We are IntechOpen, the world's leading publisher of Open Access books
 Built by scientists, for scientists

6,900

Open access books available

154
Countries delivered to

186,000

International authors and editors

Our authors are among the

most cited scientists

Downloads

Contributors from top 500 universities

WEB OF SCIENCE ${ }^{\text {N }}$
Selection of our books indexed in the Book Citation Index in Web of Science ${ }^{\text {TM }}$ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Differential Equations Arising from the 3-Variable Hermite Polynomials and Computation of Their Zeros

Cheon Seoung Ryoo

Additional information is available at the end of the chapter
http://dx.doi.org/10.5772/intechopen. 74355

Abstract

In this paper, we study differential equations arising from the generating functions of the 3-variable Hermite polynomials. We give explicit identities for the 3-variable Hermite polynomials. Finally, we investigate the zeros of the 3 -variable Hermite polynomials by using computer.

Keywords: differential equations, heat equation, Hermite polynomials, the 3-variable Hermite polynomials, generating functions, complex zeros

1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers, Genocchi numbers, and tangent numbers see [1-15]. The special polynomials of two variables provided new means of analysis for the solution of a wide class of differential equations often encountered in physical problems. Most of the special function of mathematical physics and their generalization have been suggested by physical problems.
In [1], the Hermite polynomials are given by the exponential generating function

$$
\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}=e^{2 x t-t^{2}} .
$$

We can also have the generating function by using Cauchy's integral formula to write the Hermite polynomials as

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}=\frac{n!}{2 \pi i} \oint_{C} \frac{e^{2 t x-t^{2}}}{t^{n+1}} d t
$$

with the contour encircling the origin. It follows that the Hermite polynomials also satisfy the recurrence relation

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)
$$

Further, the two variables Hermite Kampé de Fériet polynomials $H_{n}(x, y)$ defined by the generating function (see [3])

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{n}(x, y) \frac{t^{n}}{n!}=e^{x t+y t^{2}} \tag{1}
\end{equation*}
$$

are the solution of heat equation

$$
\frac{\partial}{\partial y} H_{n}(x, y)=\frac{\partial^{2}}{\partial x^{2}} H_{n}(x, y), \quad H_{n}(x, 0)=x^{n}
$$

We note that

$$
H_{n}(2 x,-1)=H_{n}(x)
$$

The 3-variable Hermite polynomials $H_{n}(x, y, z)$ are introduced [4].

$$
H_{n}(x, y, z)=n!\sum_{k=0}^{\left[\frac{n}{3}\right]} \frac{z^{k} H_{n-3 k}(x, y)}{k!(n-3 k)!}
$$

The differential equation and he generating function for $H_{n}(x, y, z)$ are given by

$$
\left(3 z \frac{\partial^{3}}{\partial x^{3}}+2 y \frac{\partial^{2}}{\partial x^{2}}+x \frac{\partial}{\partial x}-n\right) H_{n}(x, y, z)=0
$$

and

$$
\begin{equation*}
e^{x t+y t^{2}+z t^{3}}=\sum_{n=0}^{\infty} H_{n}(x, y, z) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

respectively.
By (2), we get

$$
\begin{array}{r}
\begin{aligned}
& \sum_{n=0}^{\infty} H_{n}\left(x_{1}\right.\left.+x_{2}, y, z\right) \frac{t^{n}}{n!}=e^{\left(x_{1}+x_{2}\right) t+y t^{2}+z t^{3}} \\
&=\sum_{n=0}^{\infty} x_{2}^{n} \frac{t^{n}}{n!} \sum_{n=0}^{\infty} H_{n}\left(x_{1}, y, z\right) \frac{t^{n}}{n!} \\
&=\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} H_{l}\left(x_{1}, y, z\right) x_{2}^{n-l}\right) \frac{t^{n}}{n!}
\end{aligned} .
\end{array}
$$

By comparing the coefficients on both sides of (3), we have the following theorem.
Theorem 1. For any positive integer n, we have

$$
H_{n}\left(x_{1}+x_{2}, y, z\right)=\sum_{l=0}^{n}\binom{n}{l} H_{l}\left(x_{1}, y, z\right) x_{2}^{n-l} .
$$

