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Abstract

The sorption equilibrium and thermodynamics of Cu(II), Ni(II), Pb(II), and Cd(II) onto 
grape stalks (GS), a lignocellulosic waste from wine production industries, have been 
investigated. Different equilibrium models have been assessed to describe the experi-
mental sorption equilibrium profile in the range of 5–60°C. Maximum sorption capacities 
have been calculated by means of Langmuir equilibrium model and mean free sorption 
energies through the Dubinin-Radushkevich (D-R) model. Mean free energies suggest 
that metal sorption takes place mainly through an ion exchange mechanism, except for 
Pb(II), where an additional contribution connected to a stronger bond might take place. 
The calculation of thermodynamic parameters, ΔG0, ΔH0 and ΔS0, puts into evidence 
that the sorption of all the metals onto GS is a spontaneous and exothermic process that 
occurs with an increase of randomness at the solid/liquid interface.

Keywords: sorption, divalent metals, lignocellulosic sorbent, isotherm, thermodynamic

1. Introduction

Metals can enter the environment through a large variety of processes such as weathering 

of soils and rocks, volcanoes, and from a variety of anthropogenic activities [1, 2]. From the 

anthropogenic sources, modern industry is, to a large degree, a major responsible of envi-

ronmental pollution. They are frequently released into the soil and water as from various 

polluting sources, such as foundries, tanneries, textile, microelectronic, fertilizer and pes-

ticide industries, mining activity and other industrial activities [3]. These inorganic species 

occur naturally as ions, compounds and complexes, and they can lead to health problems  

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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and degradation of natural environments due to their toxicity and persistent character. 
Developing sustainable and environmentally friendly technologies to remove toxic metal 
from industrial effluents is a relevant topic nowadays.

Several remediation techniques to remove metal ions from aqueous solutions are available, 

which range from traditional physico-chemical methods to emerging bioremediation meth-

ods [3–10]. Methods that have been successfully deployed in industrial environments include 

the use of physico-chemical processes such as chemical precipitation, ion exchange, oxidation/
reduction, reverse osmosis and electrochemical treatment [2, 11–13]. These methods however 

exhibit a set of drawbacks such as high acquisition and operation costs, low performance at 
relatively low—but still relevant—concentration of metals and being sources of secondary pol-

lution [14–16]. To overcome the aforementioned issues, bioremediation-based methods have 

appeared as potential candidates in the treatment of heavy metal effluents. Bioremediation 
methods include bioaccumulation, biosorption and phytoremediation. Biosorption in some 
cases has demonstrated an outstanding potential, comparable to the performance obtained in 

ion exchange-based methods.

In regular sorption studies, the performance of a sorbent is evaluated by studying the kinetics 

of the process and assessing the amount sorbed versus the sorbate concentration in solution at 

equilibrium to get the isotherm curve. Obtaining the characteristics sorption isotherms them-

selves do not provide automatically any information about the reaction involved in the sorp-

tion phenomenon [17]. The study of the effect of temperature on the sorption process and the 
evaluation of the thermodynamic properties such as Gibb’s free energy, enthalpy and entropy 

of the process provide valuable information about the strength of the interactions between 

sorbate and sorbent and the energy associated with the sorption process. The standard free 

energy of the reaction (ΔG0, J·mol−1) is the difference between the initial state (free solute com-

pound)and the final equilibrated state (sorbed compound), and the parameter is related to the 
spontaneity of the sorption process. Negative values of ΔG0 indicate that the process is spon-

taneous. The magnitude of the enthalpy of the process (ΔH0, kJ·mol−1) gives an idea about the 

type of sorption interactions (physical or chemical). Whilst in physisorption-based processes 

enthalpy range is comprised between 2.1 and 20.9 kJ·mol−1, higher enthalpy values are charac-

teristic from chemisorption (20–800 kJ·mol−1) [18]. The value of the change of enthalpy ΔH0 < 0 
or ΔH0 > 0 also suggests the character exothermic or endothermic of the process, respectively.

