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Abstract

Electrical properties of rocks and geoelectrical resistivity method have been discussed 
in this chapter, in which the results of an electrical survey over the sedimentary terrain 
of the central zone of Panama (Central America) are presented. This study therefore 
includes (i) a petrophysical study with the aim of relating its electrical resistivity values 
with the volumetric water contents, (ii) an electrical resistivity imaging (2D inversion), 
and (iii) an electrical sounding (1D inversion) for detecting the water table and its corre-
sponding stratigraphy and variation with time. Two datasets for these last methods have 
been developed with the aim of monitoring the percentage changes in model resistivity. 
Petrophysical tests show good fits between resistivity and volumetric water content and 
known parameters for rocks and soils. 1D and 2D inversions show a significant reliability 
with the stratigraphic information obtained from a borehole and strong changes caused 
by rainy season in this tropical zone.

Keywords: electrical sounding, electrical resistivity imaging, petrophysical, 
sedimentary rocks, geophysical inversion, time-lapse imaging

1. Introduction

In geophysical studies, resistivity method can be used in fault zone detection and stratigraphic 

characterization, in hydrology for tracing water transport during a given period of irrigation 

studies, and for archeological and agriculture purposes. Resistivity is controlled by water 

content, soil texture and its geochemical properties, lithology, organic matter content, and 
thermodynamic parameters. The electrical properties of the materials that make up part of the 

outermost layers of the crust can be studied either electrically or electromagnetically from the 

response produced by the flow of electrical current in the subsurface. Geoelectrical methods 
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take into account these electrical and electromagnetic aspects whose physical parameters, 

such as electrical current, electrical potential, and electromagnetic fields can be measured nat-
urally or artificially. In 1830 a self-potential method based on the natural electrical response 
of the subsurface was used [1]. In his work, low-intensity electrical currents generated by 

some minerals were identified. Later, this methodology underwent certain changes in terms 
of using a natural source, and Schlumberger, during the second decade of the last century, 

decided to use artificial sources by injecting electrical current into the subsoil.

The electrical resistivity of rocks is a physical property that is characterized by very large 

variations in their values; most rocks and soil can be classified as highly resistive or insulating, 
and only metallic minerals and some of their salts can be classified as conductors. There are 
three ways in which electrical current can propagate through the subsurface: ohmic or elec-

tronic, electrolytic, and dielectric. The first is related to normal type of flow of charges through 
materials with free electrons such as metals; for electrolytic conduction, almost all soils and 

rocks have pores that could be saturated with water; thus, for those types of soils and rocks 

that have high ranges of electrical resistivity, the circulation of electrical current is carried out 

exclusively through electrolytic conduction due to the presence of water contained in the pores 

and fissures of the material. This means that the value of the electrical resistivity depends on 
the concentration and degree of dissociation and mobility of ions [2]. Electrolytic conduction 

is produced by the slow movement of the ions within the electrolyte; therefore, the rocks are 

electrolytic conductors where the flow of electrical charge occurs through the conduction of 
ions. Dielectric conduction occurs only in materials with high electrical resistivity (insulators). 

According to [3], in this class of materials, the electrons can experience a slight displacement 

with respect to their atomic nucleus in the presence of a variable external electric field.

Geoelectrical methods include a wide variety of techniques that are adapted to the objectives 
of the investigation, the dimensions and topography of the area of interest, and the electri-

cal properties of the soil and rocks that make up the study area and whether these proper-

ties undergo large variations. Techniques such as self-potential, telluric and magnetotellurics, 
electrical resistivity (which we will deal with in more detail in this chapter), electromagne-

tism, and induced polarization allow a rapid measurement of the electrical properties of the 

soil, such as electrical resistivity, or its opposite, electrical conductivity. These noninvasive 

techniques essentially involve the interpretation of these physical parameters of the soil, 
which quantify the degree of difficulty or ease in which a certain volume of soil responds to 
the passing of electric charges, respectively; for more details about these methods, see [1, 3–7].

The electrical resistivity method is one of the most common geoelectrical methods for the 

prior evaluation of soil in civil, environmental, archeological, geological, and agricultural 

projects. Its noninvasive nature and the rapid data acquisition make this method an inex-

pensive and effective tool in the detailed evaluation of soil. Then, the determination of the 
geochemical and geophysical properties of soil is essential to the development of civil and 

agricultural engineering projects. In archeology, for example, the resistivity method consti-
tutes an additional tool of remarkable value when evaluating in advance the presence and/

or absence of buried archeological features, thus optimizing resources and time spent in the 

field, with significant economic impact. Conventional methods of soil analysis directly affect 
the soil because the samples must be taken and analyzed in a laboratory.
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Geoelectrical methods have been used extensively in groundwater studies and stratigraphic 
characterization. Several authors have carried out studies of samples in the laboratory using 

petrophysical relationships [8] in which the volumetric water content is obtained by the mea-

surement of dry bulk density and the gravimetric water content, for example, see [9, 10] in 

leachate recirculation studies, [11, 12] for root-zone moisture interactions and watershed 

characterization, and [13] in rainfall simulations.