Applying Eq. (2), we obtain

$$
\begin{gathered}
\sum_{n=0}^{\infty} H_{n}\left(x, y, z_{1}+z_{2}\right) \frac{t^{n}}{n!}=e^{x t+y t^{2}+\left(z_{1}+z_{2}\right) t^{3}} \\
=\sum_{k=0}^{\infty} z_{2}^{n} \frac{{ }^{3 k}}{k!} \sum_{l=0}^{\infty} H_{l}\left(x, y, z_{1}\right) \frac{t^{l}}{l!} \\
=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\left[\frac{n}{3}\right]} \frac{H_{n-3 k}\left(x, y, z_{1}\right) z_{2}^{k} n!}{k!(n-3 k)!} \cdot\right) \frac{t^{n}}{n!} .
\end{gathered}
$$

On equating the coefficients of the like power of t in the above, we obtain the following theorem.

Theorem 2. For any positive integer n, we have

$$
H_{n}\left(x, y, z_{1}+z_{2}\right)=n!\sum_{k=0}^{\left[\frac{[n}{3}\right]} \frac{H_{n-3 k}\left(x, y, z_{1}\right) z_{2}^{k}}{k!(n-3 k)!}
$$

Also, the 3-variable Hermite polynomials $H_{n}(x, y, z)$ satisfy the following relations

$$
\frac{\partial}{\partial y} H_{n}(x, y, z)=\frac{\partial^{2}}{\partial x^{2}} H_{n}(x, y, z),
$$

and

$$
\frac{\partial}{\partial z} H_{n}(x, y, z)=\frac{\partial^{3}}{\partial x^{3}} H_{n}(x, y, z) .
$$

The following elementary properties of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ are readily derived form (2). We, therefore, choose to omit the details involved.

Theorem 3. For any positive integer n, we have
$1 \quad H_{n}(2 x,-1,0)=H_{n}(x)$.
$2 H_{n}\left(x, y_{1}+y_{2}, z\right)=n!\sum_{k=0}^{\left[\frac{[n]}{2}\right]} \frac{H_{n-2 k}\left(x, y_{1}, z\right) y_{2}^{k}}{k!(n-2 k)!}$.
$3 \quad H_{n}(x, y, z)=\sum_{l=0}^{n}\binom{n}{l} H_{l}(x) H_{n-l}(-x, y+1, z)$.

Theorem 4. For any positive integer n, we have
$1 \quad H_{n}\left(x_{1}+x_{2}, y_{1}+y_{2}, z\right)=\sum_{l=0}^{n}\binom{n}{l} H_{l}\left(x_{1}, y_{1}, z\right) H_{n-l}\left(x_{2}, y_{2}\right)$.
$2 H_{n}\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)=\sum_{l=0}^{n}\binom{n}{l} H_{l}\left(x_{1}, y_{1}, z\right) H_{n-l}\left(x_{2}, y_{2}, z_{2}\right)$.
The 3-variable Hermite polynomials can be determined explicitly. A few of them are

$$
\begin{aligned}
H_{0}(x, y, z)= & 1 \\
H_{1}(x, y, z)= & x \\
H_{2}(x, y, z)= & x^{2}+2 y, \\
H_{3}(x, y, z)= & x^{3}+6 x y+6 z, \\
H_{4}(x, y, z)= & x^{4}+12 x^{2} y+12 y^{2}+24 x z, \\
H_{5}(x, y, z)= & x^{5}+20 x^{3} y+60 x y^{2}+60 x^{2} z+120 y z, \\
H_{6}(x, y, z)= & x^{6}+30 x^{4} y+180 x^{2} y^{2}+120 y^{3}+120 x^{3} z+720 x y z+360 z^{2}, \\
H_{7}(x, y, z)= & x^{7}+42 x^{5} y+420 x^{3} y^{2}+840 x y^{3}+210 x^{4} z+2520 x^{2} y z+2520 y^{2} z+2520 x z^{2}, \\
H_{8}(x, y, z)= & x^{8}+56 x^{6} y+840 x^{4} y^{2}+3360 x^{2} y^{3}+1680 y^{4}+336 x^{5} z+6720 x^{3} y z \\
& +20160 x y^{2} z+10080 x^{2} z^{2}+20160 y z^{2} . \\
H_{9}(x, y, z)= & x^{9}+72 x^{7} y+1512 x^{5} y^{2}+10080 x^{3} y^{3}+15120 x y^{4}+504 x^{6} z+15120 x^{4} y z \\
& +90720 x^{2} y^{2} z+60480 y^{3} z+30240 x^{3} z^{2}+181440 x y z^{2}+60480 z^{3}, \\
H_{10}(x, y, z)= & x^{10}+90 x^{8} y+2520 x^{6} y^{2}+25200 x^{4} y^{3}+75600 x^{2} y^{4}+30240 y^{5}+720 x^{7} z \\
& +30240 x^{5} y z+302400 x^{3} y^{2} z+604800 x y^{3} z+75600 x^{4} z^{2} \\
& +907200 x^{2} y z^{2}+907200 y^{2} z^{2}+604800 x z^{3} .
\end{aligned}
$$