The change of entropy (ΔS0) reflects essentially the variation on the disorder of a system (on 
macroscopic level) along a process. A positive value of this parameter indicates increased 

randomness at the solid/solution interface that may also include some changes in the sor-

bent and sorbate structure. Moreover, ΔS0 > 0 implies an increase in the degree of freedom 
of the adsorbed species. The negative value of change of entropy (ΔS0 < 0) suggests that the 
adsorption process involves an associative mechanism. Also a negative value of ΔS0 implies a 

decreased disorder at the sorbent/solution interface during the sorption process causing the 

sorbate species to escape from the solid phase to the solution phase.

In this chapter, the sorption equilibrium of Cu(II), Ni(II), Pb(II), and Cd(II) onto a lignocel-

lulosic material, grape stalks (GS), has been investigated. The studies were performed at dif-

ferent temperatures and allowed gathering relevant thermodynamic parameters to better 
describe the interactions established between the divalent metals and the sorbent.
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2. Effect of temperature on Cu(II), Ni(II), Pb(II) and Cd(II) 
equilibrium

The residues of grape stalk (GS) obtained from a wine production industry were washed 

with distilled water, cut in small pieces, dried and ground to obtain a sorbent with a par-

ticle size range 0.25–0.50 mm. The sorption equilibrium of Cu(II), Ni(II), Pb(II) and Cd(II) in 
single metal solutions onto GS was explored at different temperatures within the range of 
5–60°C. The characteristic sorption isotherms were obtained contacting 0.1 g of GS powder 
with 15 mL of different Cu(II), Ni(II), Pb(II) and Cd(II) solutions within the initial concentra-

tion range of 5–1000 mg·L−1. Stoppered glass tubes were employed, and the initial pH was 
adjusted to 5.2. For an accurate temperature control, the samples were placed in an incuba-

tor (ICP-500, Memmert). After equilibration of the sorbent biomaterials with the metal solu-

tions for 24 hours, the samples were filtered and acidified adding 100 μL of ultra-high-quality 
HNO

3
, and metal concentration in solution was determined by flame atomic absorption spec-

trophotometry (Varian SpectrAA 220FS).

From the experimental sorption equilibrium results, thermodynamic parameters related to 
the affinity and energy of the sorbent-sorbate interaction were obtained and discussed.

2.1. Sorption isotherms

Equilibrium relationships between adsorbent and adsorbate are described by adsorption iso-

therms and reflect the relationship between the quantity adsorbed and that remaining in solution 
at a given temperature [19]. Sorption isotherms provide essential information for optimization 
of the adsorption mechanism pathways since they are expression of the surface properties and 
capacities of the sorbents. They become therefore relevant tools in the design of sorption sys-

tems, since they help understanding how sorbates interrelate with the sorbent materials [20].

Cu(II), Ni(II), Pb(II) and Cd(II) sorption isotherms onto GS for the different temperatures 
explored were obtained by plotting the amount of metal adsorbed per GS sorbent mass unit 
(q

e
; mol·g−1) as a function of the remaining metal concentration in solution (C

e
; mol·L−1). The 

amount of sorbed metal was computed according to the equation presented below:

   q  
e
   =   

 ( C  0   −  C  
f
  ) 
 ______ m   ∗ V  (1)

where C
o
 and C

f
 are the initial and final metal concentration in solution, respectively (mol·L−1), 

m(g) is the sorbent mass (g) and V(L) represents the volume of the solution. The characteristic 

isotherms are presented in Figure 1. This figure clearly demonstrates that the amount of metal 
sorbed increases as it does the remaining metal concentration in solution until a maximum 
value is achieved. In the studied range, the temperature seemed not to have a clear effect on 
the maximum sorption capacity of GS for the divalent metals, except for Cu(II). In this case, 
the increase of temperature involved an increase on the maximum sorption capacity at equi-
librium from 0.22 mmol·g−1 (at 5°C) to approximately 0.28 (at 60°C). The experimental Cu(II), 
Ni(II), Pb(II) and Cd(II) sorption equilibrium results onto GS were submitted to Langmuir, 
Freundlich and D-R models. The different models and the results obtained are presented and 
discussed in the next section.
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2.2. Modeling and calculation of sorption equilibrium parameters

The equilibrium adsorption isotherms are one of the most important data that help under-

standing the sorption mechanism/s and provide fundamental insight for optimization and 
scale-up of sorption-based processes. Among the different isotherm models available, three 
of the most representative and largely employed have been chosen for this study: Langmuir, 

Freundlich and D-R isotherms.

