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Abstract

Low-tech coral farming and reef rehabilitation have become important tools to foster com-
munity-based participation in the management of coastal social-ecological systems. Lessons
learned from coral demographic dynamics, ecosystem-level benefits, and sociological
dynamics achieved in Culebra Island, Puerto Rico, are discussed. Important gaps regarding
social-ecological interactions are also addressed. Coral reef rehabilitation efforts must be
adaptive and focused on maximizing resilience as a long-term goal, with emphasis on
managing non-linear dynamics, thresholds, environmental and climate uncertainty, and
ecological surprises. In this context, coral demographic modelling becomes fundamental to
address, not only ecological, but also sociological concerns. Only through sustained support
and input of harvested corals restored populations, and by increasing the spatial scale of reef
rehabilitation, restored populations can remain viable and grow under present and projec-
ted environmental and climate conditions. Understanding sociological dynamics, learning
from others experiences, integrating visioning and scenario building, leadership building,
multi-sectorial agents and actor groups, and strengthening cross-sectorial social networking
are necessary adaptive approaches to cope with future environmental and climate changes,
and are an integral part of reef rehabilitation. The combined benefits to social-ecological
systems are multiple. With proper planning, design, funding, local support, and implemen-
tation, these can have long-lasting impacts in restoring coastal resilience.
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1. Introduction

1.1. Coral reef decline and the erosion of social-ecological systems

Coral reefs have largely lost species diversity, ecological functions, ecosystem resilience, and

socio-economic benefits across regional to global scales over the last four to decades. These

have resulted from a combination of impacts from extreme natural hazards (e.g., hurricanes

and tsunamis), from multiple localized human drivers [1–5], and from climate change [6, 7].

This has often resulted in a largely reduced ability to recover from acute, recurrent or chronic

disturbances, compromising their capacity to sustain biodiversity, ecosystem services, local

economies, and threatening the sustainability and resilience of social-ecological systems [8].

This is a particular concern for low-lying coastal communities and for small tropical islands,

which often have very significant governance limitations, as well as limited socio-economic

capital to cope with disasters. In this context, coral farming and reef rehabilitation efforts are

becoming increasingly important strategies to incorporate in the coastal management toolbox,

but which have never yet been implemented as strategies to address issues related to restoring

the resilience of coastal social-ecological systems.

Ecological resilience can be defined as the buffering capacity or the “ability of a system to

absorb changes of state variables, driving variables, and parameters, and still persist” [9]. In this

context, resilience is a property of a system, and persistence or probability of extinction can

be the result, depending on the system’s trajectory and stability. Stability is the ability of a

system to return to an equilibrium state after any disturbance [9]. The more rapidly a system

returns, and with the least fluctuations, the more stable it is. However, under present rapidly

declining of coastal social-ecological systems, mostly coral reefs, stability has also declined,

so the ability of systems to absorb and recover from disturbance. Therefore, any long-term

trend resulting in the net erosion of the stability of a social-ecological system can threaten its

long-term resilience, and may result in a combined loss in the ecological (e.g., biodiversity,

functional redundancy, ecosystem services) and social persistence (e.g., local economy, liveli-

hoods). The geographical isolation of small islands, in combination with historical socioeco-

nomic and political constraints, increasing threats by sea level rise (SLR) and climate change,

can often magnify vulnerability to such impacts [8], and may result in a net erosion of social

resilience.

Social resilience was defined as “the ability of groups or communities to cope with external stresses

and disturbances as a result of social, political and environmental change” [10]. Social resilience is a

fundamental characteristic of ecosystems which has still remained poorly addressed, but

which is critical to maintain ecosystems functions and services in the face of disturbance,

including extreme weather events (e.g., hurricanes), natural hazards (e.g., tsunamis), chronic

human-driven environmental degradation, SLR, and climate change. There is a clear link

between social and ecological resilience, particularly for coastal communities, and small island

nations that are largely or fully dependent on ecological and environmental resources for their

economy and local livelihoods.
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Exposure and sensitivity to hazards of coastal social-ecological systems are largely dependent

on the ecological status and vulnerability to disturbance of coral reefs. Reducing exposure and

sensitivity requires maintenance and enhancement of reef ecosystems functions through sus-

tainable management and use [11]. In this context, coral farming and reef rehabilitation have

become fundamental management tools to engage base communities in sustainable social-

ecological systems management. It would also be important to maintain the local memory of

resource use, and foster the development of learning processes for responding to environmen-

tal feedback and social cohesion [11]. Therefore, base-community engagement in coral farming

and reef restoration must also be coupled with hands-on education and training, with the aim

of achieving long-term local empowerment, stewardship and support. The other critical ele-

ment of vulnerability of coastal social-ecological systems is adaptive capacity. Sustaining

coastal social-ecological systems requires the recovery of biodiversity in ecological systems,

and expanding the diversity of the local economic livelihood portfolio. Both alternatives can be

readily achieved through low-tech, community-based coral farming and reef rehabilitation.

However, an important challenge is the need to empower local to national governance struc-

tures and social capital, bridging gaps among local communications, academia, private orga-

nizations, and government for integrative responses, and building horizontal, cross-sectorial

networks in society for social learning.

Nevertheless, bridging the gap between decision-makers, natural resource managers, empirical

academic research in regards to coral farming and reef rehabilitation, and the socio-economic

component of these efforts have remained poorly explored, and still remains as a top challenge

to overcome across local, national and regional scales. Understanding the critical value of

integrating question-driven research in reef rehabilitation efforts is paramount to advance

knowledge and to communicate that technical knowledge to base communities and local

stakeholders. One such component is to integrate coral demographic dynamics and modeling

into active reef rehabilitation efforts. But also, the integration of lessons learned from sociolog-

ical dynamics in regards to coral farming and reef rehabilitation is a highly necessary added

value that should contribute to improve future projects.

Therefore, lessons learned regarding the need to understand the mechanisms of improving the

management of both, the ecological and the social components of coastal tropical systems is

essential to improve management success, and to foster an improved education, stewardship

and participation of base communities in coastal management. This makes necessary to exam-

ine the role of assisted recovery of depleted coral diversity, restoring coral functional groups,

and the rehabilitation of coral reefs at the reefscape, functional level, as a new strategy to buffer

and restore present declining trends.