Recently, many mathematicians have studied the differential equations arising from the generating functions of special polynomials (see [7, 8, 12, 16-19]). In this paper, we study differential equations arising from the generating functions of the 3 -variable Hermite polynomials. We give explicit identities for the 3 -variable Hermite polynomials. In addition, we investigate the zeros of the 3 -variable Hermite polynomials using numerical methods. Using computer, a realistic study for the zeros of the 3 -variable Hermite polynomials is very interesting. Finally, we observe an interesting phenomenon of 'scattering' of the zeros of the 3-variable Hermite polynomials.

2. Differential equations associated with the 3-variable Hermite polynomials

In this section, we study differential equations arising from the generating functions of the 3variable Hermite polynomials.

Let

$$
\begin{equation*}
F=F(t, x, y, z)=e^{x t+y t^{2}+z t^{\beta}}=\sum_{n=0}^{\infty} H_{n}(x, y, z) \frac{t^{n}}{n!}, \quad x, y, z, t \in \mathbb{C} . \tag{4}
\end{equation*}
$$

Then, by (4), we have

$$
\begin{gather*}
F^{(1)}=\frac{\partial}{\partial t} F(t, x, y, z)=\frac{\partial}{\partial t}\left(e^{x t+y t^{2}+z \beta^{3}}\right)=e^{x t+y t^{2}+z t^{3}}\left(x+2 y t+3 z t^{2}\right) \tag{5}\\
=\left(x+2 y t+3 z t^{2}\right) F(t, x, y, z), \\
F^{(2)}=\frac{\partial}{\partial t} F^{(1)}(t, x, y, z)=(2 y+6 z t) F(t, x, y, z)+\left(x+2 y t+3 z t^{2}\right) F^{(1)}(t, x, y, z) \tag{6}\\
=\left(\left(x^{2}+2 y\right)+(6 z+4 x y) t+\left(4 y^{2}+6 x z\right) t^{2}+(12 y z) t^{3}+\left(9 z^{2}\right) t^{4}\right) F(t, x, y, z) .
\end{gather*}
$$

Continuing this process, we can guess that

$$
\begin{equation*}
F^{(N)}=\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y, z)=\sum_{i=0}^{2 N} a_{i}(N, x, y, z) t^{i} F(t, x, y, z),(N=0,1,2, \ldots) . \tag{7}
\end{equation*}
$$

Differentiating (7) with respect to t, we have

$$
\begin{array}{r}
F^{(N+1)}=\frac{\partial F^{(N)}}{\partial t}=\sum_{i=0}^{2 N} a_{i}(N, x, y, z) i t^{i-1} F(t, x, y, z)+\sum_{i=0}^{2 N} a_{i}(N, x, y, z) t^{i} F^{(1)}(t, x, y, z) \\
=\sum_{i=0}^{2 N} a_{i}(N, x, y, z) i t^{i-1} F(t, x, y, z)+\sum_{i=0}^{2 N} a_{i}(N, x, y, z) t^{i}\left(x+2 y t+3 z t^{2}\right) F(t, x, y, z) \\
=\sum_{i=0}^{2 N} i a_{i}(N, x, y, z) t^{i-1} F(t, x, y, z)+\sum_{i=0}^{2 N} x a_{i}(N, x, y, z) t^{i} F(t, x, y, z) \\
\quad+\sum_{i=0}^{2 N} 2 y a_{i}(N, x, y, z) t^{i+1} F(t, x, y, z)+\sum_{i=0}^{2 N} 3 z a_{i}(N, x, y, z) t^{i+2} F(t, x, y, z) \\
=\sum_{i=0}^{2 N-1}(i+1) a_{i+1}(N, x, y, z) t^{i} F(t, x, y, z)+\sum_{i=0}^{2 N} x a_{i}(N, x, y, z) t^{i} F(t, x, y, z) \\
\quad+\sum_{i=1}^{2 N+1} 2 y a_{i-1}(N, x, y, z) t^{i} F(t, x, y, z)+\sum_{i=2}^{2 N+2} 3 z a_{i-2}(N, x, y, z) t^{i} F(t, x, y, z)
\end{array}
$$

