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Abstract

Fourier velocity encoding (FVE) is an alternative to phase contrast imaging (PC). FVE
provides considerably higher SNR than PC, due to its higher dimensionality and larger
voxel sizes. Furthermore, FVE is robust to partial voluming, as it resolves the velocity
distribution within each voxel. FVE data are usually acquired with low spatial resolution,
due to scan-time restrictions associated with its higher dimensionality. FVE is capable of
providing the velocity distribution associated with a large voxel, but does not directly
provides a velocity map. Knowing the velocity distribution on a voxel is important for
accurate diagnosis of stenosis in vessels on the scale of spatial resolution. Velocity maps,
however, are useful for visualizing the actual blood flow through a vessel and can be used
in different studies and diagnosis. In this context, this chapter deals with two aspects of
the FVE MRI technique: acceleration and estimation of velocity map. First, are introduced
six different acceleration techniques that can be applied to FVE acquisition. Methods such
as variable-density sampling and compressive sampling. Then, is proposed a novel
method to estimate velocity maps with high spatial resolution from low-resolution FVE
data. Finally, it can be concluded that FVE datasets can be acquired in time scale compa-
rable to PC, it contains more velocity information, since it resolves a velocity distribution
within a voxel, and also provides an accurate estimation of the velocity map.

Keywords: Fourier velocity encoding, compressive sensing, variable-density sampling,
parallel imaging, velocity map estimation

1. Introduction

Cardiovascular diseases are among the main causes of death in both men and women in the

United States. Some of these diseases are caused or can be diagnosed by abnormal blood flow

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



in a particular part of the cardiovascular system. For example, atherosclerosis consists of the

narrowing of a blood vessel due to the gradual accumulation of lipids, inflammatory cells and

connective tissue in the vessel wall [1]. This narrowing alters the local blood flow and may

cause flow jets and/or turbulent flow. In these flow jets occur peaks of velocity that are

significantly higher than those exhibited at a normal flow. Thus, knowledge of blood flow

patterns in the human body is an important component in the research and diagnosis of certain

cardiovascular diseases. Currently, two distinct approaches to the study and quantification of

blood flow in the human body are available to researchers and clinicians: in-vivo direct mea-

surements of the velocity field using velocity-encoded magnetic resonance imaging (MRI) or

Doppler ultrasound.

Doppler ultrasound is the gold standard for quantifying blood flow patterns in the clinical

environment. The equipment is relatively small, cheap and portable, and is capable of produc-

ing measurements in real time with excellent temporal resolution. On the other hand, evalua-

tion by ultrasound is inadequate when there is fat, air, bone, or surgical scar in the acoustic

path. Moreover the equipment is strongly user-dependent, since flow measurements are inac-

curate when the ultrasound beam cannot be properly aligned with the axis of flow [2, 3].

MRI is capable of three-dimensional visualization of all aspects of a cardiac examination,

such as the anatomy of the heart, features in the blood vessels, and also the quantification

of velocity in any given vessel. Compared to ultrasound, magnetic resonance imaging

does not have the same operator dependence, being able to accurately quantify the correct

direction of flow, and does not have the same acoustic limitations related to bones, fat, air

or surgical scars.

The current gold standard for MRI flow quantification is phase contrast (PC) [4]. In this tech-

nique, a bipolar gradient is aligned to the flow axis to obtain a velocity measurement (approxi-

mately the mean [5]) for each voxel of the image. Despite its unrestricted use, phase contrast has

some limitations. Phase contrast technique suffers from partial-volume effects when a wide

distribution of velocities is contained within a single voxel [6]. This is particularly problematic

when flow is turbulent and/or complex (e.g., flow jets due to stenosis) or at the interface between

blood and vessel wall (viscous sublayer). This issue is typically addressed by increasing the

spatial resolution, which dramatically affects the signal-to-noise ratio (SNR) and increases the

scan time. Therefore, PC may be inadequate for estimating the peak velocity of stenotic flow jets

and for assessing wall shear rate.

Fourier velocity encoded (FVE) MRI [7] is a magnetic resonance velocity quantification tech-

nique which is as an alternative to phase contrast imaging, since real-time FVE is the MRI

equivalent to spectral-Doppler ultrasound [8]. In this technique, the acquired measurements

have a considerably higher signal-to-noise ratio than those acquired with phase contrast, due

to its high-dimensional data set and also to its larger voxels. In addition, different from PC

data, FVE does not suffer from partial volume effects, since for each voxel a velocity distribu-

tion is measured. So this technique can accurately diagnose vessels stenosis on low spatial

resolution. The data set measured with this technique is usually obtained with very low spatial

resolution. This is due to restrictions associated with its high dimensionality, which can lead to

long acquisitions time. Thus, FVE is not a popular technique in the clinical environment that

requires exams to be performed as fast as possible. On the other hand, it has been shown that
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the FVE acquisition can be accelerated. For example, FVE acquisition using rapid spiral sam-

pling in k-space is a fast and reliable alternative to accurately measure velocity peaks in blood

flow jets or to obtain hemodynamic parameters [9].