1.2. Goals and objectives

The goal of this chapter is to briefly update the state of knowledge regarding applied coral

demographic dynamics to low-tech coral farming and reef rehabilitation efforts, mostly using

case studies of restored populations of endangered Staghorn coral, Acropora cervicornis. Impor-

tant elements associated with coral demographic and oceanographic modeling have also been
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addressed as decision-making tools regarding its application to large-scale restoration efforts.

Also, sociological lessons learned, which are often overlooked, have been discussed, including:

volunteer work, team assemblage, building local support and stewardship, and socio-economic

benefits. Most of the discussed examples are derived from lessons learned through the

Community-Based Coral Aquaculture and Reef Rehabilitation Program established in 2003 in Culebra

Island, Puerto Rico, by non-governmental organization (NGO) Sociedad Ambiente Marino.

2. Lessons learned from coral demographic dynamics

2.1. Coral demographic modeling in reef rehabilitation

Whether any given population increases, decreases, remain stable or face extinction depends

upon the rates at which an individual grows, die, and reproduce. Most conservation and

management-oriented efforts are intended to increase population growth rate of the targeted

species until reaching a growing or stable state and identifying which vital stage(s) is (are)

essential for the conservation and management of an endangered or threatened species.

Demographic-based population models are convenient and efficient tools that not only allow

to perform population viability analyses, but also allow a detailed examination of the relation-

ship between demographic traits/rates and population growth rate (λ). One of the strengths of

demographic-based population models is that they take into consideration the influence of the

developmental stage (age, size, and stage) on individual’s vital rates and link it to the popula-

tion level [12]. At the same time, demographic models can be subjected to prospective (e.g.,

sensitivity and elasticity) and retrospectives (Life Table Response Experiment) analyses to

examine the relative importance of each of the vital rates on λ and to investigate the effects of

physical and biological disturbances on the population dynamics of a target species [13, 14].

Prospective analyses (e.g., sensitivity and elasticity) looks at how λ would respond when a

particular life cycle transition is perturbed [12]. Life Table Response Experiment analysis, on

the other hand, provides information on how much variation in a particular life cycle transi-

tion contribute to the observed differences in λ between treatments (e.g., restoration vs. no

restoration). Another advantage is that models can be manipulated to assess how any given

population would respond to changes in any of the vital rates (e.g., reproductive failure, mass

mortality) or any given restoration initiative; thereby providing the basis for the design of

future restoration and conservation projects under variable environmental conditions, climate

change-related scenarios, etc.

In the last couple of decades, demographic-based population models (e.g., population matrix

models and integrated population models) have become an essential part of conservation

studies [15]. However, few coral biologists have applied demographic-based population

models to answer specific conservation questions (but see [16–19]). Vardi et al. [17] and

Mercado-Molina et al. [18] used size-based population matrix models have been used to

describe the demography and population dynamics of threatened coral species Acropora

palmata [19] and A. cervicornis, respectively [18]. They found that the demographic transition

that contributes the most to local λ is the survival of large colonies. Thereby, providing

evidence that restoration and conservations efforts of these corals species should be focused
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on enhancing the probability of large colonies to survive. Mercado-Molina et al. [20, 21] found

that both growth and branching rates of A. cervicornis increase with size. Therefore, positive

contribution of large colonies to λ, at least for A. cervicornis, can be partly explained by (1) a

rapid growth that can allow the colony to reach a refuge size in which mortality associated

with diseases, predation, and bleaching can be considerably reduced; and (2) an increase in the

number of branches with the potential to be detached from the parental colony and become

established as an independent colony, contributing to faster formation of thickets.

Demographic transitions and population growth rates of A. palmata were relatively stable over

a 6-year study period, except for a hurricane year which naturally caused a significant decline

in population growth rate [17]. In contrast, spatiotemporal differences both in the transitions

rates and λ of A. cervicornis were observed [18]. These contrasting results indicate that even

when A. cervicornis and A. palmata share similar life cycles, their demography varies consider-

ably. Therefore, conservation and restoration activities should be designed at the species-

specific level whenever possible, with separate specific goals and objectives. The spatiotempo-

ral differences in demographic transitions displayed by A. cervicornis [18] also suggest that

restoration efforts should be partitioned among several locations rather than allocating all the

resources into one site. This action will enhance the persistence of the species if localized

extirpation occurs due to spatial variability.

2.2. Modeling as decision-making tools

The current limitation in human, technical, and economic resources, together with multiple

frequent logistical constraints, have made coral conservation a difficult task, especially in small

islands, and when long-term studies are not feasible or available. The most basic demographic

parameter that can be obtained using demographic modeling is the intrinsic population growth

rates, lambda (λ). When λ = 1, the population is stable, if λ < 1 the population is decreasing in

size, and when λ >1 then the population is growing positively. Thus, by directly estimating λ

practitioners can determine whether a given population needs management attention. Using

population models to project population size over time is one of the most attractive alternatives

to understand how any given wild or restored population would behave under different resto-

ration and conservations scenarios (see [17, 18, 20]). Studies by Mercado et al. [18, 20] coincided

in that without human intervention (e.g., coral out-planting) local A. cervicornis population

growth in the wild is not granted. However, contrary to the A. palmata populations [17], which

are expected to remain stable (no significant growth, no significant decline) over time, A.

cervicornis populations can go extinct in less than two decades [18, 20]. Such contrasting popula-

tion trajectories may be the result of A. cervicornis being more susceptible to low and moderate

environmental changes [18, 22]. Therefore, A. cervicornis is more at risk of localized extinction

than it is congeneric. Indeed, A. cervicornis colonies are much more ephemeral than A. palmata

(e.g., they suffer a high rate of complete mortality and complete colony dislocation) [22]. This

implies that continuous low-tech coral farming and out-planting efforts are fundamental to

sustain restored populations in the wild.

The initial size of the coral transplant needs to be taken into consideration to assure the success

of any restoration project [17, 18]. Both studies concluded that transplanting large colonies will

result in higher population growth rates than transplanting small colonies, as many standard
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coral farming operations do, at least across the Caribbean. However, transplanting large

colonies pose some challenges; specifically, regarding the time necessary for a nursery-reared

coral fragment to reach the effective transplantation size [18]. However, numerical simulations

have demonstrated that increasing the number of small-sized transplants of A. cervicornis

enhances the probability of population stability [18]. For an initial population size of 150 A.

cervicornis colonies, transplanting 50–75 fragments ≤100 cm in Total Linear Length (TTL)

annually would result in a positive population growth rate.