Hence we have

$$
\begin{align*}
F^{(N+1)}=\sum_{i=0}^{2 N-1}(i & +1) a_{i+1}(N, x, y, z) t^{i} F(t, x, y, z) \\
& +\sum_{i=0}^{2 N} x a_{i}(N, x, y, z) t^{i} F(t, x, y, z) \tag{8}\\
& +\sum_{i=1}^{2 N+1} 2 y a_{i-1}(N, x, y, z) t^{i} F(t, x, y, z) \\
& +\sum_{i=2}^{2 N+2} 3 z a_{i-2}(N, x, y, z) t^{i} F(t, x, y, z) .
\end{align*}
$$

Now replacing N by $N+1$ in (7), we find

$$
\begin{equation*}
F^{(N+1)}=\sum_{i=0}^{2 N+2} a_{i}(N+1, x, y, z) t^{i} F(t, x, y, z) \tag{9}
\end{equation*}
$$

Comparing the coefficients on both sides of (8) and (9), we obtain

$$
\begin{align*}
& a_{0}(N+1, x, y, z)=a_{1}(N, x, y, z)+x a_{0}(N, x, y, z), \\
& a_{1}(N+1, x, y, z)=2 a_{2}(N, x, y, z)+x a_{1}(N, x, y, z)+2 y a_{0}(N, x, y, z), \\
& a_{2 N}(N+1, x, y, z)=x a_{2 N}(N, x, y, z)+2 y a_{2 N-1}(N, x, y, z)+3 z a_{2 N-2}(N, x, y, z), \tag{10}\\
& a_{2 N+1}(N+1, x, y, z)=2 y a_{2 N}(N, x, y, z)+3 z a_{2 N-1}(N, x, y, z), \\
& a_{2 N+2}(N+1, x, y, z)=3 z a_{2 N}(N, x, y, z),
\end{align*}
$$

and

$$
\begin{align*}
& a_{i}(N+1, x, y, z)=(i+1) a_{i+1}(N, x, y, z)+x a_{i}(N, x, y, z) \\
& \quad+2 y a_{i-1}(N, x, y, z)+3 z a_{i-2}(N, x, y, z),(2 \leq i \leq 2 N-1) . \tag{11}
\end{align*}
$$

In addition, by (7), we have

$$
\begin{equation*}
F(t, x, y, z)=F^{(0)}(t, x, y, z)=a_{0}(0, x, y, z) F(t, x, y, z) \tag{12}
\end{equation*}
$$

which gives

$$
\begin{equation*}
a_{0}(0, x, y, z)=1 \tag{13}
\end{equation*}
$$

It is not difficult to show that

$$
\begin{align*}
& x F(t, x, y)+2 y t F(t, x, y, z)+3 z t^{2} F(t, x, y, z) \\
& =F^{(1)}(t, x, y, z) \\
& =\sum_{i=0}^{2} a_{i}(1, x, y, z) F(t, x, y, z) \tag{14}\\
& =\left(a_{0}(1, x, y, z)+a_{1}(1, x, y, z) t+a_{2}(1, x, y, z) t^{2}\right) F(t, x, y, z)
\end{align*}
$$

Thus, by (14), we also find

$$
\begin{equation*}
a_{0}(1, x, y, z)=x, \quad a_{1}(1, x, y, z)=2 y, \quad a_{2}(1, x, y, z)=3 z . \tag{15}
\end{equation*}
$$

