishing of disordered F phase.

Ma et al. investigated the effect of Nb addition on the microstructure, mechanical property and

magnetic behaviour of AlCoCrFeNiNbx (x = 0, 0.1, 0.25, 0.5 and 0.75) HEAs [41]. They reported

that as the content of Nb increased a single BCC phase has been transformed into a mixture of

(CoCr)Nb type Laves phase and BCC phase. Additionally, the value of Ms decreased and Hc

increased from 64 to 10.31 emu/g and 52 to 94 Oe respectively as content of Nb increased. They

reported that the alternation in the value of Ms and Hc may be associated to the magnetic

hardening of the CoCrNb alloy and the Laves phasemay pin themagnetic domain of BCC phase.

Recently, Zhang et al. reported a new class of CoFeNi based CoFeNi(AlSi)x (0 ≤ x ≤ 0.8) HEAs

and investigated their structural, mechanical, magnetic and electrical behaviour [20]. They

reported that the value of saturation magnetization is primarily determined by the composi-

tion and atomic level structures. With increasing the content of Al and Si, the value of Ms

monotonically decreased from 1.315 to 0.46 T. Different from saturation magnetization it has

been found that the coercivity is highly dependent on the microstructure, grain size and lattice

distortion. They reported that addition of Al and Si induced the lattice distortion and changes

the microstructure of the HEAs that inevitably affects the magnetic domain wall movement

and, thus, the coercivity. It has been found that the optimal balance of magnetic, electrical, and

mechanical properties is achieved at x = 0.20, which has the best combination of Ms (1.15 T), Hc

(1400 A/m), resistivity (r = 69.5 μΩ cm), yield strength (342 MPA) and strain without fracture

(εp > 50%) for application as soft magnetic materials.

In a similar manner to Zhang et al. [20], the effects of phase constitution on magnetic and

mechanical properties of FeCoNi(CuAl)x (x = 0–1.2, in molar ratios) HEAs has been investi-

gated by the Zhang et al. [25]. They reported that depending on the content of alloying

elements (Cu and Al), the CoFeNi(CuAl)x HEAs exhibit single FCC for 0 ≤ x ≤ 0.6, BCC

combined with minor FCC for 0.9 ≤ x ≤ 1.2 and duplex FCC + BCC phase in the range of

0.7 ≤ x < 0.9. The value of Ms decreased as the content of Cu and Al increased from x = 0 to

x = 1.2, whereas some deviation in the range of 0.8 ≤ x ≤ 0.9 has been observed. They reposted

that the value of Ms is highly sensitive to the composition and phase constitution than their

microstructure. Additionally, they annealed these as cast HEAs in three different temperatures

(573–673 K) and they found that heat treatment did not impose any impacts on the magnetic

characteristics for single FCC phase (0 ≤ x ≤ 0.6) and nearly single BCC phase (0.9 ≤ x ≤ 1.2)

HEAs. However, the value of Ms increased for FCC + BCC duplex phase (0.7 ≤ x < 0.9 HEAs.

For CoFeNi(CuAl)0.8 HEA, the value of Ms increased from 78.9 (as cast) to 93.1 emu/g

(annealed at 673 K). They pointed that the enhancement in the value of Ms after annealing is

associated to the phase transition from FCC to BCC for CoFeNi(CuAl)0.8 HEA. In summery

they concluded that through the proper alloy composition and annealing one can achieve a

superior soft magnetic metallic alloys with high saturation magnetization and high ductility.

Lie et al. also studied the composition dependence of crystal structure, physical and mechanical

properties of FeCoNi(MnAl)x (x = 0, 0.25, 0.5, 0.75, 1) high entropy alloys [42]. They reported that
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as the value of x increased from x = 0 to x = 1, the crystal structure changed from single FCC

(0 ≤ x ≤ 0.25) to FCC + BCC (0.5 ≤ x ≤ 0.75) and then to a single BCC phase (x = 1). They also

reported that with the variation of x values, the value of Ms firstly decreased from FeCoNi

(155.7 emu/g) to FeCoNiMn0.5Al0.5 (51.9 emu/g) and increased from FeCoNiMn0.75Al0.75
129.6 emu/g) to FeCoNiMnAl (132.2 emu/g). In addition to the saturation magnetization the

value of Hc firstly increased from FeCoNi (189 A/m) to FeCoNiMn0.5Al0.5 (730 A/m) and

decreased from FeCoNiMn0.75Al00.75 (445 A/m) to FeCoNiMnAl (266 A/m) with the variation of

x. They reported that the alternation in the value of Ms is associated to the change in lattice

parameter and crystal structure. While the alternation in coercivity is associated to the change in

microstructure, together with the lattice distortion induced by Al atoms. Moreover, Lie et al. also

studied the magnetic characteristics of cold rolled and annealed FeCoNi, FeCoNiMn0.25Al0.25
and FeCoNiMn0.5Al0.5 alloys. They concluded that annealed FeCoNi and FeCoNiMn0.25Al0.25
alloys exhibit the optimal balance of magnetic and mechanical behaviour.