In this context, this chapter deals with two aspects of the FVE MRI technique: acceleration and

estimation of velocity map. First, are introduced six different important acceleration tech-

niques that can be applied to FVE acquisition and are related to the use of variable-density

sampling, which may be used along spatial k-space and velocity k-space, partial Fourier

acquisition along velocity k-space, temporal acceleration methods such as UNFOLD and k-t

BLAST, parallel imaging methods and compressive sampling.

Finally, since FVE does not provide the actual velocity map associated with the flow, is

proposed a novel method to velocity maps estimation with high spatial resolution from low-

resolution FVE data. The proposed method is based on the mathematical model of the FVE

distribution, s x; y; vð Þ, and involves solving a PDE-constrained optimization related to the

Navier-Stokes equation.

2. Magnetic resonance flow imaging

MRI is a modality uniquely capable of imaging all aspects of cardiovascular disease, and is a

potential “one-stop shop” for cardiovascular health assessment. MRI can generate cross-

sectional images in any plane (including oblique planes), and can also measure blood flow.

The image acquisition is based on using strong magnetic fields and non-ionizing radiation in

the radio frequency range, which are harmless to the patient. MR is used to image hydrogen

nuclei, because of its abundance in the human body. Spinning charged particles (or “spins”),

such as hydrogen nuclei, act like a tiny bar magnet, presenting a very small magnetic field,

emanating from the south pole to the north pole. In this section we introduce the mathematical

formalism of MR imaging and flow imaging.

2.1. Mathematical formalism

The acquired MR signal s tð Þ at a particular time instant corresponds to a sample of the Fourier

transform M kx; ky
� �

of the excited magnetization m x; yð Þ:

M kx; ky
� �

¼

ð

x

ð

y

m x; yð Þe�j2π kxxþkyyð Þ dxdy: (1)

The Fourier coordinates kx and ky vary with time, according to the zeroth moment of the

readout gradients Gx and Gy:

kx tð Þ ¼
γ

2π

ðt

0

Gx τð Þ dτ (2)

ky tð Þ ¼
γ

2π

ðt

0

Gy τð Þ dτ: (3)
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This formalism can be generalized for any combination of Gx, Gy, and Gz gradients:

M k
!

r

� �

¼

ð

r
!m r

!
� �

� e�j2πk
!

r� r
!

d r
!

(4)

k
!

r tð Þ ¼
γ

2π

ðt

0

G
!

r τð Þdτ, (5)

where G
!

r is the oblique gradient resulting from the combination of the Gx, Gy and Gz gradients,

and r
!

is its corresponding axis along which the linear variation in magnetic field intensity is

realized.

Given a spatial position function r
!
(t) and a magnetic field gradient G

!

r tð Þ, the magnetization

phase is:

ϕ r
!
, t

� �

¼ γ

ðt

0

G
!

r τð Þ� r
!

τð Þdτ, (6)

For static spins, r
!

tð Þ is constant ( r
!
), and this becomes:

ϕ ¼ γ r
!
�

ðt

0

G
!

r τð Þdτ (7)

¼ 2π k
!

r� r
!
, (8)

as in the exponential in Eq. (4).

2.2. Principles of MR flow imaging

The basic principles of quantitative flow measurement using magnetic resonance were first

proposed by Singer [10] and Hahn [11] in the late 1950s. However, clinical applications of MR

flow quantification were not reported until the early 1980s [12–15]. Current MR flow imaging

methods are based on the fact that spins moving at a constant velocity accrue a phase propor-

tional to the velocity times the first moment of the gradient waveform along the direction in

which they are moving.

For spins moving along the r
!
-axis with a constant velocity v

!
, and initial position r

!
0, we can

write r
!

tð Þ ¼ r
!

0 þ v
!
t. Rewriting Eq. (6), for t ¼ t0:

ϕ ¼ γ

ðt0

0

G
!

r tð Þ � r
!

0 þ v
!
t

� �

dt (9)

¼ γ r
!

0 �

ðt0

0

G
!

r tð Þdtþ γ v
!
�

ðt0

0

G
!

r tð Þ tdt (10)

¼ γ r
!
0 �M

!

0 þ γ v
!
�M
!

1, (11)
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where M
!

0 and M
!