From (10), we note that

$$
\begin{align*}
& a_{0}(N+1, x, y, z)=a_{1}(N, x, y, z)+x a_{0}(N, x, y, z) \\
& a_{0}(N, x, y, z)=a_{1}(N-1, x, y, z)+x a_{0}(N-1, x, y, z), \ldots \\
& a_{0}(N+1, x, y, z)=\sum_{i=0}^{N} x^{i} a_{1}(N-i, x, y, z)+x^{N+1} \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& a_{2 N+2}(N+1, x, y, z)=3 z a_{2 N}(N, x, y, z) \\
& a_{2 N}(N, x, y, z)=3 z a_{2 N-2}(N-1, x, y, z), \ldots \tag{17}\\
& a_{2 N+2}(N+1, x, y, z)=(3 z)^{N+1}
\end{align*}
$$

Note that, here the matrix $a_{i}(j, x, y)_{0 \leq i \leq 2 N+2,0 \leq j \leq N+1}$ is given by

$$
\left(\begin{array}{cccccc}
1 & x & 2 y+x^{2} & & \cdots & \cdots \\
0 & 2 y & 4 x y+6 z & & \cdots & . \\
0 & 3 z & 6 x z+4 y^{2} & \cdot & \cdots & . \\
0 & 0 & 12 y z & \cdot & \cdots & \cdot \\
0 & 0 & (3 z)^{2} & \cdot & \cdots & . \\
0 & 0 & 0 & \cdot & \cdots & . \\
0 & 0 & 0 & (3 z)^{3} & \cdots & . \\
\vdots & \vdots & \vdots & \vdots & \ddots & . \\
0 & 0 & 0 & 0 & \cdots & (3 z)^{N+1}
\end{array}\right)
$$

Therefore, we obtain the following theorem.
Theorem 5. For $N=0,1,2, \ldots$, the differential equation

$$
F^{(N)}=\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y, z)=\left(\sum_{i=0}^{N} a_{i}(N, x, y, z) t^{i}\right) F(t, x, y, z)
$$

has a solution

$$
F=F(t, x, y, z)=e^{x t+y t^{2}+z t^{3}}
$$

where

$$
\begin{aligned}
& a_{0}(N+1, x, y, z)=\sum_{i=0}^{N} x^{i} a_{1}(N-i, x, y, z)+x^{N+1}, \\
& a_{1}(N+1, x, y, z)=2 a_{2}(N, x, y, z)+x a_{1}(N, x, y, z)+2 y a_{0}(N, x, y, z), \\
& a_{2 N}(N+1, x, y, z)=x a_{2 N}(N, x, y, z)+2 y a_{2 N-1}(N, x, y, z)+3 z a_{2 N-2}(N, x, y, z), \\
& a_{2 N+1}(N+1, x, y, z)=2 y a_{2 N}(N, x, y, z)+3 z a_{2 N-1}(N, x, y, z), \\
& a_{2 N+2}(N+1, x, y, z)=(3 z)^{N+1},
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{i}(N+1, x, y, z)=(i+1) a_{i+1}(N, x, y, z)+x a_{i}(N, x, y, z) \\
& \quad+2 y a_{i-1}(N, x, y, z)+3 z a_{i-2}(N, x, y, z),(2 \leq i \leq 2 N-1) .
\end{aligned}
$$

From (4), we note that

$$
\begin{equation*}
F^{(N)}=\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y, z)=\sum_{k=0}^{\infty} H_{k+N}(x, y, z)^{\frac{t^{k}}{k!}} . \tag{18}
\end{equation*}
$$

By (4) and (18), we get

$$
\begin{align*}
e^{-n t}\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y, z) & =\left(\sum_{m=0}^{\infty}(-n)^{m} \frac{t^{m}}{m!}\right)\left(\sum_{m=0}^{\infty} H_{m+N}(x, y, z) \frac{t^{m}}{m!}\right) \\
= & \sum_{m=0}^{\infty}\left(\sum_{k=0}^{m}\binom{m}{k}(-n)^{m-k} H_{N+k}(x, y, z)\right) \frac{t^{m}}{m!} . \tag{19}
\end{align*}
$$