The Langmuir model involves homogenous distribution of sorption sites and is based on the 

next set of assumptions: (i) the maximum sorption capacity corresponds to a saturated mono-

layer of solute in the surfaces, (ii) all the active sites are equivalent and the sorption energy 

remains constant, and (iii) there is no migration of adsorbed species in the plane of the surfaces. 

From this model, the maximum uptake, qmax (mol·g−1), and the Langmuir constant, K
L
 (L·mol−1), 

can be obtained. While qmax reflects the maximum uptake of the sorbent, the parameter K
L
 is 

a constant related to the energy of adsorption that quantitatively reflects the affinity between 
the sorbent and the sorbate. Fitting the experimental dataset to the Langmuir model, the effect 
of the temperature and of the nature of the metal on the different sorption equilibriums can be 
ascertained. By means of the Langmuir constant, it can also be discussed whether an adsorp-

tion system is favorable or unfavorable. The essential feature of the Langmuir isotherm can be 

expressed by means of the parameter R
L
, a dimensionless constant referred to as separation 

factor or equilibrium parameter. R
L
 is calculated using the following equation [15, 21–27]:

   R  
L
   =   1 _______ 

1 + K  
L
   ·     C  0  

    (2)

Figure 1. Sorption isotherms of Cu(II), Ni(II), Pb(II) and Cd(II) onto GS. T: 5–60°C.
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being K
L
 the Langmuir constant (L·mol−1) and C0 the initial metal concentration (mol·L−1). The 

R
L
 parameter is considered as a reliable indicator of the adsorption being the next four the 

possible situations [15, 25] (Table 1).

The Freundlich model is based in an empirical equation largely employed in the description 

of sorption processes in heterogeneous systems. On its linear form, the Freundlich equation 

takes the form:

  log  q  
e
   = log  K  

F
   +   1 __ n   log  C  

e
    (3)

where K
F
 and 1/n are empirical constants indicate of the relative sorption capacity and sorp-

tion intensity, respectively.

The experimental dataset was also submitted to the D-R isotherm model. The selection of this 
model was supported by the fact that it is considered as more general than Langmuir and it 

does not rely necessarily in the formation of a homogenous monolayer surface or a constant 

adsorption potential. D-R model has been used by several authors to distinguish between 

physical and chemical adsorption onto different biomaterials [28, 29]. This model can be lin-

earized and described by the next equation:

  ln  q  
e
   = ln  q  

m
   −  𝛽𝜀   2   (4)

being β is a constant related to the mean free energy of adsorption per mole of the adsorbate 
(mol2·J−2), q

m
 is the theoretical saturation capacity of the monolayer and ε is the Polanyi poten-

tial. The expression of this last parameter is RTln(1 + (1/C
e
)), being R (8.314 J·mol−1·K−1) the gas 

constant and T (K) the absolute temperature. Hence, by plotting ln(q
e
) against ε2, it is possible 

to generate the value of q
m

 (mol·g−1) from the intercept and the value of β from the slope.

The constant β provides information about the mean free energy, E (J·mol−1). The parameter E 

is defined as the free energy change required to transfer 1 mol of sorbate from the solution to 
the solid surface and can be calculated using the relationship [30, 31]:

  E =   1 ___ 
 √ 

___
 2β  
    (5)

The fitting of the experimental sorption datasets to the linearized expressions of Langmuir, 
Freundlich and D-R adsorption isotherms for the different temperatures explored is presented 

R
L
 value Type of isotherm

>1 Unfavorable

1 Linear

0 < R
L
 < 1 Favorable

0 Irreversible

Table 1. The isotherm characteristics according to the R
L
 value.
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in Figures 2–4, respectively. The separation factor (R
L
) calculated for the different initial metal 

concentrations has been also plotted and is presented in Figure 5.