1 are the zeroth and first moments of the r
!
-gradient waveform at the time of

signal acquisitions (“echo time”, or “time to echo” (TE)), respectively. Thus, if a gradient with

null zeroth moment is used (e.g., a bipolar gradient, aligned with v
!
), the phase accrued for a

constant velocity spin is ϕ ¼ γ v
!
�M
!

1.

Therefore, if a bipolar gradient waveform is played between the excitation and the readout, the

phase measured in a pixel of the acquired image is directly proportional to the velocity of the

spins contained within its corresponding voxel. However, factors other than flow (such as

inhomogeneities of the magnetic field) may cause additional phase shifts that would cause

erroneous interpretation of the local velocity [16].

2.2.1. Phase contrast

The phase contrast method addresses the problem mentioned above by using two gradient-

echo data acquisitions in which the first moment of the bipolar gradient waveform is varied

between measurements [4]. So from Eq. (11) it is possible to obtain time-dependent velocity

measures in all three spatial directions. Then for a fixed time and direction, e.g. velocity in z-

axis, the through-plane velocity in each voxel is measured as:

vz x; yð Þ ¼
ϕa x; yð Þ � ϕb x; yð Þ

γ Ma
1 �Mb

1

� � , (12)

where ϕa x; yð Þ and ϕb x; yð Þ are the phase images acquired in each acquisition, and Ma
1 and Mb

1

are the first moment of the bipolar gradients used in each acquisition.

2.2.2. Fourier velocity encoding

While phase contrast provides a single velocity measurement associated with each voxel,

Fourier velocity encoding [7] provides a velocity histogram for each spatial location, which is

a measurement of the velocity distribution within each voxel.

FVE involves phase-encoding along a velocity dimension. Instead of only two acquisitions,

as in phase contrast, multiple acquisitions are performed, and a bipolar gradient with a

different amplitude (and first moment) is used in each acquisition. Eq. (11) can be rewritten

as:

ϕ r
!

; v
!

; t
� �

¼ 2π k
!

r � r
!
þ k

!

v � v
!

� �

, (13)

where k
!

v is the velocity frequency variable associated with v
!
, and is proportional to the first

moment of G
!

r tð Þ:

k
!

v ¼
γ

2π
M
!

1: (14)

Each voxel of the two-dimensional image is associated with a distribution of velocities. This

three-dimensional function m x; y; vð Þ is associated with a three-dimensional Fourier space
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M kx; ky; kv
� �

. Thus, an extra dimension is added to k-space, and multiple acquisitions are

required to cover the entire kx-ky-kv space (Figure 1). In order to move along kv, a bipolar

gradient with the appropriate amplitude (and first moment) is played before the kx-ky readout

gradients, in each acquisition. Placing the bipolar gradient along the z-axis will encode

through-plane velocities. Placing the bipolar gradient along x or y will encode in-plane veloc-

ities. Oblique flow can be encoded using a combination of bipolar gradients along the x, y and

z axes.

Each acquisition along kv is called a velocity encode. The number of required velocity encodes

depends on the desired velocity resolution and velocity field-of-view (the maximum range of

velocities measured without aliasing). For example, to obtain a 25 cm/s resolution over a

600 cm/s field-of-view, 24 velocity encodes are needed. The spatial-velocity distribution,

m x; y; vð Þ, is obtained by inverse Fourier transforming the acquired data, M kx; ky; kv
� �

. If cine

imaging [17] is used, measurements are also time resolved, resulting in a four-dimensional

dataset: m x; y; v; tð Þ.

2.3. FVE signal model

2DFT phase contrast provides two 2-dimensional functions,m x; yð Þ and vz x; yð Þ, the magnitude

and velocity maps, respectively. For simplicity we are assuming that the through-plane veloc-

ity map is in the z direction. If these maps are measured with sufficiently high spatial resolu-

tion, and flow is laminar, one can assume that each voxel contains only one velocity, and

therefore the spatial-velocity distribution associated with the object is approximately:

Figure 1. Spiral FVE k-space sampling scheme. The dataset corresponding to each temporal frame is a stack-of-spirals in

kx-ky-kv space. Each spiral acquisition corresponds to a different kv encode level.
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s x; y; vð Þ ¼ m x; yð Þ � δ v� vz x; yð Þð Þ, (15)

where δ vð Þ is the Dirac delta function.