By the Leibniz rule and the inverse relation, we have

$$
\begin{array}{r}
e^{-n t}\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y, z)=\sum_{k=0}^{N}\binom{N}{k} n^{N-k}\left(\frac{\partial}{\partial t}\right)^{k}\left(e^{-n t} F(t, x, y, z)\right) \\
=\sum_{m=0}^{\infty}\left(\sum_{k=0}^{N}\binom{N}{k} n^{N-k} H_{m+k}(x-n, y, z)\right) \frac{t^{m}}{m!} \tag{20}
\end{array}
$$

Hence, by (19) and (20), and comparing the coefficients of $\frac{t^{m}}{m!}$ gives the following theorem.
Theorem 6. Let m, n, N be nonnegative integers. Then

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k}(-n)^{m-k} H_{N+k}(x, y, z)=\sum_{k=0}^{N}\binom{N}{k} n^{N-k} H_{m+k}(x-n, y, z) \tag{21}
\end{equation*}
$$

If we take $m=0$ in (21), then we have the following corollary.
Corollary 7. For $N=0,1,2, \ldots$, we have

$$
H_{N}(x, y, z)=\sum_{k=0}^{N}\binom{N}{k} n^{N-k} H_{k}(x-n, y, z) .
$$

For $N=0,1,2, \ldots$, the differential equation

$$
F^{(N)}=\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y, z)=\left(\sum_{i=0}^{N} a_{i}(N, x, y, z) t^{i}\right) F(t, x, y, z)
$$

[^0]$$
F=F(t, x, y, z)=e^{x t+y t^{2}+z t^{3}} .
$$

Here is a plot of the surface for this solution. In Figure 1(left), we choose $-2 \leq z \leq 2,-1 \leq t \leq 1$, $x=2$, and $y=-4$. In Figure 1(right), we choose $-5 \leq x \leq 5,-1 \leq t \leq 1, y=-3$, and $z=-1$.

3. Distribution of zeros of the 3-variable Hermite polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeros of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$. By using computer, the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ can be determined explicitly. We display the shapes of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ and investigate the zeros of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$. We investigate the beautiful zeros of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ by using a computer. We plot the zeros of the $H_{n}(x, y, z)$ for $n=20, y=1,-1,1+i,-1-i$, $z=3,-3,3+i,-3-i$ and $x \in \mathbb{C}$ (Figure 2). In Figure 2(top-left), we choose $n=20, y=1$, and $z=3$. In Figure 2(top-right), we choose $n=20, y=-1$, and $z=-3$. In Figure 2(bottomleft), we choose $n=20, y=1+i$, and $z=3+i$. In Figure 2(bottom-right), we choose $n=20$, $y=-1-i$, and $z=-3-i$.

In Figure 3(top-left), we choose $n=20, x=1$, and $y=1$. In Figure 3(top-right), we choose $n=20, x=-1$, and $y=-1$. In Figure 3(bottom-left), we choose $n=20, x=1+i$, and $y=1+i$. In Figure 3(bottom-right), we choose $n=20, x=-1-i$, and $y=-1-i$.

Stacks of zeros of the 3-variable Hermite polynomials $H_{n}(x, y, z)$ for $1 \leq n \leq 20$ from a 3-D structure are presented (Figure 3). In Figure 4(top-left), we choose $n=20, y=1$, and $z=3$. In Figure 4 (top-right), we choose $n=20, y=-1$, and $z=-3$. In Figure 4(bottom-left), we choose $n=20$, $y=1+i$, and $z=3+i$. In Figure 4(bottom-right), we choose $n=20, y=-1-i$, and $z=-3-i$.

Figure 1. The surface for the solution $F(t, x, y, z)$.

Figure 2. Zeros of $H_{n}(x, y, z)$.
Our numerical results for approximate solutions of real zeros of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ are displayed (Tables 1-3).

The plot of real zeros of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ for $1 \leq n \leq 20$ structure are presented (Figure 5).

In Figure 5(left), we choose $y=1$ and $z=3$. In Figure 5(right), we choose $y=-1$ and $z=-3$.
Stacks of zeros of $H_{n}(x,-2,4)$ for $1 \leq n \leq 40$, forming a 3D structure are presented (Figure 6). In Figure 6(top-left), we plot stacks of zeros of $H_{n}(x,-2,4)$ for $1 \leq n \leq 20$. In Figure 6(top-right), we draw x and y axes but no z axis in three dimensions. In Figure 6(bottom-left), we draw y

Figure 3. Zeros of $H_{n}(x, y, z)$.
and z axes but no x axis in three dimensions. In Figure 6(bottom-right), we draw x and z axes but no y axis in three dimensions.