This chapter gives a short description of electrical properties of rocks, basic principles of 

the geoelectrical resistivity method, and a case study of sedimentary rocks of central zone 

of Panama (Central America) that include petrophysical soil analysis and 1D and 2D inver-

sion methodology. This study has been developed with the aim: (i) to obtain a relationship 

between electrical resistivity with volumetric water content and correlation with the empiri-

cal equation of Archie’s law and (ii) to define a 1D and 2D electrical models for two datasets 
obtained in different seasons (dry and rainy) and relate the results to the stratigraphy and in 
addition monitor the percentage changes of calculated resistivity values.

2. Study area and geology

The study area is located in an open test zone of the extension of the Technological University 

of Panama, 19 km East-Northeast of Panama City in the central zone of Isthmus of Panama, 

Central America; see Figure 1(a). Panama has a rainy and dry seasons, with a tropical maritime 

Figure 1. (a) Location map and (b) geological setting of study area and environs [18].
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climate with a hot, humid, rainy season (May → December) and a short dry season (January 

→ May). According to [14] the transition at the end of the dry season to the beginning of rainy 

season is linked with the disappearance of trade winds.

According to [15–18], the study area is characterized by a dense sequence of sediments and 
volcanic rocks. The site is influenced by the geological elements of the Panama Formation 
(marine facies) of early to late Oligocene; these elements consist of tuffaceous sandstone, tuff-

aceous siltstone, and algal and foraminiferal limestone [18]. Figure 1(b) shows the geological 

map and study area and environs.

3. Methodology

3.1. Site layout and profile

To obtain a distribution of electrical resistivity values in lateral and vertical directions, and its vari-

ations for a period of three and half months, we have defined a North-South profile of 47 m long; 
this profile is superimposed on a borehole drilled in 2011 with a piezometer to monitor ground-

water dynamics linked with dry and wet seasons. Figure 2(a) and (b) show the area with profile, 
electrical sounding, and borehole positions and Figure 2(c) a geotechnical scheme of the borehole.

3.2. Petrophysical relationship

A total of five soil samples were collected from the site to a depth of 20 cm. To obtain a relation-

ship between resistivity and volumetric water content, we have used the ASTM standard G57-06, 
where the samples are homogenized inside a box of insulating materials as shown in Figure 3.

Figure 2. (a) Details of the study area with North-South profile and electrical sounding and borehole location, (b) 
panoramic of the field site, and (c) description of borehole log.
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In this box, two metal plates with an equal surface (S) are placed; we connected these plates 
to the source of electrical current or resistivity meter; see Figure 3. On the surface of the soil 

sample, two metal pins are inserted and separated by distance (l) to measure the voltage gen-

erated when the electric current passes through this sample. The value of electrical resistivity 

(ρ) of the soil sample is given by:

  ρ = RS/ l  
 
    (1)

where R is the electrical resistance (in Ω). Volumetric water content (θ) and dry bulk density 
were obtained by weight difference (dried at 105°C for 24 hours) and calculating the gravi-
metric water content. The relationship between ρ-θ of these samples can be demonstrated and 
then fit it into Archie’s law [8]:

  ρ = a ρ  
w
    Φ   −m   S  

a
  −n   (2)

where a is the tortuosity factor, ρ
w
 is the electrical resistivity of the fluid filling the pores, 

Φ is the porosity (volume of void-space/bulk volume of the soil), S
a
 is the saturation of the 

sample (volume of fluid/volume of void-space), and m and n correspond to the cementation 

and saturation exponents of the rock, respectively. Under certain special conditions, it is 

possible to approximate these last parameters and to obtain the volumetric water content 

from Φ and S
a
.