Population models can also be used to test the effectiveness of different management regimes

(e.g., intensity, environmental and climate change scenarios) such as alternating times of out-

planting and nonout-planting. So far, only Vardi et al. [17] have published results by taking

such approach. They projected A. palmata population size under a scenario that alternate

2 years with no out-planting and 5 years in which 1000–3000 colonies are transplanted,

followed by an additional 13 years with no out-planting. Under such management design,

populations will grow positively over time. Therefore, it can be argued that such management

plan is appropriate to assure the persistence of the impacted population. Figure 1 shows a

simulation based on the model developed by Mercado-Molina et al. [18] for two wild

populations of A. cervicornis in northeastern Puerto Rico, in which the effect of two out-

planting scenarios on local population abundance was simulated. The scenarios considered

the out-planting of 1000 colonies for two and five consecutive years, respectively. These

scenarios were based on the fact that most restoration projects are funded for less than 5 years

and for the number of fragments that in our experience can be produced in 1 year in our

nursery units. The results indicated that under such out-planting regimes populations would

Figure 1. Numerical simulation based on the model developed by Mercado-Molina et al. [18] for two wild populations of

Staghorn coral (Acropora cervicornis) in northeastern Puerto Rico, in which the effect of two out-planting scenarios on local

population abundance were assessed.
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not be able to persist over time. This outcome, together with simulations run by Mercado-

Molina et al. [18], led us to conclude that restoring populations of A. cervicornis by out-planting

coral fragments is a feasible strategy, but one that requires sustained human intervention.

2.3. Increasing the spatial scale of reef rehabilitation

One of the major limitations of coral reefs restoration is that all projects so far are small in

spatial scale, often varying from tens to hundreds of m2, with a limited number of projects

ranging between 100 s m2 to less than 1 km2. Increasing the spatial scale of reef rehabilitation is

essential, at least for A. cervicornis, because its demography varies considerably in time and

space. Increasing the spatial scale of population rehabilitation will increase the probability of

species persistence. Coral out-plant spatial array is also critical for the formation of thickets.

Before the 1980s, A. cervicornis used to dominate the seascape of shallow-water reefs by

monopolizing vast areas of the substrate [23]. It is necessary to take conservation and/or

restoration initiatives directed at re-establishing the large thickets this coral used to form. The

Acropora Recovery Plan [24] established the development of A. cervicornis thickets as a major

goal of restoration projects. However, there is still scarce information regarding the demo-

graphics and dynamics of thicket formation that could be used as a basis for the design of

management strategies. But model thicket formation can use novel approaches such as

individual-based dynamical automaton models (IBDA) [25, 26], and use the predictions of the

model to determine the number and spatial arrangement of out-plants that will maximize the

likelihood of thicket formation, and improve reef restoration strategies and spatial designs.

Increasing the spatial scale is also important for increasing the recovery of fish assemblages

and rehabilitating reef processes. However, there is still a significant information gap regard-

ing the role of coral reef restoration on enhancing essential fish habitats and fish assemblages.

Fish assemblages are sensitive to the spatial heterogeneity of the benthos [27] and habitat

condition [28]. Any disturbance resulting in mass coral mortalities [29], benthic community

regime shift [30], and in loss of benthic spatial heterogeneity [31] should adversely affect coral

reef fish assemblages. Therefore, management strategies aimed at rehabilitating depleted fish

assemblages should include coral out-planting at increasing spatial scales and/or focused on

developing habitat mosaics as a mechanism to restore benthic spatial heterogeneity.

Also, increasing coral reef rehabilitation spatial scale is a fundamental step necessary

to achieve progress in restoring and managing coastal resilience (e.g., wave buffering,

reducing shoreline erosion rates). But fundamental questions associated with coral reef

restoration projects at sites, where wave energy reduction is an important design criterion.

What is the degree of wave attenuation that can be expected from out-planting Elkhorn

coral (Acropora palmata) at the selected sites? What factors (how big should colonies be at

out-plant, how far apart, thicket size, shape, and spatial arrangement, water depth, local

wave climate, etc.) should be considered when designing a coral reef restoration project in

order to maximize wave energy dissipation? What are the expected costs for downscaling

numerical wave models for different locations? What data should be collected to success-

fully simulate the performance of the proposed coral restoration activities? What other

data on coral health should be collected to better inform the modeling efforts? These are
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areas which are being currently investigated at the University of Puerto Rico, which

should provide new light in regards to the potential application of coral reef restoration

as a novel coastal resilience management strategy.

2.4. Next steps in coral reef restoration

The next logical steps in coral reef restoration have mostly to do with improving ex situ

propagation of coral larvae, enhancing the effectiveness of micro-fragmentation techniques to

foster a higher number of small colonies and faster initial growth rates of massive coral species,

improving the ability to discriminate and propagate different genetic clones, and improving

the spatial scale of coral out-planting to achieve faster and functional coral patch or thicket

formation. Furthermore, there is a critical need to figure out: (a) how to distribute available

funding more fair and evenly, and how to achieve economic auto-sustainability; (b) how to

shift the standard institutional short-term, isolated vision of projects to a long-term goal-driven

program (c) how to develop some standardized farming, maintenance, and out-planting

practices; (d) how to implement standardized integrative metrics of success (e.g., from colony

to ecosystem level); (e) how to foster, achieve and support community-based and NGOs

participation in these projects; and (f) how to foster the creation of functional partnerships

among government institutions, the academia, NGOs, base communities, and other private

sectors. But there are still a few limiting components associated with low-tech coral reef restora-

tion efforts that still must be quickly addressed.

2.4.1. Lack of knowledge of Staghorn coral (Acropora cervicornis) branching dynamics

Despite colony branching dynamics is the basis for Acropora cervicornis restoration projects,

little is known about branch production of the species. Branching rates in this species growing

in nurseries and in colonies out-planted to the reef, respectively, increase with colony size [19,

20, 32]. Thus, growing large-sized colonies in nurseries, as well as those colonies out-planted to

the reef, may result in greater number of branches available for a restoration project, increasing

the potential coral propagule abundance available for future restoration efforts. At the same

time, out-planting large colonies would result in colonies with higher levels of branching

complexity in relatively shorter time than transplanting small single-branched fragments,

which favor faster thicket formation. It is known that more complex coral colonies promote

reef biodiversity [33, 34]. Still missing, however, is information about the intrinsic (i.e., genet-

ics) and extrinsic (i.e., temperature; light) factors that stimulate/limit branch production. Such

information is essential, for example, to select the sites for the deployment of nursery units,

select the most appropriate sites for restoration, and estimate the number of branches that can

be produced for restoration purposes and future natural asexual propagation in the wild.