It is expected that $H_{n}(x, y, z), x \in \mathbb{C}, y, z \in \mathbb{R}$, has $\operatorname{Im}(x)=0$ reflection symmetry analytic complex functions (see Figures 2-7). We observe a remarkable regular structure of the complex roots of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ for $y, z \in \mathbb{R}$. We also hope to verify a remarkable regular structure of the complex roots of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ for $y, z \in \mathbb{R}$ (Tables $\mathbf{1}$ and $\mathbf{2}$). Next, we calculated an approximate solution satisfying $H_{n}(x, y, z)=0, x \in \mathbb{C}$. The results are given in Tables 3 and 4 .

Figure 4. Stacks of zeros of $H_{n}(x, y, z), 1 \leq n \leq 20$.

The plot of real zeros of the 3-variable Hermite polynomials $H_{n}(x, y, z)$ for $1 \leq n \leq 20$ structure are presented (Figure 7).

In Figure 7(left), we choose $x=1$ and $y=2$. In Figure 7(right), we choose $x=-1$ and $y=-2$.
Finally, we consider the more general problems. How many zeros does $H_{n}(x, y, z)$ have? We are not able to decide if $H_{n}(x, y, z)=0$ has n distinct solutions. We would also like to know the number of complex zeros $C_{H_{n}(x, y, z)}$ of $H_{n}(x, y, z), \operatorname{Im}(x) \neq 0$. Since n is the degree of the polynomial $H_{n}(x, y, z)$, the number of real zeros $R_{H_{n}(x, y, z)}$ lying on the real $\operatorname{line} \operatorname{Im}(x)=0$ is then $R_{H_{n}(x, y, z)}=n-C_{H_{n}(x, y, z)}$, where $C_{H_{n}(x, y, z)}$ denotes complex zeros. See Tables $\mathbf{1}$ and $\mathbf{2}$ for

Degree n	Real zeros	Complex zeros
1	1	0
2	0	2
3	1	2
4	2	2
5	1	4
6	2	4
7	2	4
9	3	6
10	4	6
11	3	6
12	4	8
13	3	8
14		10

Table 1. Numbers of real and complex zeros of $H_{n}(x, 1,3)$.

Degree n	Real zeros	Complex zeros
1	1	0
2	2	0
3	1	2
4	2	2
5	3	2
6	2	4
7	4	4
9	3	4
10	4	6
11	5	6
12	6	6
13	5	8
14	6	8

Table 2. Numbers of real and complex zeros of $H_{n}(x,-1,-3)$.

| Degree n | x | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | | | |
| 2 | - | | | |
| 3 | -1.8845 | | | |
| 4 | 3.1286, | -0.17159 | | |
| 5 | -4.5385 | | | |
| 6 | -5.8490, | -1.3476 | | |
| 7 | -7.1098, | -2.1887, | -0.36350 | |
| 8 | -8.324, | -3.4645 | | |
| 9 | -9.4984, | -4.6021, | -1.1118 | |
| 10 | -10.637, | -5.7212, | -1.5785, | -0.61919 |
| 11 | -11.745, | -6.8105, | -2.8680 | |
| 12 | -12.824, | -7.8743, | -3.8894, | -0.99513 |

Table 3. Approximate solutions of $H_{n}(x, 1,3)=0, x \in \mathrm{R}$.

Figure 5. Real zeros of $H_{n}(x, y, z), 1 \leq n \leq 20$.
tabulated values of $R_{H_{n}(x, y, z)}$ and $C_{H_{n}(x, y, z)}$. The author has no doubt that investigations along these lines will lead to a new approach employing numerical method in the research field of the 3 -variable Hermite polynomials $H_{n}(x, y, z)$ which appear in mathematics and physics. The reader may refer to $[2,11,13,20]$ for the details.