In 2DFT FVE, k-space data is truncated to a rectangular cuboid in kx-ky-kv space. The associated

object domain spatial-velocity blurring can be modeled as a convolution of the true object

distribution, s x; y; vð Þ, with sinc x=Δxð Þ, sinc y=Δyð Þ, and sinc v=Δvð Þ, where Δx and Δy are the

spatial resolutions along the x and y axes, respectively, and Δv is the velocity resolution, as

follows:

bs x; y; vð Þ ¼ m x; yð Þ � δ v� vz x; yð Þð Þ½ �∗sinc
x

Δx

� �
∗sinc

y

Δy

� �
∗sinc

v

Δv

� �
, (16)

where bs x; y; vð Þ is the measured object distribution and ∗ denotes convolution. This is equiva-

lent to:

bs x; y; vð Þ ¼ m x; yð Þ � sinc
v� vz x; yð Þ

Δv

� �� 	
∗ sinc

x

Δx

� �
� sinc

y

Δy

� �� 	
: (17)

On the other hand, spiral FVE acquisitions follows a stack-of-spirals pattern in kx-ky-kv space

(Figure 1), then k-space data is truncated to a cylinder, i.e., a circle along kx-ky (with diameter

1=Δr), and a rect function along kv (with width 1=Δv), where Δr and Δv are the prescribed

spatial and velocity resolutions, respectively. Using the same approach we used for 2DFT FVE,

the associated object domain spatial-velocity blurring in spiral FVE can be modeled as a

convolution of the true object distribution, s x; y; vð Þ, with jinc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=Δr

� �
and sinc v=Δvð Þ,

resulting in:

bs x; y; vð Þ ¼ m x; yð Þ � δð v� vzðx; yÞ Þ½ �∗sinc
v

Δv

� �
∗jinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

Δr

 !

¼ m x; yð Þ � sinc
v� vz x; yð Þ

Δv

� �� 	
∗jinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

Δr

 !

, (18)

where jinc zð Þ ¼ J1 πzð Þ= 2zð Þ and J1 zð Þ is the Bessel function of the first kind and first order.

These approaches for deriving FVE data from high-resolution velocity maps will be used for

the map estimation purposes.

3. Acceleration of FVE

FVE datasets are multidimensional, which makes this method particularly suitable for acceler-

ated acquisition. Variable-density sampling may be used along spatial k-space, and also along

velocity k-space. Partial Fourier acquisition along velocity k-space can be used to reduce scan
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time by nearly 50%. Temporal acceleration methods such as UNFOLD and k-t BLAST have

been demonstrated with FVE. Parallel imaging methods have also been shown to work well

with FVE. Also FVE is optimally suited for acquisition acceleration using compressed sensing.

This section introduces each of these acceleration methods.

3.1. Variable-density sampling of spatial k-space

Magnetic resonance imaging can be accelerated using variable-density sampling of k-space.

This is typically implemented by using a sampling pattern that satisfies the Nyquist criterion at

the low spatial frequencies, and undersamples the high spatial frequencies. In other words, the

effective field-of-view (FOV) is varied from the desired FOV at the center of k-space to a

reduced FOVat the periphery [18]. The general hypothesis is that artifacts from undersampling

the periphery of k-space will be negligible, because the energy of high frequency components is

typically much lower than that of low frequency components. Variable-density spirals can

increase spatiotemporal resolution and improve accuracy in flow quantitation [19]. The spatial

aliasing resulting from variable-density spiral sampling is incoherent, and, in the regions-of-

interest (e.g., cardiac chambers, valves, great vessels), it typically originates from static or slow

moving material located at the periphery of the spatial FOV (e.g., chest wall). FVE resolves the

distribution of velocities within the voxel, thus moderate low-velocity aliasing artifacts gener-

ally do not affect one’s ability to calculate diagnostically important parameters—such as peak

velocity and acceleration—from the time-velocity distribution.

The use of variable-density spirals for acceleration of slice-selective FVE with spiral readouts is

illustrated in Figure 2. A single-shot uniform-density spiral readout was replaced with a multi-

shot variable-density spiral acquisition. The use of multi-shot acquisitions provides the possibil-

ity of multi-dimensional temporal acceleration, and allows reduction of readout duration and

TR, which reduce off-resonance artifacts and temporal aliasing, respectively. The use of a shorter

TR also allows improving the temporal resolution. The data in Figure 2a was obtained using a

single-interleave 8 ms readout uniform-density spiral design [20, 21]. The variable-density design

used three 4 ms spiral interleaves, and provided higher spatial resolution and reduced off-

resonance artifacts, and thus better spatial localization of flow (Figure 2b) [9]. Some aliasing

artifacts were observed in spatial domain (see asterisk), but these were not observed in the time-

velocity distributions. A fully sampled reference is shown in Figure 2c, for comparison.