From the linear plots of the different isotherm models, the characteristic sorption parameters of 
the divalent metals onto GS were calculated and are presented in Table 2. The separation factor 

(R
L
) has been also plotted for the different initial metal concentrations and temperatures (Figure 5).  

As it may be observed, all the R
L
 values are found in the range 0 < R

L
 < 1, indicating that the 

sorption of all the metals onto GS is a favorable process regardless on the initial concentration.

According to the R2 values presented in Table 2, the best fitting to the experimental dataset is 
provided by the Langmuir model. In general, the calculated values of maximum capacity and 
affinity M(II)-GS obtained through this model indicate that there is not a dramatic effect of the 
temperature on the sorption process. Cu(II), however, seems exhibiting a slight increase on 
maximum sorption capacity when the temperature is increased.

When Qmax is compared at a standard temperature of 20°C, it can be observed that a very 
similar capacity (about 2.5·10−4 mol·g−1) is achieved regardless of the metal. The Qmax values 

obtained at 20°C through the Langmuir model for the four metals is in agreement with pre-

viously reported data [32, 33]. The effect of temperature on the strength of the interaction 
sorbent-sorbate will be explored later by calculating specifically the thermodynamic param-

eters of the adsorption process.

The modeling of the experimental dataset according to the D-R equation was also able to provide 
a good fitting of the experimental trends observed. This model allowed computing the mean 

Figure 2. Langmuir model fitting of Cu(II), Ni(II), Pb(II) and Cd(II) sorption results in the temperature range of 5–60°C.
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Figure 4. Dubinin-Radushkevich model fitting of Cu(II), Ni(II), Pb(II) and Cd(II) sorption results in the temperature 
range of 5–60°C.

Figure 3. Freundlich model fitting of Cu(II), Ni(II), Pb(II) and Cd(II) sorption results in the temperature range of 5–60°C.
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free energy of adsorption E (kJ·mol−1) according to Eq. (5). This parameter provides useful infor-

mation that allows classifying the adsorption mechanism as chemical ion exchange or physical 
adsorption. If the magnitude of E is between 8 and 16 kJ·mol−1, the adsorption process follows 

a chemical ion exchange [15, 30]. On the other hand, values of E < 8 kJ·mol−1 indicate that the 

adsorption process is of a physical nature [34]. Values higher than 16 kJ·mol−1 would be indicative 

of more energetic interactions than the corresponding to an ion exchange process. As it can be 
seen in Table 2, the values of adsorption mean free energies are in the range 8 < E (kJ·mol−1) < 16 
for Cu(II), Ni(II) and Cd(II) sorption at all the temperatures and for Pb(II) at the lowest one, 

5°C. These results point out that Cu(II), Ni(II) and Cd(II) sorption onto GS at all the studied 
temperatures and Pb(II) sorption at 5°C proceeds mainly via ion exchange. For Pb(II) at the tem-

perature of 20°C and higher, the values in the range 16.64 < E < 18.81 indicate that there is an 
extra contribution to sorption by ion exchange and stronger Pb(II)-GS bonds are being formed.

With the dataset generated in the equilibrium experiments performed at different tempera-

tures, the characteristic thermodynamic parameters of Cu(II), Ni(II), Pb(II) and Cd(II) sorp-

tion onto GS were calculated.