Figure 6. Stacks of zeros of $H_{n}(x,-2,4)$ for $1 \leq n \leq 20$.

degree n	x
1	0
2	$-1.4142,1.4142$
3	3.3681
4	$0.16229,5.0723$
5	$-1.3404,1.4745,6.6661$
6	$2.9754,8.1678$
7	$0.31213,4.3783,9.5946$

degree n	x
8	$-1.2604,1.5304,5.7274,10.959$
9	$2.8224,7.0271,12.270$
10	$0.44594,4.0615,8.2834,13.535$
11	$-1.1740,1.5825,5.2667,9.5013,14.760$
12	$-1.4659,-0.87728,2.7469,6.4398,10.685,15.949$

Table 4. Approximate solutions of $H_{n}(x,-1,-3)=0, x \in \mathrm{R}$.

Figure 7. Real zeros of $H_{n}(x, y, z), 1 \leq n \leq 20$.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2017R1A2B4006092).

Author details

Cheon Seoung Ryoo
Address all correspondence to: ryoocs@hnu.kr
Department of Mathematics, Hannam University, Daejeon, Korea

References

[1] Andrews LC. Special functions for engineers and mathematicians. New York: Macmillan. Co; 1985
[2] Agarwal RP, Kim YH, Ryoo CS. Calculating zeros of the twisted Euler Polynomials. Neural, Parallel, and Scientific Computations. 2008;16:505-516
[3] Appell P, Hermitt Kampé de Fériet J. Fonctions Hypergéométriques et Hypersphériques: Polynomes d Hermite. Paris: Gauthier-Villars; 1926
[4] Dattoli G. Generalized polynomials operational identities and their applications. Journal of Computational and Applied Mathematics. 2000;118:111-123
[5] Kang JY, Lee HY, Jung NS. Some relations of the twisted q-Genocchi numbers and polynomials with weight α and weak Weight β. Abstract and Applied Analysis. 2012, Article ID 860921, 2012:9
[6] Kim MS, Hu S. On p-adic Hurwitz-type Euler Zeta functions. Journal of Number Theory. 2012;132:2977-3015
[7] T Kim, DS Kim, CS Ryoo, HI Kwon, Differential equations associated with Mahler and Sheffer-Mahler polynomials; submitted for publication
[8] Kim T, Kim DS. Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations. Journal of Nonlinear Sciences and Applications. 2016;9:2086-2098
[9] Ozden H, Simsek Y. A new extension of q-Euler numbers and polynomials related to their interpolation functions. Applied Mathematics Letters. 2008;21:934-938
[10] Robert AM. A Course in p-adic Analysis, Graduate Text in Mathematics. Vol. 198. Springer; 2000
[11] Ryoo CS. A numerical investigation on the structure of the zeros of the degenerate Eulertangent mixed-type polynomials. Journal of Nonlinear Sciences and Applications. 2017; 10:4474-4484
[12] Ryoo CS. Differential equations associated with tangent numbers. Journal of Applied Mathematics \& Informatics. 2016;34:487-494
[13] Ryoo CS. A Note on the Zeros of the q-Bernoulli Polynomials. Journal of Applied Mathematics \& Informatics. 2010;28:805-811
[14] Roman S. The umbral calculus, Pure and Applied Mathematics. Vol. 111. New York: Academic Press, Inc. [Harcourt Brace Jovanovich Publishes]; 1984
[15] Simsek Y. Complete sum of products of (h, q)-extension of Euler polynomials and numbers. Journal of Difference Equations and Applications. 2010;16:1331-1348
[16] Ryoo CS. Differential equations associated with tangent numbers. Journal of Applied Mathematics \& Informatics. 2016;34:487-494
[17] Ryoo CS. Differential equations associated with generalized Bell polynomials and their zeros. Open Mathematics. 2016;14:807-815
[18] Ryoo CS. Differential equations associated with the generalized Euler polynomials of the second kind. Journal of Computational and Applied Mathematics. 2018;24:711-716
[19] Ryoo CS, Agarwal RP, Kang JY. Differential equations associated with Bell-Carlitz polynomials and their zeros. Neural, Parallel, and Scientific Computations. 2016;24:453-462
[20] Ryoo CS. A numerical investigation on the structure of the roots of q-Genocchi polynomials. Journal of Applied Mathematics and Computing. 2008;26:325-332

[^0]: has a solution