3.2. Variable-density sampling of velocity k-space

Variable-density sampling of velocity k-space was first demonstrated by DiCarlo et al. [22]

using real-time FVE. Real-time FVE (also known as MR Doppler or one-shot FVE) [8, 23–25]

utilizes cylindrical excitation to restrict the spatial field-of-view to a one-dimensional beam. An

oscillating readout gradient simultaneously encodes spatial position and velocity along the

axis of the beam. Variable-density sampling of velocity k-space has also been demonstrated

using slice-selective FVE [26]. Variable-density sampling along the velocity dimension may be

used to improve the velocity resolution and/or increase the velocity field-of-view. However,

conventional non-Cartesian reconstruction methods such as gridding and direct Fourier
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transform (DrFT) do not adequately deal with the associated undersampling artifacts. Alter-

natively, reconstruction of variable-density FVE may be performed using variable-width sinc

interpolation with dynamic field-of-view centering [26]. Figure 3 illustrates the use of variable-

density sampling along velocity k-space for accelerating slice-selective FVE [26]. The recon-

struction scheme using variable-width sinc interpolation with dynamic field-of-view centering

exhibits negligible aliasing artifacts compared to conventional gridding (see arrows). There is

also no noticeable loss of velocity resolution compared with the small velocity FOV ground

truth reference. Note the improvement in velocity resolution compared with the large FOV

uniform-density result.

3.3. Partial Fourier acquisition of velocity k-space

Partial Fourier acquisition and reconstruction exploits the conjugate symmetry property of the

Fourier transform of real-valued signals. The method involves acquiring slightly greater than

one half of k-space, and synthesizing the missing data using a combination of conjugate

synthesis and background phase correction. A narrow strip of k-space is acquired with sym-

metric coverage in order to estimate this smoothly-varying background phase. The fastest and

most widely used method of partial Fourier reconstruction is homodyne detection [27]. Acqui-

sition time in FVE can be reduced by 30–40% using partial Fourier acceleration along the

velocity dimension. This consists in acquiring only slightly more than half of the kv encodings,

and synthesizing the missing data using homodyne reconstruction. This has been successfully

used in FVE for scan time reduction, without significant loss of velocity resolution. This

Figure 2. Effect of variable-density sampling of spatial k-space on image quality and spatial localization of flow:

(a) uniform-density design; (b) variable-density design; (c) ground truth reference. Top row: spatial images from the first

cardiac phase; center row: time-velocity distributions measured at the aortic valve; bottom row: time-velocity distribu-

tions measured in the descending aorta. The use of higher spatial resolution and shorter readout duration improves the

spatial localization of flow, which is identified by the reduced signal from static material in the time-velocity histograms

(see arrows). Some aliasing artifacts were observed in spatial domain (see asterisk), but these were not observed in the

time-velocity distributions.
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approach has been demonstrated in studies with healthy volunteers [8, 20, 21] and patients [20,

21, 25, 28], and in phantom experiments [22]. The feasibility of reducing scan time in FVE using

partial Fourier acquisition is illustrated in Figure 4. Up to 42% of the acquired data (along

velocity k-space) was discarded and then synthesized using homodyne reconstruction. The

results show 71 and 60% improvement in velocity resolution using this approach, when

imaging the aortic valves of a healthy volunteer and of a patient with aortic stenosis. Partial

Fourier performs well in both healthy volunteer and patient studies, and no significant loss of

resolution or artifacts is noticed [20, 21].

3.4. Temporal acceleration

In dynamic MRI, view sharing [29] is commonly used to increase the number of temporal

frames. Artifacts and loss of temporal resolution due to view sharing can be avoided or correc-

ted using temporal acceleration techniques, such as UNFOLD [30, 31] and k-t BLAST [32].

UNFOLD reduces scan time by making efficient use of k-t space, and can be very successful

in the context of slice-selective FVE due to the high dimensionality of this imaging method.

The use of UNFOLD for acceleration of FVE was first demonstrated by Macgowan and

Madore [33], and further investigated by Carvalho and Nayak [9, 20, 21]. Figure 5 illustrates

an implementation of the UNFOLD method specially designed for slice-selective FVE with

spiral readouts [9, 20, 21]. A view-ordering scheme that reduces overlap in v-f space was

designed (v denotes the through-plane velocity dimension, and f denotes temporal frequency).

Figure 2a shows the undersampled data in both v–f and v–t domains (where t denotes time).

The aliasing signal is filtered using a two-dimensional filter (Figure 5a). This filter has a

bandwidth of 107 Hz for velocities below �150 cm/s. For higher velocities, the bandwidth

varies from 69 to 30 Hz. This results in effective temporal resolutions of 9.3 and 14.5–33.3 ms,

respectively. The temporal resolution is lower for higher velocities, but this may prove

unnoticeable, as the velocity distribution of high-velocity flow jets within large voxels is

typically temporally smooth. For comparison, the temporal resolution with view sharing

Figure 3. In vivo demonstration of variable-density sampling of velocity k-space. Velocity distributions were measured

using slice-selective spiral FVE at the aortic valve plane of a healthy volunteer using: (a) uniform-density sampling, large

FOV; (b) uniform-density sampling, small FOV (ground truth); (c) variable-density sampling, reconstructed using con-

ventional gridding; and (d) variable-density sampling, reconstructed using variable-width sinc interpolation with

dynamic field-of-view centering. The reconstruction scheme using variable-width sinc interpolation with dynamic field-

of-view centering reduces undersampling artifacts (arrows), and shows velocity resolution equivalent to that of the

ground truth reference.