We have also investigated the effect of elemental addition (Mn and Co) on the phase formation

and magnetic characteristics of TiFeNiCr base HEAs [15]. HEAs with different elements have

been synthesized through the mechanical alloying. XRD analysis of synthesized HEAs con-

firmed that double FCC and a minor sigma phase have been evolved for TiFeNiCr and

TiFeNiCrMn HEAs. However, single FCC phase has been appeared for TiFeNiCrCo HEA.

The magnetic characteristic of synthesized and annealed HEA investigated through the VSM

at room temperature. The value of Ms for TiFeNiCr HEA was found to be 13.82 emu/g (as

shown in Figure 1(a)). However, the value of Ms for TiFeNiCrMn and TiFeNiCrCo HEAs was

found to be 2.28 and 24.44 emu/g respectively (as shown in Figure 1(b) and (c)). It is concluded

Figure 1. Magnetic hysteresis curve of (a) TiFeNiCr, (b) TiFeNiCrMn, (c) TiFeNiCrCo as synthesized and (d) TiFeNiCr,

(e) TiFeNiCrMn, (f) TiFeNiCrCo annealed at 700�C HEAs. The inset represents the magnified view of selected region.
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from the M-H curve, with the addition of ferromagnetic element (like Co) the value of Ms
increased, while with addition of paramagnetic element (like Mn) the value of Ms decreased
appreciably. Thus among TiFeNiCr, TiFeNiCrCo and TiFeNiCrMn HEAs the value of Ms was
highest for the case of TiFeNiCrCo HEA because this alloy contained three ferromagnetic
elements, i.e., 60 at.% (Fe, Ni and Co) of the alloy is ferromagnetic in nature. Thus, the value
of Ms depends on the presence of magnetic elements and as the content of ferromagnetic
elements increased the value of Ms increased appreciably. The value of Hc for TiFeNiCr,
TiFeNiCrMn and TiFeNiCrCo HEAs was found to be 166.93, 225.83 and 149.54 Oe. We have
also been investigated the effect of annealing on magnetic characteristics of HEAs. From figure
it can say that the value of Ms, MR/Ms and Hc decreased dramatically after annealing of the
synthesized HEAs at 700�C (shown in Figure 1). The reduction in Ms after annealing may be
attributed to the increase in lattice parameter after annealing. It has been found that the lattice
parameter after annealing increased from 3.592 to 3.595 Å, 3.575 to 3.583 Å and 3.561 to
3.582 Å for TiFeNiCr, TiFeNiCrMn and TiFeNiCrCo, respectively. Hence the separation
between the ferromagnetic elements of HEAs increased after annealing due to which the
magnetic exchange coupling is altered and the value of Ms decreased for annealed TiFeNiCr,
TiFeNiCrMn and TiFeNiCrCo HEAs.

4. Conclusions

High entropy alloys having multi-principal elements and has growing interest of Scientist
Engineers and Metallurgists. The applications of HEAs are based on their four core effects.
Among these effects the cocktail effect is the most effective for the functional properties of
these alloys. HEAs may have wide range of applications along with better functional and
structural properties. They have excellent mechanical properties. A soft magnetic material
should have good mechanical property, structural stability at high temperature and low
coercivity with high magnetization. Recently, reported FeCoNiMn0.25Al0.25 and CoCrFeNiM
(M = Cu, Mn) HEAs got attention as a better soft magnetic material because these HEAs
having good soft magnetic characteristics along with good mechanical and excellent structural
stability at high-temperature. We have summarized the key results of magnetic characteristics
of some recently investigated promising high entropy alloys. Further the mechanical as well as
the magnetic characteristics of HEAs can be tuned through the selection of proper alloying
elements and synthesis route. The magnetic characteristics of these alloys basically depend on
the alloying element and compositional variation of the magnetic element present in particular
HEAs. Thus the magnetic as well as mechanical properties of these alloys can be tuned based
on our requirement/applications. As can be seen from the summarized results by the variation
of single element the magnetic nature of the material can be changed to ferromagnetic to
paramagnetic or super paramagnetic. Similarly, hard, semi-hard and soft magnetic character-
istics of the materials have been changed by the change in the processing route of the HEAs.
Thus we can conclude that alloying elements, composition and processing route has significant
effect on phase evolution and microstructure, which inevitably affects the magnetic character-
istics of HEAs. Among them, some HEAs (e.g FeCoNiAl0.2Si0.2, FeCoNiMn0.25Al0.25) have been
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proven to have better soft magnetic characteristics with high Curie temperature (Tc) and

excellent mechanical behavior as compared to conventional alloys. Therefore, more researches

are needed in future for design and development of new HEAs and to explore their properties

for application-oriented viewpoints.
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