2.4.2. Increasing the spatial scale of reef rehabilitation

Increasing the spatial scale of population rehabilitation will increase the probability of species

persistence for most corals. Nevertheless, the process of selecting the sites to be restored is not

based on empirical data about the demographic performance of targeted corals, but rather on

the assumption that the historical or current presence of any given species (e.g., A. cervicornis)
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reflects the appropriate conditions for the development of the species. Also, site selection

might often be based on the perceptions that water transparency, deeper environments, or

high distance from potential pollution sources represent the most suitable habitat conditions

for out-planting. Site selection can be critical for coral restoration success as poor site condition

can be detrimental [35]. Even low to moderate differences in local biotic and abiotic conditions

can have profound effects on λ [12]. Also, preliminary results by Hernández-Delgado (unpub.

data) suggest that the abundance and widespread dispersion of invasive red encrusting algae

Ramicrusta textilis (Rhodophyta, Peyssonneliaceae) is a critical factor affecting the survival and

growth of A. cervicornis, even under remote conditions and high water transparency. Accord-

ingly, a better criterion of restoration success should be the local population growth rate of A.

cervicornis, rather than presence/absence of the species.

2.4.3. Most restoration projects are not firmly grounded on quantitative demographic analyses

Because population growth rate is inevitably linked to individuals’ survival, growth, and

reproduction, effective conservation initiatives require knowledge on how variation in vital

rates relate to variations in population growth. Population studies focused on restored

populations of A. cervicornis have not been firmly grounded on quantitative demographic

analyses [19]. Several population studies have estimated rates of colony growth and survival

[36–38]. None, however, identified how spatiotemporal variations in outplants survival,

growth, and rates of recruitment (e.g., number of outplants) affect λ of restored populations.

The lack of studies that directly evaluate the population response to demographic variability

limits our capacity to develop effective restorations initiatives. Very few studies have

attempted to address essential questions such as: How long restored populations would last

without human intervention? How many fragments would be necessary to keep populations

viable? How often out-planting activities need to be carried out to assure the persistence of the

restored populations? Which is the effective colony size of transplantation? The answers to

these questions are fundamental for the development and success of restoration activities. And

demographic modeling can lead the way to answer them.

2.4.4. Short-term funding: a roadblock to long-term success

Funding is a major factor limiting the development and success of restoration projects. Most of

the projects are funded for 1–3 years [39]. This short period of economic support certainly

limits the amount of spatiotemporal demographic data that can be used to parameterize

population models. Indeed, the low spatiotemporal resolution is one of the main criticisms

raised by many researchers against the use of population modeling for conservation purposes.

More data is always better; however, “limited” data must not discourage the use of demo-

graphic and population modeling as a tool for the development of restoration initiatives.

Collecting data for an undetermined amount of time waiting to obtain “robust” demographic

data to parameterize any given model might just be too late for a threatened species whose

populations are declining very rapidly.

One year of demographic data is the minimum amount necessary to perform a basic popula-

tion model based on estimates of population growth rates. The demography of many marine
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clonal/modular organisms has been successfully described using ≤2 year of demographic data

[13, 16, 40–44]. The relatively “short time frame” of these studies has not impeded making a

significant contribution to our understanding of coral demography. In fact, most of the studies

focusing on the demography of corals are short-term (≤4 year). This is not surprising, given the

limited resources available to monitor populations of conservation concern. On the other hand,

studies considered “long-term” (5> year) have been focused, with the exception of Vardi et al.

[17], on massive species such as Porites astreoides, Pseudodiploria strigosa, and Orbicella (Mons-

tastraea) annularis, which contrary to Acropora cervicornis, are characterized by low growth rates

and therefore require higher temporal resolution to detect changes in demographic transitions

[45, 46].

If the intention is to conduct demographic analyses that take into consideration environmental

variability, both in space and time, then at least 2 years of demographic data are necessary. It is

well established in the demographic literature that two temporal points (2 years) are sufficient

to perform the stochastic analyses (e.g., population viability analysis, stochastic population

growth). Morris et al. [47], in their book “A Practical Handbook for Population Viability

Analysis (PVA),” stated that demographic data on a subset of life stages for only 1–2 years” is

sufficient to make a population viability analysis “profitable.” Fieberg and Ellner [48] recog-

nized that “[Stochastic matrix] models are typically parameterized using two or more sets of estimated

transitions rates between age/size/stage classes.” Likewise, using two annual transitions to perform

demographic analyses (e.g., PVA, stochastic population growth) is more suitable [12]. It is

important to note, however, that demographic and population models are not crystal balls

that predict the future of a population under a certain set of conditions. Nature cannot be

replicated, and as such the results of any given model need to be considered as possible

population outcomes which should be combined with the best information available to take

educated conservation decisions for this species.

2.4.5. Coral reef rehabilitation to restore ecological connectivity

Depending on the configuration of coral out-planted patches, its spatial distribution and the

temporal extension of coral reef rehabilitation efforts it may become a critical tool to manage

ecological connectivity among adjacent reef systems. The whole concept has to do with fostering

enhanced depleted coral stocks, therefore, increasing local populations’ reproductive potential

and output. This will allow increased gamete release, reduced gamete waste, reduced Allee

effect, and enhanced probabilities of sexual reproduction and recruitment. In theory, this would

allow to enhance genetic recombination, improve population fitness, and allow for increased

connectivity with downstream reef systems. For this to be successful, understanding local to

regional oceanographic dynamics is fundamental. Thus, numerical wave model development, as

well understanding often complex surface circulation patterns, is very important as a planning

tool to shape future long-term coral reef restoration initiatives. Indirectly, this can also become a

very important indirect component of reef fish conservation and restoration management as

restored coral reefs can restore benthic spatial heterogeneity and rehabilitate essential fish habitat

functions across ecologically connected scales fundamental for reef fish dispersal.
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3. Lessons learned from fish community dynamics

3.1. Impact of community-based reef rehabilitation on fish communities

Coral reef rehabilitation results in increased benthic spatial heterogeneity, which enhancesmicro-

habitats for fish shelter on local scales. Post-larval and juvenile grunts (Haemulon spp.) have

shown up to 10-fold increase or more in abundance in areas where Acropora cervicornis has been

out-planted (Hernández-Delgado and Suleimán-Ramos [49]). But also, multiple other taxa show

significant increases in fish abundance and biomass. Ongoing studies by Hernández-Delgado

have shown that juvenile guilds of multiple families, such as parrotfishes (Scaridae), wrasses

(Labridae), damselfishes (Pomacentridae), blue tangs and doctorfishes (Acanthuridae), and

predators, such as snappers (Lutjanidae) and groupers (Serranidae) can increase in abundance

and biomass, in comparison to adjacent control sites without out-plants, or in comparison to

restored sites before out-planting. There is also an increase in fish abundance and biomass with

increasing thicket age, comparing 1-, 2-, and 4-year-old patches. Further, areas located within the

Canal Luis Peña no-take Natural Reserve showed higher fish density and biomass, in compari-

son to control sites outside the reserve exposed to fishing. Therefore, preliminary evidence

already points out at the emerging role of low-tech community-based coral reef rehabilitation as

a highly useful tool to restore and rebuild coral reef-based fisheries.