High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications134



would be 50 ms for all velocities (Figure 5d). The remaining narrow-bandwidth aliasing

components at �20 and �40 Hz are filtered using a tight zero-phase one-dimensional notch

filter along the temporal dimension (Figure 5b). The final results show that this temporal

acceleration scheme is capable of achieving 6-fold acceleration in multi-interleaf spiral FVE,

without noticeable loss of temporal resolution, and without introducing significant artifacts

(Figure 5c). View-sharing (Figure 5d), on the other hand, is equivalent to a moving-average

low-pass filter, which reduces the temporal frequency bandwidth (dashed arrows), and causes

loss of temporal resolution, perceived as blurring along time (circled).

3.5. Parallel imaging

Spatial aliasing due to undersampling of slice-selective FVE can be reduced using parallel

imaging methods such as SENSE [34] and SPIRiT [35]. Parallel imaging is an acceleration

approach that uses data from multiple coils to reduce aliasing artifacts due to undersampling

of spatial k-space [34]. Steeden et al. was able to accelerate slice-selective spiral FVE by a factor

of four using SENSE [28]. Lyra-Leite et al. used two-dimensional and three-dimensional

SPIRiT to accelerate slice-selective spiral FVE by factors of two and four, respectively [36, 37].

In the velocity distributions measured using slice-selective FVE, aliasing due to spatial under-

sampling typically results in increased signal at v ¼ 0 cm/s, since the majority of the aliasing

signal is associated with static material. Figure 6 illustrates the use of two-dimensional SPIRiT

to accelerate slice-selective spiral FVE by a factor of two [36]. SPIRiT is able to considerably

reduce aliasing artifacts, while not introducing significant artifacts (see error images).

3.6. Compressive sensing

Compressive sensing (CS) has been used in MRI [38] context for a while in different applica-

tions, such as fMRI images [39], PC-MRI velocity maps [40] and also FVE distributions [41, 42].

Basically, is a set of theories and methods that establish the conditions under which a signal

can be reconstructed based on a limited number of linear measurements. It also states different

procedures for signal reconstruction, provided that these conditions are properly met [43–46].

For a successful image reconstruction using CS the desired image must satisfy three

Figure 4. Evaluation of partial k-space reconstruction along the velocity dimension, in aortic valve studies of a healthy

volunteer (a–c) and a patient with aortic stenosis (d–f). Homodyne reconstruction performs well in both healthy volunteer

(b) and patient (e) studies, improving the velocity resolution by 71 and 60%, respectively. Full k-space distributions with

the same number of velocity-encode samples are shown for comparison (a,d), as well as the fully sampled datasets (c,f).
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conditions: (1) must have a sparse representation in a known transform domain, (2) artifacts

caused by k-space undersampling must be incoherent in the sparsifying transform domain and

(3) must be reconstructed by a nonlinear method that enforces both sparsity of the image

representation and consistency of the reconstruction with the acquired samples [38].

Figure 5. Temporal acceleration compared with view sharing in (left) v-f space and (right) v-t space: (a) undersampled data;

(b) with two-dimensional filtering; (c) with two-dimensional and notch filtering; and (d) with view sharing. The two-

dimensional filter (dashed lines) removes a majority of the aliasing, and the notch filter (dotted line) removes the remaining

aliasing signal (solid arrows). This approach removes aliasing components without noticeable loss of temporal resolution.

View sharing reduces the temporal frequency bandwidth (dashed arrows) and causes temporal blurring (circles).

Figure 6. Time-velocity distributions from select voxels, reconstructed using twofold accelerated two-dimensional SPIRiT

(center row), in comparison with the fully sampled reference (top row): (a) right external carotid artery; (b) right internal

carotid artery; and (c) left carotid bifurcation.
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FVE data is suitable for CS application, since the information contained in images with

different velocity encodes is highly redundant differing only where flow occurs. Therefore,

through spatial finite differencing operations FVE dataset have a sparse representation [38, 42].