Figure 3. LandMapper of Landviser and Miller soil box used for the measurement of the electrical resistivity of each soil 
sample in laboratory, according to ASTM standard G57-06 (photo courtesy of 3P Soc. Ltda).
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3.3. Electrical sounding and 2D electrical resistivity imaging acquisition and 

processing

The electrical resistivity methods generate three-dimensional patterns of electric current and elec-

tric potential flows within the subsurface [19]. In the case of two electrodes inserted in the surface 

of a homogeneous and isotropic half soil and separated by a short distance, it is possible to see a 

symmetrical pattern in the equipotential lines and in the electric flow lines; this means that at any 
point in the vicinity of the system, the electrical potential can be affected by the current electrodes 
(A and B). In situ, the voltage (ΔV) between two points (M and N) due to the two electrical sources 

is measured, and the electrical resistivity value is given by:

  ρ = k Δ  V/i  
 
      (3)

where k corresponds to geometrical factor, which only depends on electrode position and i 

the electrical current.

In the case of an inhomogeneous medium, the measurements of the electrical resistivity of 

the subsurface tend to change when the set of four electrodes or quadrupole is moved along 
a profile. Another important aspect is that the value of electrical resistivity defined in the last 
equation will depend on the geometrical configuration of the electrodes and not on the inten-

sity of the electric current. Therefore, the value obtained in this equation will correspond to a 
kind of average values of resistivity of the subsurface, from which we get the apparent electri-

cal resistivity (ρ
a
). It is important to note that the value of the apparent electrical resistivity 

of the soil will be its real value only if the soil is homogeneous. In practice there are different 
types of quadrupole arrays whose use will depend on the objectives of the research. Each of 
them is characterized by different geometric constants (k); Figure 4 presents the most com-

mon arrangements used in soil exploration.

For each of the linear arrays of Figure 4, the record of the apparent electrical resistivity value of 

the subsoil is taken at the center of the internal electrodes; the measurement point is located at the 

center of the four electrodes. These quadrupole arrays allow the development of several modali-
ties which are closely related to the objectives of the research. In this work we used the electrical 
sounding and 2D electrical resistivity imaging. The first method consists of keeping the position 
of the potential electrodes fixed (1 m apart for this study) and moving the current electrodes by 
1 m. This procedure, illustrated in Figure 5(a), allows defining a tabular model of the subsur-

face based on the geometrical distribution of the strata that have different electrical properties. 

Figure 4. Some common quadrupole arrays: (a) Schlumberger, (b) Wenner, and (c) dipole–dipole and geometric constant.

Geophysics140



The apparent resistivity value corresponding to each distance AB/2 is plotted logarithmically, 
resulting in a curvilinear tendency and, subsequently, with the resolution of the 1D inverse prob-

lem. This dataset is fitted to a curve that obeys the number of layers with their respective values 
of calculated electrical resistivity and thickness. The aim of inverse problem is to reconstruct a 

model from apparent electrical resistivity values. Two resistivity datasets were collected using a 

Schlumberger electrode configuration on the 16th of February, 2012, and 31st of May, 2012.

The second method consists of obtaining a high-resolution 2D image of the distribution of 

the electrical resistivity both laterally and vertically. The process consists of obtaining a set 

of apparent electrical resistivity values through a finite number of electrodes aligned along a 
profile with a constant distance between them (1 m for this study). The data can be obtained 
by varying the distances between the pairs of transmitter-receiver electrodes by multiples of 
a value with a computer-controlled multielectrode system. Figure 5(b) shows the electrode 

location along the profile and the measured points.

Measurements (for electrical sounding and 2D electrical resistivity imaging) were performed 

with a Syscal R1 Switch-48 (IRIS Instruments), in a simple mode for the first and a multielec-

trode mode for the second. In respect of the acquisition setting, the maximum value allowed 
standard deviation of the measurement was fixed at 1%; minimum and maximum number 
of stacks per measurement and the current time per cycle were fixed at 3 and 6 and 500 ms, 
respectively. To obtain a realistic 2D image of electrical resistivity distribution in the soil, we 

used a cell-based inversion method; this method subdivided the subsurface into a number of 

rectangular cells whose positions and sizes can be fixed [20]. The aim is to use an inversion 

algorithm to calculate the electrical resistivity of the cells that provides a model response that 

agrees with the apparent electrical resistivity values obtained in the field. In this study we used 
the regularized least-square optimization method [20–22]. This optimization method has two 

different constraints: the smoothness-constrained method [21] and the robust method [23]; the 

first is used when the subsurface exhibits a smooth variation in resistivity distribution and 
the second in regions that are piecewise constant and separated by sharp boundaries [20, 24].

Figure 5. Distribution of apparent electrical resistivity data points for (a) the electrical sounding with a Schlumberger 

array and (b) a pseudo-section for imaging analysis with a Wenner-Schlumberger array.

Geoelectrical Sounding and Imaging over the Central Zone of Panama
http://dx.doi.org/10.5772/intechopen.74210

141



As in the electrical sounding, two resistivity datasets were collected using a Wenner-
Schlumberger array for the electrical resistivity imaging on the 16th of February, 2012, and 
31st of May, 2012.