3.2. Impacts on herbivory

Ongoing studies by Hernández-Delgado have also shown increased abundance and biomass

of fish and invertebrate herbivore guilds. As mentioned above, parrotfishes (Scaridae) and

acanthurids are among the most abundant fish taxa across reef rehabilitation sites, in compar-

ison to areas with no coral out-planting. Further, Acropora cervicornis out-planting has resulted

in increased abundances of the Long-spine urchin (Diadema antillarum). This has resulted in

increased herbivory upon macroalgae and algal turf, and in increased percent cover of crustose

coralline algae (CCA). Over temporal scales of 5–10 years, this has resulted in higher coral

sexual recruitment rates across restored areas.

4. Sociological lessons learned

4.1. Building local support and stewardship of social-ecological systems

Building local support and stewardship of social-ecological systems is a critical process for

achieving success in any community-based marine protected area (MPA) participatory man-

agement or co-management effort. Community-based coral farming and reef rehabilitation

also requires such support and stewardship. Multiple environmental problems frequently

raise concern on residents of coastal communities, and a few highly concerned people assume

the community leader role hoping to find solutions. However, at least in Puerto Rico, most
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base-community members lack the technical and scientific resources to meet the minimum and

urgent needs of their community. Therefore, a basic step for successfully achieving solutions is

to organize, establish a goal and delineate a functional plan to achieve objectives. But this may

often require seeking technical and scientific support from the academia and NGOs. Integrat-

ing multiple stakeholders in coral farming and reef rehabilitation efforts is a key for overcom-

ing such obstacles.

Community-based leaders can often provide a fundamental historical background that can

provide valuable information to understand and resolve problems. Traditional ecological

knowledge has been significant for success in Culebra Island and at Vega Baja, Puerto Rico.

Particularly, old fisher folks can provide very detailed information regarding the ecological

history of local coral reefs that can help rebuild local environmental history and identify coral

reef rehabilitation strategies. In addition, the interaction among base communities, NGOs, the

academia, the private sector, and the government can allow and strengthen the development

of trust. This is a critical element for achieving successful transparent collaboration in social-

ecological systems. Building up such local partnerships will foster building stronger functional

networks, with the support and respect from agencies and private institutions. It can also

strengthen outreach and educational efforts through a combination of hands-on training

activities, workshops, and other methods to generate commitments among the stakeholders

who traditionally adopt roles as volunteers as they feel confident and dominate different skills.

Another key element to build local stewardship and support are exchanges and cross-sharing

of experiences with sister organizations and base communities to share knowledge, and les-

sons learned in support of each other’s work. Networking, among different sectors, can further

allow strengthening communication and sharing of experiences.

4.2. Building a volunteer network

Building up a strong and consistent volunteer network is another key to success. This can be

achieved through proper organization, direction, well-established goals, and a functional,

realistic work plan. There is also a need to integrate educational and hands-on training to

develop and strengthen theoretical and technical skills, build stewardship and compromise,

assign roles and tasks, etc. Even the difference in personalities and needs can provide a wide

range of opportunities for participation. Individuals have different needs, from basic nutrient

supplementation, to self-realization. Different needs function as motivation in performing

tasks beyond satisfying personal needs. The collective need of volunteers represents the neces-

sity of their environments or communities.

A transparent dialog between volunteers and collaborators can help build up cooperative

working links serving different needs for the same adversity. Further, building up large teams

of volunteers can help to have always people available for labor-intensive field work,

preventing burning out the same group of people. It is therefore important to know about your

volunteers, their interests, needs, their chemistry as a group, their personalities, and their

strengths and weaknesses.

Corals in a Changing World256



4.3. Team assemblage

A fundamental step in achieving team success is the selection process of proper members of a

coral farming or reef rehabilitation team. Team technical leadership is important to provide

direction during planning and field work. Personality issues, individual responses and perfor-

mance to different specific tasks and roles, and differences in strength and weaknesses are also

important elements to consider. Understanding the profile of volunteers, their needs, and the

different characters and temperaments can allow making a good distribution of the workforce,

avoid conflicts that impede the growth of the organization, as well as the fulfillment of goals

and objectives.

4.4. How to overcome lack of funding?

Lack of long-term commitment by funding sources can be a major obstacle for advancing

project’s goals and achieving success. Lack of commitment by government agencies and

funding institutions, indifference by private businesses and tourism industry, and the lack of

a long-term vision of projects goals can lead to rapid failure. Therefore, the need to engage

local community, build stewardship, volunteerism, integration of university students through

research and first laboral experience programs, etc., becomes instrumental to buffer limited

funding, and to strengthen management of coastal social-ecological systems. Nevertheless, in a

time of significant socio-economic constraints, there is a need to explore alternative funding

avenues from multiple auto-sustainable economic strategies. These might include alternatives

such as: (1) “Adopt a coral” program—aimed at the general public and the private sectors,

including options such as: adopting an individual coral, a determined number of colonies, a

coral thicket, a reef patch or an entire reef; (2) Develop a “Reef sponsoring program” for

private corporations—aimed at developing a sponsoring program that may also have different

levels of support; (3) Develop crowd funding strategies through the web—aimed at using the

world wide web to develop a cyber-campaign for raising awareness about coral farming, reef

conservation and restoration, and for fundraising for any given project, with usually a goal-

driven funding limit for a specific project; (4) Establish a system of green taxes—aimed at auto-

sustaining natural resource management, including activities such as MPA management,

mooring buoy maintenance, patrolling, outreach and education, guided tours, coral farming,

and reef rehabilitation, among others. Green taxes can be derived from multiple tourism-based

activities such as airplane landing fees, cruiseship taxes, private yacht taxes, SCUBA diving

and snorkeling charter boat operations, kayaking, vehicle rental, hotels, etc.; and (5) Establish

different sources of funding from different government revenue collection systems—this may

include through specific taxes to luxury yachts, vehicles and properties, from liquor and

cigarette expenses, from industrial revenues, etc.