The original CS reconstruction problem is a NP-hard problem, generally of combinatorial

complexity [46–48], and is not viable except for very low-dimensional cases. Thus, the original

problem can be relaxed and a precise reconstruction can be achieved using the following non-

linear constrained optimization problem:

f∗ ¼ argminf∥Tf∥
p
ℓp
s: t: Mf ¼ s, (19)

where 0 < p ≤ 1, T is the sparsifying transform, M is the acquisition process matrix, f is the

desired image, s is the acquired signal and

∥f∥ℓp ¼
XN

n¼1

f n
�� ��p

 !1=p

: (20)

Usually in most CS applications the value of p is set to p ¼ 1, but it has been shown that for

ℓp-minimization (with 0 < p < 1) requires fewermeasurements than ℓ1 [46]. In order to reconstruct

MR data based on ℓp-minimization, one can use the algorithm described by Miosso et al. [45].

Other possible ways to enhance signal reconstruction in CS, both in terms of reducing the

number of required measurements and in terms of improving image quality for a fixed

number of measurements, include the use of support prior information extracted from struc-

tural knowledge, previous frames or previous slices [39, 46], and the use of information

extracted using machine learning techniques [49, 50]. Other alternative optimization problems

are also desired in the context of noisy measurements, in which case, for example, the equality

constraint in Problem 19 is replaced by an inequality such as ∥Mf� s∥ℓ2 ≤ ε, with ε being a

tolerance to noise [47, 48] — the higher the value of ε, the higher the number of measurements

required for reconstruction.

In this context, has been shown by Marinelli et al. [51] and Hilbert et al. [42] that CS can also be

used as an acceleration technique for FVE datasets and the acquisition can be made in time

scale comparable to the gold standard phase contrast. So it is possible to obtain meaningful

velocity spectra in small vessels in clinical time while regular phase contrast can provide only

mean velocity maps [42].

4. Estimating velocity maps from FVE distributions

In this section will be discussed a methodology to estimate the velocity map based on the FVE

velocity distribution. It has been shown in Section 2.3 that FVE velocity distribution signal

model bs x; y; vð Þ is related to the actual velocity map vz x; yð Þ through the relation

bs x; y; vð Þ ¼ m x; yð Þ � sinc
v� vz x; yð Þ

Δv

� �� 	
∗Ψ x; yð Þ, (21)
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where Ψ x; yð Þ is a point spread function associated with k-space truncation data. This provide

a first relation between the FVE measured velocity distribution and the velocity map. On the

other hand, blood can be ideally modeled as an incompressible Newtonian fluid. Then, blood

flow can be predicted using the Navier-Stokes equation

ρ
∂v

∂t
þ v � ∇v

� �

¼ �∇pþ μ∇2v, (22)

where v ¼ vx; vy; vz
� �

is the velocity vector, ρ is the blood density, μ is the whole blood

viscosity and ∇
2 is the Laplacian differential operator. Then, ideally the desired velocity map

must satisfy the flow physics model. Therefore, for a fixed instant of time, a velocity map can

be estimated from a measured FVE dataset f x; y; vð Þ, with K velocity encodes, through the

following PDE-constrained optimization problem

min
vz

X

K

k¼1

ð

Ω

f x; vkð Þ � m xð Þ � sinc
vk � vz
Δv

� �h i

∗Ψ xð Þ
n o2

dA s:t:ρv � ∇v ¼ �∇pþ μ∇2v, (23)

where x ¼ x; yð Þ is the position vector and vk is a velocity encode.

In order to solve Eq. (23) the Navier-Stokes equation must be discretized. Since the interest

here is in a proof-of-concept velocity map estimation based on only one component of the

velocity vector, a bidimensional version of the physics model solver was used. Fluid is

assumed incompressible, so the steady 2D Navier-Stokes-continuity dimensionless system of

equations [52],

v � ∇v ¼ �∇pþ
1

Re
∇

2v and ∇ � v ¼ 0, (24)

was discretized using the Finite Element Method [53], where Re is the Reynolds number [52],

v ¼ vxiþ vzj∈ IR2 is the velocity field and p is the pressure. Discretization is made using

residues functions based on the governing equations’ weak form Gresho and Sani [53]

Rc vð Þ ¼

ð

Ω

∇ � vð ÞϕdΩ (25)

and

Rm v; pð Þ ¼

ð

Ω

v � ∇vð Þ � ΨdΩþ

ð

Ω

s : ∇ΨdΩ�

ð

Γ

n � sð Þ � ΨdΓ, (26)

where ϕ∈ IR, Ψ ∈ IR2 are test functions, and σ ¼ �pIþ Re�1
∇vþ ∇vT
� 


the Newtonian stress

tensor [52].

Discretizatized equations are written as a linear system Jc ¼ r, where J is a matrix given by the

residues’ Jacobian, r is a vector given by the residues and c is the solution vector containing

velocity and pressure. Now the minimization problem given by Eq. (23) can be written as
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min
vz

X

K

k¼1

fk � m� sinc
vk � vz
Δv

� �h i

∗Ψ

�

�

�

�

�

�

2

ℓ2

þ λ J vx; vz;p½ � � rk k2
ℓ2
, (27)

where c ¼ vx; vz;p½ � is the solution vector written in a stacked form and m is a spin density

map with high spatial resolution.