3.4. Time-lapse inversion

To monitor the changes in subsurface resistivity values during the period defined in the study 
area, we used the Res2Dinv inversion software (Geotomo); the time-lapse dataset can be inter-

preted through the time-lapse method proposed by [25]. In this software, the initial dataset for the 

inversion model is used as a reference model in the inversion of the later time-lapse datasets [26]. 

For our first dataset, we used the robust method; regarding another inversion parameter, we used 
an initial damping factor of 0.15, minimum damping factor = 0.030, and a simultaneous inversion.

4. Results and interpretation

4.1. Resistivity: volumetric water content derived from soil samples

Figure 6 presents a plot of electrical resistivity versus the volumetric water content of the soil 

samples obtained in the surveyed area. The fit was done using a power function with a good 
coefficient of determination, R2 of 0.950; high values of resistivity of this type of soil (weath-

ered rock) can be linked to 26% of volumetric water content, while the low values of electrical 
resistivity of the samples are related to 49% of water content.

4.2. Electrical sounding

Figure 7(a) represents the two datasets obtained with a Schlumberger array in the given peri-

ods; subsequently, with the resolution of the inverse problem 1D, these datasets were fit-
ted to a curve (for each one) that obeys the number of layers with their respective values 

Figure 6. Relationship between the electrical resistivity and the volumetric water content obtained in the surveyed area.
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Figure 7. (a) Logarithmic representation of the two datasets as a function of distance AB/2, (b) tabular earth model 
obtained from the inversion, and (c) borehole performed on site.

Figure 8. Electrical resistivity tomography obtained for a (a) reference test – February 16, 2012 – and (b) second test, May 
31, 2102. (c) Percentage changes in model resistivity obtained in this study.
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of  calculated electrical resistivity and thickness. After solving the inverse problem for each 

dataset, the errors obtained were not greater than 2.1%. Figure 7(b) shows a three-layer model 

for each test.

In both cases, the resolution of the inverse problem suggests the existence of a first layer of 
14.5–19.7 Ω.m and a variation of thickness from 0.6 m to 1.6; this effect is linked to the change 
from dry to rainy season. Water-table elevation obtained from a piezometer has shown varia-

tion between 1.57 and 0.61 m for each date, followed by a second layer of 8.9 and 9.6 Ω.m and 
5.4 and 6.4 m thick for each season, respectively. Finally, there is a last layer with 16.2 and 16.5 
Ω.m; the results of this last layer do not show significant changes in their electrical properties 
and thicknesses. In accordance with the borehole at the site, the two first layers are linked to 
weathered and fractured sedimentary rock, while the last layer reported for both analyses is 

linked to hard sedimentary rock.

4.3. Electrical resistivity imaging and time-lapse results

Figure 8(a) and (b) show the results of inverse problem solution; in these electrical tomogra-

phies, it is possible to identify a first horizon related to weathered rocks and clay (13–27 Ω.m) 
with tones in brown, red, and yellow. The changes in calculated resistivity values are related 

to the beginning of rainy season; saturation of surface horizons can produce a decrease in 

calculated resistivity value. At depth, it is possible to identify a low resistivity (6–13 Ω.m) 
horizon from the result of Figure 8(a). However, these low values are also revealed at shal-

low depth; see Figure 8(b). About Figure 8(c), high negative percentage changes are linked 

to increase of water content in subsoil produced by rains which occurred on May 31, 2012. At 
depth, the percentage changes are close to 0. Positive percentage changes in model resistivity 
are related to inversion artifacts. It is possible that these unrealistic changes can be linked to 

the removal electrode after the first test or inversion scheme used in this analysis.

5. Conclusions

The results of this study show the value of petrophysical relationship of soil samples in under-

standing the potential function between the electrical properties of rocks and its volumetric 

water content. These functions can help to understand the evolution of vadose zone moisture 

in response to seasonal changes in the tropics. Electrical sounding and electrical resistivity 

imaging are useful tools not only for monitoring changes in the physical properties of this 

kind of soils but also for associating the different types of soils and rocks with its electrical 
properties. We have seen the association of these results with the borehole at the site. The 
strong negative percentage variation in calculated resistivity values presented in the surveyed 

area shows the important seasonal changes occurring in the tropics, where these negative val-

ues are related to the superficial infiltration produced by the rainfall during the transitional 
season (dry → rainy). The positive percentage changes in model resistivity can be associated 

with artifacts, linked to inversion method used or due to the removal of the electrodes after 

each test.
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