2.3. Thermodynamic parameters of adsorption

The temperature dependence of the sorption process is associated with several thermody-

namic parameters that allow concluding whether the process is spontaneous or not. The 

Gibbs free energy change, ΔG0, is an indicative of the spontaneity of a chemical reaction, and 

Figure 5. Variation of adsorption intensity (R
L
) for Cu(II), Ni(II), Pb(II) and Cd(II) with the initial metal concentration in 

the temperature range of 5–60°C.
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Langmuir Freundlich Dubinin-Radushkevich

Metal T (°C) Qmax ·104

(mol·g−1)

K
L
·10−4

(L·mol−1)

R2 1/n K
F

R2 Qmax ·104

(mol·g−1)

β·109

(mol2·kJ−2)

E

(kJ·mol−1)

R2

Cu(II) 5 2.22 2.34 0.999 0.31 2.04 0.836 4.20 3.61 11.76 0.913

20 2.46 0.97 0.999 0.36 2.26 0.824 5.04 3.89 11.34 0.895

35 2.29 1.72 0.998 0.31 2.02 0.858 4.67 3.44 12.06 0.931

50 2.69 0.60 0.999 0.41 2.55 0.840 6.07 3.78 11.50 0.919

60 2.85 0.32 0.999 0.44 2.75 0.859 6.64 3.88 11.35 0.926

Ni(II) 5 2.09 0.15 0.992 0.32 2.09 0.976 2.93 3.79 11.49 0.913

20 2.22 0.18 0.993 0.34 2.17 0.958 3.24 3.58 11.82 0.895

35 1.93 0.28 0.997 0.33 2.16 0.941 3.06 3.28 12.35 0.931

50 2.45 0.10 0.986 0.37 2.36 0.958 3.55 3.37 12.18 0.919

60 1.97 0.18 0.997 0.37 2.32 0.914 3.31 3.23 12.44 0.926

Pb(II) 5 2.61 4.71 0.999 0.37 2.35 0.972 4.67 2.36 14.55 0.913

20 2.60 5.86 0.999 0.31 2.06 0.972 4.22 1.81 16.64 0.895

35 2.68 5.23 0.999 0.33 2.15 0.957 3.92 1.41 18.81 0.931

50 2.61 4.95 0.994 0.41 2.55 0.957 4.59 1.76 16.84 0.919

60 2.65 3.55 0.997 0.37 2.34 0.940 4.81 1.77 16.80 0.926

Cd(II) 5 2.57 0.46 0.993 0.26 1.83 0.938 4.37 3.66 11.69 0.913

20 2.40 0.56 0.997 0.22 1.65 0.926 3.84 2.95 13.03 0.895

35 2.52 0.51 0.995 0.20 1.59 0.966 4.33 2.93 13.06 0.931

50 2.73 0.31 0.985 0.16 1.44 0.850 5.02 3.15 12.60 0.919

60 2.24 0.76 0.998 0.26 1.81 0.921 4.12 2.58 13.92 0.926

Table 2. Adsorption isotherm constants for the adsorption of cu(II), Ni(II), Pb(II) and cd(II) onto GS as a function of temperature.
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therefore, it is an important criterion when it comes to spontaneity assessment of a sorption 

process. Both energy and entropy factors must be considered in order to determine the Gibbs 
free energy of the process. Reactions occur spontaneously at a given temperature if ΔG0 has a 

negative value, and this parameter can be determined from the following equation:

  Δ  G   0  = − RT ln  K  
L
    (6)

being R the ideal gas constant (8.314 J·mol−1·K−1) and T the absolute temperature (K). Besides, 
the standard Gibbs free energy can be defined in terms of enthalpy (ΔH0) and entropy (ΔS0) 

using the equation:

  Δ  G   0  = Δ  H   0  − TΔ  S   0   (7)

Including the Langmuir equilibrium constant (K
L
) in the Van’t Hoff equation, the enthalpy 

and the entropy of the process can be calculated:

  ln  K  
L
   =   Δ  S   0  ___ 

R
   −   Δ  H   0  ____ 

RT
    (8)

From the equation presented above, the values of ΔH0 and ΔS0 can be determined using the 

slope and the intercept of the plot of ln K
L
 versus 1/T. ΔG0, ΔH0 and ΔS0 were calculated for 

the different temperatures, and the results are presented in Table 3.