Under current local, regional, and global socio-economic decline, it is paramount to develop and

implement creative strategies for seeking financial support. But to achieve this, strengthening

local organizations, building up strong partnerships with different sectors, and fostering

community-based participation are fundamental steps.
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4.5. How to overcome other roadblocks?

Even successful community-based and academic projects can face multiple roadblocks in their

day to day work. Aspects such as permitting bureaucratic processes, access to restoration sites,

beach access issues, privatization and roadblocks, conflicts with other uses (e.g., tourism,

charter boats, kayaking, fishing, and navigation), lack of prioritization of coral reef rehabilita-

tion by local/national government institutions, lack of local community stewardship and

support, indifference by private businesses, etc., can all be deleterious for project’s success. If

any or at least some of these factors are present in any project there will be a need to improve

outreach and educational campaigns to strengthen project’s pertinence to local stakeholders

and institutions, and to strengthen social-ecological systems resilience. Also, it would be

important to build up communication channels with private entities and show the benefits

that successful coral farming and reef rehabilitation can bring to their businesses. Achieving

such collaborative support would be important to strengthen economic support.

4.6. How to overcome uncertainties and change?

Management of uncertainties and change under projected environmental and climate changes

constitute a major challenge. For instance, increasing frequency and/or strength of hurricanes

fuelled up by increasing sea surface temperature (SST), if combined with weak governance,

can result in major crisis. In situations where uncertainties and change are key features of the

social-ecological landscape, critical factors for sustainability and rapid recovery are resilience,

the capacity to cope with crisis and adapt, and the conservation of sources of innovation and

renewal [50]. Such is the case of the impact of extreme weather events and ecological surprises

impacting coral farming and reef rehabilitation. However, interventions in social-ecological

systems with the aim of altering resilience immediately confront issues of governance. Who

decides what should be made resilient to what is a critical question for any reef rehabilitation

program. For whom is resilience to be managed, and for what purpose are also two key

elements that must be decided during the planning stages of any project, always bearing in

mind the long-term goal of managing uncertainties and change.

4.7. Socio-economic benefits of coral farming and reef rehabilitation can be offset by lack of

governance

Amajor lesson learned from the Culebra Island coral farming and reef rehabilitation experience

has been that the rapid increase in socio-economic benefits from increased nature-based tour-

ism does not always contribute to support social-ecological systems under a weak governance

structure. Increasing tourism and business opportunities (e.g., kayaking, shore-based SCUBA/

snorkeling, charter vessels, beach swimming, hotel lodging, vehicle rental, bus services, etc.)

have resulted in a significant boom in gross revenues for local and external private businesses.

This has resulted in increasing alternative job opportunities. But a weak governance structure

still allows the leak of revenues from the local community, favoring external businesses, and

the total lack of economic support of the local MPA, and local coral farming and reef rehabili-

tation efforts. Therefore, strengthening governance is a critical step to support the ecological
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and socio-economic recovery of social-ecological systems resilience, stability and persistence,

and a mechanism to foster increased local participation and sharing of benefits.

A second important benefit in Culebra Island has been increasing fish densities on rehabili-

tated reefs, therefore contributing to enhance fishing on adjacent areas, through fish spillover

effects. Also, reef rehabilitation has resulted in increased recovery of shoreline protection from

wave action and erosion. Therefore, the combined benefits are multiple and, with proper

planning, design, funding, governance, local support, and implementation, this can have

long-lasting impacts in restoring coastal social-ecological resilience, and overall ecosystem

services and productivity.

4.8. The challenge of engaging the youth: lessons learned from marginalized small island

communities

Coral farming and reef rehabilitation in Culebra Island have also contributed to educate local

children and modify local resident’s behavior favoring coral reef conservation. Local NGO

Coralations has developed for nearly two decades a highly successful educational engaging

program called “Exploradores Marinos” orMarine Explorers. This has allowed approaching local

kids with an understanding of their community relationship with the coastal resources (e.g.,

recreation and sustenance), and introduce planned, inquiry-based discoveries that sprout from

that identity origin, as opposed to introducing a totally different perspective (e.g., “welcome to

your ocean laboratory”). Second, it is important to understand that planning is compromised

for families living on financial brink and that time must be budgeted to compensate for

disorganization, lack of preparation, competing programs, transport, last-minute emergencies,

health, and poor-diet related illnesses. Such conditions become critically magnified due to the

small size of Culebra Island (<70 km2), its location 27 km off northeastern Puerto Rico, and its

small population size (<2000 residents). Also, programs need to be no cost for economically

compromised participants, however, engagement must require compensation for programs to

be valued. Required community service is one option, but always rewarded and never treated

as punishment.

All developing humans seek attention. They quickly learn that attention is rewarded for both

positive and negative behaviors. Many at-risk youth are conditioned to negative behavioral

awards from a very young age but ocean therapy allows them to be removed from their

familiar territory for rapid and constructive positive reward programming. However, the

positive reward scenarios need to be well thought out, safe and many times staged in advance

(e.g., collaborative removal of derelict fishing gear from the reef, recovering of lose coral

fragments at risk to support coral farmers, etc.). Medical disclosures from juvenile community

volunteers are sometimes dishonest because parents are concerned their child would be stig-

matized or prevented to participate in the project. This is dangerous for seizure-related

illnesses and inquiries have to be conducted discretely with parents in a climate of trust. This

shows that parents consider coral farming and reef conservation-oriented education as unique,

novel, enriching experiences for their kids, that they would do anything to ensure their

participation in the project. But such risks need to be addressed in a case by case scenario to

prevent kids with potentially threatening conditions to engage into risky in-water activities.
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An important lesson of working with kids has been to focus activities on accomplishing mis-

sions, and refocus anxious students on a defined mission. It is also important to keep groups

small and develop excursions that force interdependent collaborations. This increases cost of

outreach and educational programs but reaps the rewards 10-fold in many benefits, including

greater probability of interesting animal encounters and less opportunity for accidents. This

can be done by matching the student to skill level contribution in team activity, and while the

skills of some exceed that of others, emphasis must be kept on the importance of all individual

contributions to the success of the overall defined mission. Young adult behaviors are condi-

tioned by peer to peer interactions. Everyone is not equal, but it is important to try and find

where the kid excels and expose that to other kids.