The negative values of ΔG0 observed for all the M(II)-GS systems indicate that the sorption 

process is feasible and spontaneous. The negative ΔH0 values obtained for the sorption of 

all the metals indicate that the sorption process is also exothermic. It is worth noting that, 
from the four metals, the sorption of Cu(II) is the process that involves a higher exchange of 
energy, releasing about 17.5 kJ per mol of sorbed metal. The sorption of other three metals 
involved a much lower energy release, varying from about 6 kJ·mol−1 in the case of Cd(II) to 

just 1.30 kJ·mol−1 in the case of Ni(II).

On the other hand, the positive values of ΔS0 indicated that the randomness at the solid/

liquid interface increases during the adsorption of these divalent metal ions onto GS [22]. A 

probable explanation for the observed increase of the disorder can be based on the fact that 
the adsorbed water molecules (which are displaced by the adsorbate species when metals are 

transferred from the liquid to the solid phase) gain more translational energy than the energy 

lost by the adsorbate ions [35].

To display the effect of the temperature on the spontaneity of the sorption process, the values 
of ΔG0 obtained for the different metals have been plotted as a function of temperature in 
Figure 6.

As it may be observed in Figure 6, ΔG exhibits a general decreasing trend when the tempera-

ture of the system increased. The thermal effect in the spontaneity of the sorption process 
can be also assessed through the numerical values of the slopes of the plot for the different 
metals: Cu(II), −19.26; Ni(II), −56.01; Pb(II), −76.60; and Cd(II), −76.57. The negative values 
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obtained indicate that the sorption process is spontaneous, being Pb(II) and Cd(II) the most 

temperature-sensitive metals.

The values of variation of enthalpy, entropy and Gibbs free energy presented in Table 3 allow 

establishing a different set of comparisons between the different metals. So, in basis to the 
energy released when the metal is adsorbed, the next ranking can be drafted out:

ΔH0: Cu > Cd > Pb > Ni

In basis to the increase of randomness that metal sorption provokes in the system:

ΔS0: Pb > Ni ≈ Cd > Cu

And lastly, in basis to a more general criterion of spontaneity of the sorption process for tem-

peratures within 5 to 50°C:

ΔG0 (5–50°C): Pb > Cu > Cd > Ni.

Metal T (°C) ΔG0 (kJ·mol−1) ΔH0 (kJ·mol−1) ΔS0 (J·mol−1·K−1)

Cu(II) 5 −23.27

20 −22.38

35 −24.98 −17.48 19.99

50 −23.36

60 −22.31

Ni(II) 5 −16.95

20 −18.26

35 −20.34 −1.30 57.45

50 −18.54

60 −20.79

Pb(II) 5 −24.88

20 −26.76

35 −27.83 −3.45 78.32

50 −29.04

60 −29.02

Cd(II) 5 −19.52

20 −21.05

35 −21.87 −5.99 57.34

50 −21.63

60 −24.76

Table 3. Thermodynamic parameters of Cu(II), Ni(II), Pb(II) and Cd(II) sorption onto GS at different temperatures.
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Sorbent Metal ΔG0

(kJ·mol−1)

ΔH0

(kJ·mol−1)

ΔS0

(J·mol−1)

Reference

Grape stalks Cu(II) −22.38 −17.48 19.99 This work

Ni(II) −18.26 −1.30 57.45

Pb(II) −27.83 −3.45 78.32

Cd(II) −21.05 −5.99 57.34

Cellulosic

waste orange peel

Cu(II) −12.48 −19.55 −24.12 [24]

Corn silk (Zea mays L) Cu(II) −17.10 10.75 95.08 [36]

Zn(II) −16.68 7.83 83.68

Pseudomonas putida Pb(II) −21.20 −18.69 8.4 [37]

Cu(II) −16.50 23.12 128

Hazelnut shells Ni(II) −15.05 32.49 158.54 [35]

Pb(II) −20.94 21.41 142.11

Cd(II) −20.80 12.21 110.73

Almond shells Ni(II) −12.36 47.29 199.00

Pb(II) −21.57 50.55 233.32

Cd(II) −17.45 17.76 118.28

Capsicum annuum Cu(II) −15.93 −7.63 28.35 [22]