When dealing with outreach and educational activities for kids, if it is not fun, there will be no

long-term engagement. Even a specifically defined work mission has to be fun in order to

maintain youngsters engaged. The most be beneficial asset to engaging younger students to

the program is mixing with fully engaged slightly older students. Lessons introduced cannot

feel like lessons and one of the best methods has been found to be ensuring information is

redundant interrogative approach. One of the most successful approaches was when a science

teacher at school was offering almost identical information onto what the kids were seeing,

feeling, and experience in water during their out-of-school participation in coral reef conserva-

tion educational activities.

But a roadblock to success is the rapidly increasing use of electronic devices by young students.

Heads must be out of their apps. Electronics have to be confiscated with the understanding that

kids, like many adults, are addicted to these devices, or there is competing attention. Also, kids

behavior and attention during educational activities are affected by diet. Sometimes kids can

exhibit uncontrolled or even violent reactions if allowed to eat food items with excessive content

of sugar, high fructose corn syrup, and artificial colorants which they are often conditioned to

eat. Nevertheless, hands-on in-water educational experiences are always behavior-transforming

experiences that have shown to have multiple positive benefits for local kids. The most important

elements have been getting to know their backyardmarine resources, improving their respect for

adults, their behavior with other kids, and their appreciation for their own resources and the

benefits they derive from them.

In the long term, building up a local meaningful voice—ownership—pride of their resources,

their natural reserve, and their island has always been a key mission focus of the community

service projects in the hope it may help prevent the slippery slope tragedy of the commons

rationalizations which could lead to continuing resource overexploitation. These approaches

can probably be the only hope for a natural reserve with well-documented enforcement

problems associated to poor governance, patrolling and compliance, and lack of public educa-

tion and outreach. Also, in the long term, participation in local snorkeling activities moved to

Friday mornings in Culebra Island has shown that participant kids perform better in school

throughout the rest of the day. Therefore, such behavior-modifying activities can contribute to

improve performance in schools and overall attitudes. This is an aspect that deserves to be

studied, as youth represent the future of base-community participation in the management of

social-ecological systems.
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The “Educadores Marinos” program has produced a few successful stories with kids pursuing

careers in Environmental Sciences and other professional disciplines in academic institutions.

For many others, the end point for explorers is intervention/interpretation jobs and the collab-

oration/participation in pilot research projects being conducted in Culebra. However, expecta-

tions are something that need to be addressed. When working with at-risk youth hope that at

the end of the years, one will at least have forged a relationship/dialog with the soon-to-be

young adult. Respect has to be earned with their kids and their parents to ensure engagement

and support.

5. Conclusions and recommendations

Low-tech coral farming and reef rehabilitation have become important tools to foster

community-based participation in the management of coastal social-ecological systems. But,

there are still important gaps that need to be addressed in order to integrate the technical and

scientific components of coral farming and reef rehabilitation with the sociological compo-

nents. Preliminary evidence of Acroporid corals demographic dynamics has already shown

important lessons learned. First, conservation and restoration activities should be designed at

the species-specific level whenever possible, with separate specific goals and objectives for

individual species. Each coral species, and even different genetic clones within any given

species, can respond differently to environmental variation. Also, species-specific variability

in acclimation responses to changes in environmental conditions suggests that there can be

different vulnerabilities and, as such, restoration projects should always consider such varia-

tion among species. This could trigger multiple nonlinear responses to environmental and

climate variation. Therefore, coral reef rehabilitation efforts must be adaptive and focused on

maximizing resilience as a long-term goal. It should also look forward to develop strategies

and techniques to propagate multiple coral species with different life traits to buffer against

future nonlinear impacts. The resilience approach emphasizes on managing nonlinear dynam-

ics, thresholds, environmental and climate uncertainty, and ecological surprises [51]. It also

pays attention to how periods of slowly evolving, gradual change interplay with periods of

rapid, stochastic change, and how such dynamics interact across different temporal and spatial

scales. In this context, demographic modeling becomes fundamental to address such concerns.

Second, spatiotemporal differences in demographic transitions displayed by corals such as

Acropora cervicornis suggest that restoration efforts should be partitioned among several locations

rather than allocating all the resources into one site. Further, it also suggests that a combination

of in situ (e.g., underwater) and ex situ (e.g., land-based coral aquaculture farms) strategies

should be implemented to cope with potential impacts of extreme weather events and ecological

surprises. These actions will enhance the persistence of the species if localized extirpation occurs

due to any significant disturbance (e.g., recurrent runoff events, hurricanes). It should also foster

the propagation of multiple coral species in support to coral biodiversity restoration and sea-

scape enhancement efforts. Another fundamental lesson learned is that addressing differences in

population dynamics among coral colony size categories is important for parameterizing demo-

graphic models. This may allow addressing contrasting species-specific, size-specific, genetic
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clone-specific, or condition-specific population trajectories. Such contrasting population trajecto-

ries may be the result of different life traits and different susceptibilities to low and moderate

environmental changes. Identifying spatiotemporal variation patterns in such elements may

imply that continuity in low-tech coral farming and out-planting efforts is fundamental to

sustain restored populations in the wild. In addition, transplanting large colonies will result in

higher population survival and growth rates than transplanting small colonies, as many stan-

dard coral farming operations do, at least across the Caribbean. Also, transplanting large colo-

nies can achieve faster ecological benefits (e.g., thicket formation, enhanced-essential fish habitat

role). However, transplanting large colonies pose some challenges; specifically, regarding the

time necessary for a nursery-reared coral fragment to reach the effective transplantation size.

This means that efforts need to be taken to improve coral farming techniques to accelerate coral

growth, ensure high survival rates, and use methods that trigger faster colony growth rates.