Modified spent

Chrysanthemum

Cu(II) −25.19 −11.42 47.0 [25]

Rapeseed biomass Pb(II) −35.33 10.05 155.0 [38]

Figure 6. Variation of Gibbs free energy with temperature for in all the M(II)-GS systems.
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It has to be remarked however that for the highest temperature, 60°C, an inversion on the 
spontaneity of the sorption process takes place between Cd(II) and Cu(II), getting therefore 
the ranking the next form:

ΔG0 (60°C): Pb > Cd > Cu > Ni.

The thermodynamic results gathered in our study have been compared to those reported by 

other authors. A summary of the most relevant results found in a bibliographic survey are 

presented in Table 4.

As it can be observed, all the authors reported negative values of ΔG0 and most of them also 

positive values of ΔS0. These results clearly indicate that sorption is a spontaneous process 

that mostly takes place with an increase of the randomness of the system. On the other hand, 

the ΔH0 values reported were either positive or negative. Sorption processes showing nega-

tive enthalpy values would be the sorption of Cu(II), Ni(II), Pb(II) and Cd(II) onto GS (this 

work), Pb(II) sorption onto Pseudomonas putida and Cu(II) sorption onto both, Capsicum ann-

uum and modified spent chrysanthemum. On the other hand, positive enthalpy values were 
reported for Cu(II) sorption onto Pseudomonas putida, Ni(II), Pb(II) and Cd(II) sorption onto 

both, hazelnut and almond shells, or Cu(II), Pb(II) and Cd(II) sorption onto sporopollenin. 
Thus, these results indicate that metal sorption might take place through release or absorption 

of energy to or from the system.

3. Conclusions

The sorption of Cu(II), Ni(II), Pb(II) and Cd(II) onto grape stalk follows a Langmuirian sorp-

tion trend in the whole range of temperature explored. Freundlich and Dubinin-Radushkevich 
models were also capable of providing a reasonably satisfactory description of the sorption 

equilibrium. The mean free energy E calculated by means of the Dubinin-Radushkevich model 

Sorbent Metal ΔG0

(kJ·mol−1)

ΔH0

(kJ·mol−1)

ΔS0

(J·mol−1)

Reference

Bacillus pumilus sp. AS1 Pb(II) −0.56 7.53 0.027 [39]

Loquat (Eriobotrya japonica) leaves Cd(II) −8.21 29.73 125.44 [40]

Sargassum filipendula Cd(II) −3.82 0.26 0.87 [41]

Penicillium simplicissimum Cd(II) −18.27 20.03 130.9 [42]

Zn(II) −17.08 25.42 145.5

Pb(II) −20.04 39.13 202.5

Sporopollenin Cu(II) −7.54 17.55 85.58 [43]

Pb(II) −13.78 31.97 150.98

Cd(II) −8.85 13.99 76.64

Table 4. Comparison of the sorption thermodynamic parameters obtained for GS with these observed for other biomass.
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demonstrated that sorption of Cu(II), Ni(II) and Cd(II) onto grape stalk proceeds mainly via 

ion exchange. In the case of Pb(II), an extra contribution to the ion exchange at temperatures 
higher than 5°C was observed. This extra contribution would be based on the establishment 
of stronger Pb(II)-GS interactions. The enthalpy and entropy variation in the sorption process 

demonstrates that Cu(II), Ni(II), Pb(II) and Cd(II) sorption onto grape stalks is a spontaneous 

exothermic process that involves an increase of the randomness of the system.

The thermodynamic parameters of metal sorption onto GS allowed establishing different 
rankings: based on the energy released in the sorption process, ΔH0, Cu > Cd > Pb > Ni; on the 

increase of randomness provoked by the sorption process, ΔS0, Pb > Ni ≈ Cd > Cu; and, finally, 
generalizing in base to the spontaneity of the overall process, ΔG0 (5–50°C), Pb > Cu > Cd > Ni.
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