It is also central to establish auto-sustainable funding mechanisms to support coral farming

and reef rehabilitation projects. Demographic evidence has already proved that only through

sustained input of harvested corals restored populations can remain viable and grow under

present and projected environmental and climate conditions. Therefore, supporting the con-

tinuous operation of such projects becomes increasingly important, but at the same time

increasingly challenging, in particular for developing countries, economically and politically

constrained colonies, and small island nations. Depending only on funding through govern-

ment agencies has shown to be a poor mechanism for support. Government support could be

even nonexistent in many countries. Government institutions have often highly changing

agenda, which typically respond to highly fluctuating political steering and philosophies in

regards to natural resource conservation and climate change. Therefore, funding programs can

frequently change goals and objectives, which could risk local support of projects, regardless

of their historical trajectory and success. Coral farming and reef rehabilitation need to be

incorporated into natural resource conservation and restoration public policies, and also into

climate change and SLR adaptation strategies and policies. A potential sustainable strategy for

economic support could be implementing a green tax at local or national levels (e.g., tourism

activities, cruise-ship visits, airplane landings, hotel room rental, vehicle sales, property con-

struction tax, and industrial revenues). This may include measures such as those implemented

in the state of Hawai’i, USA, where coastal development projects are required to economically

support State-led coral farming and reef restoration operations as part of mandatory environ-

mental mitigation regulatory requirements.

On the other hand, increasing the spatial scale of reef rehabilitation is essential for reef rehabil-

itation to become an important strategy to restore coastal social-ecological systems resilience.

Population demographic dynamics in Acropora palmata and A. cervicornis vary considerably in

time and space. Increasing the spatial scale of population rehabilitation will increase the

probability of species persistence, and will enhance its ecosystem functions (e.g., fish nursery

ground, buffering wave action). Coral out-plant spatial array is also critical for the formation of

thickets. In this sense, coupling demographic modeling with oceanographic numerical models

is a highly promising tool to support planning, designing, and implementing future coral reef

rehabilitation efforts.
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But, the sociological and economic components of coral reef rehabilitation have still remained

out of the formula. Understanding sociological dynamics should become an absolute priority

to improve the success of future coral farming and reef rehabilitation efforts. Projects devel-

oped in Culebra Island, Puerto Rico, since year 2003 have contributed to educate local children

and modify local residents’ behavior favoring coral reef conservation. Particularly, addressing

behavior-modifying activities and learning how to overcome roadblocks to success are funda-

mental to develop sustainable strategies to educate, train, and empower local residents to

participate in social-ecological systems management. It is critical to foster the creation of

strong, functional, cross-sectorial partnerships, which respect the integration of base commu-

nities and small non-governmental organizations (NGOs) in the planning and implementation

of projects. The stronger the environmental governance collaboration, the improved the suc-

cess in addressing problems in social-ecological systems [52].

But also, understanding of social processes like social learning and social memory, mental

models, and knowledge–system integration are a critical trans-disciplinary integration to

improve projects success and social-ecological systems resilience [51]. Further, integrating

visioning and scenario building, leadership building, multi-sectorial agents and actor groups,

and strengthening cross-sectorial social networking are necessary adaptive approaches to cope

with future environmental and climate changes. Another particular challenge of social-

ecological systems is how to deal with institutional and organizational inertia and change,

with adaptive capacity, transformability, and systems of adaptive governance that allow for

management of essential system services [51]. Further, strengthening adaptive governance

capabilities is essential to overcome stochastic events and crisis (e.g., natural disasters; ecolog-

ical surprises). Strong governance connects individuals, organizations, agencies, and institu-

tions at multiple organizational levels [53]. Further, building vision, leadership, and trust are

also important features of resilient social-ecological systems [54]. Strengthening the organiza-

tion of base communities can empower key persons to provide leadership, trust, vision,

meaning, and they help transform management organizations toward a learning environment,

and can foster the participation of at-risk youth, and the integration of adaptive, participatory

co-management efforts. A resilient social-ecological system may make use of crisis as an

opportunity to transform into a more desired state.

In addition, the following 10 components have been shown to be fundamental to address

sustainable and resilient social-ecological systems [55]: (1) Size of resource systems—in our case,

the spatial scale of reef rehabilitation becomes a major element of concern to achieve sustain-

ability and meaningful impacts on resilience; (2) Productivity of system—increasing the spatial

scale of reef rehabilitation also fosters an increase in ecological and social benefits; (3) Predict-

ability of system dynamics—the incorporation of restored coral demographic models, coupled

with oceanographic numerical models, should be the next step to improve our ability to

predict system dynamics; (4) Resource unit mobility—corals are not mobile entities, but reef-

associated biota can be, therefore, improving governance regarding management of mobile

links such as reef fisheries is important to improve management success; (5) Collective choice

rules—fostering increased local participation in planning and decision-making processes will

increase local stewardship, support, and compliance with management, and may reduce cost
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and difficulties of enforcement; (6) Number of users—the impact of group size and determining

limits of acceptable change (from the perspective of recreational and tourism uses) must be

incorporated into management; (7) Leadership/entrepreneurship—developing leadership and

entrepreneurship skills in members of local base communities is paramount to improve stew-

ardship, support and trust, and would likely result in the protection of local livelihoods and

business opportunities; (8) Norms/social capital—need to build up shared moral and ethical

standards, and common trust in resource users to facilitate decision-making and monitoring

processes; (9) Knowledge of social-ecological systems/mental models—knowledge of social-

ecological systems is central to share common knowledge among different user sectors, to

understand carrying capacity and limits of acceptable change of the resource, its attributes of

resilience, and to prevent failure to organize and destroy the system; and (10) Importance of

resource—understanding the value of the resource to local environmental, ecological, and

socio-economic sustainability, to the support of sustainable livelihoods, and for sustaining

food security and sovereignty. The take-home message is that reef managers and reef rehabil-

itation practitioners need to engage social scientists to support their efforts as a strategy to

foster improved local support, stewardship, compliance, and success.

Coral reef rehabilitation in Culebra Island, Puerto Rico, has resulted in a rapid increase in

benefits for local communities. Increasing tourism and business opportunities have resulted in

a significant boom in gross revenues for private businesses, and in improved, and diversified

livelihoods. This has resulted in increasing alternative job opportunities. But, leakage of reve-

nues needs to be reverted to enhance sustainability, local benefits, stewardship, and support.

Coral reef rehabilitation has also resulted in increasing fish densities on rehabilitated reefs,

therefore attracting further nature-based tourism, and in contributing to enhance fishing on

adjacent areas, through fish spillover effects. In addition, it has resulted in increased recovery

of shoreline protection from wave action and erosion. Therefore, the combined benefits to

social-ecological systems are multiple, and with proper planning, design, funding, local sup-

port, and implementation this can have long-lasting impacts in restoring resilience and overall

services and productivity of coastal social-ecological systems.
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