In order to validate the proposed constrained optimization (Eq. (27)) an simple experiment

was carried out. To do so, a FVE dataset was simulated from an acquired PC dataset, then the

optimization was solved and finally the resultant velocity map was compared with the

acquired PC velocity map qualitatively and quantitatively.

First, high-spatial-resolution four-dimensional PC data of a pulsatile carotid flow phantom

(Phantoms by Design, Inc., Bothell, WA) were obtained using a 3DFT SPGR pulse sequence.

The scan parameters were: 0:5� 0:5� 1 mm3 spatial resolution; field-of-view 4:0� 3:5� 5:0

cm3; TR 11.4 ms; flip angle 8.5�; temporal resolution 91.2 ms; VENC 50 cm/s; 40 min per scan;

9 NEX. The data were acquired on a GE DiscoveryMR750 3T system, with a 32-channel receive-

only head coil array (Nova Medical, Inc., Wilmington, MA, USA). The through-slab (z) axis

was oriented along the S/I direction. The phantom’s pulse cycle was set to 60 bpm. The velocity

map for each spatial axis—upc, vpc, and wpc—was reconstructed using data from all channels of

the receive coil array. The lumen was segmented by manually outlining the vessel borders from

a stack of 2D axial images, obtained from the reconstructed 3D volume.

Then simulated spiral FVE distributions were derived from the acquired phase contrast data using

the signal model presented in Eq. (21). Simulated data was generated only for the through-axis

velocity component (vz), and for a cardiac phase corresponding to thephantom’smid-systole. The 9-

NEX PC dataset was used in this process, so that the FVE distributions were computed from low-

noise velocity maps (as in Carvalho et al. [54]). This is because FVE has considerably higher SNR

thanPC ingeneral, due to its higherdimensionalityand larger voxel size. Finally, twodifferent spiral

FVE distributions were obtained for each slice of the volumewithΔr = 2mm spatial resolution: one

using the proposedmethod and the other one using themethod proposed by Rispoli and Carvalho

[55]. The velocity resolutionwas set toΔv ¼ 10 cm/s, over a 120 cm/s velocity field-of-view.

About the discretization of the Navier-Stokes equations, lumen manually outlined was used to

define computational mesh and simulation grid was designed with 1.0 � 0.5 mm2 element

resolution using Q2=P�1 elements. Phantom’s blood-mimicking fluid (with Reynolds number

Re ¼ 110) was assumed to be Newtonian and incompressible. PC-MRI velocity profile was set

at the inlet together with no-slip boundary condition.

The optimization problem given by Eq. (27) was then solved using a alternating minimization

technique [56]. Left side part was solved using a standard non-linear least squares algorithm

and the physics model part of the optimization was solved using Newton’s method [53].

Figure 7 presents the results of the validation experiment using the phase contrast velocity

map acquired at the pulsatile carotid flow phantom’s bifurcation. The velocity maps estimated

from the simulated low spatial resolution FVE data are very similar (qualitatively) to the

reference map. At first glance one can say that the velocity map obtained using the technique

proposed by Rispoli and Carvalho [55] (Figure 7c) is more similar to the acquired PC-MRI
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velocity map. However the error images show that the velocity map obtained using the

technique proposed in this work (Figure 7b) was more accurate than the one obtained with

the other method (Figure 7c).

Moreover, a quantitative comparison was performed based on the signal-to-error ratio (SER).

The acquired phase contrast velocity field, vpc, was used as the ground-truth “signal”; conse-

quently, the estimation error is the difference between the estimated velocity field, ve, and the

ground-truth field, vpc. Thus, the SER is calculated (in decibels) as:

SER
ν
! ¼ 10 log 10

P

i, j vpc i; jð Þ
�

�

�

�

2

P

i, j ve i; jð Þ � vpc i; jð Þ
�

�

�

�

2

0

@

1

A, (28)

Finally, the proposed method measured SER, relative to the PC reference, was 44.63 dB while

the technique proposed in Rispoli and Carvalho [55] achieved 28.68 dB. Showing that the

proposed optimization given by Eq. (27) is more consistent with the actual velocity map than

the previous method proposed.

These good results are important, meaning that FVE may potentially be a substitute of PC

imaging, since it contains both a velocity distribution and also velocity map with considerably

higher SNR and robustness to partial voluming.

5. Conclusion

In this chapter, was discussed approaches in order to make Fourier Velocity Encoding MRI

more suitable for the clinical environment. FVE is a promising MRI technique capable of

measuring blood flow in the blood vessels and estimating important biomarkers that are

useful for understand and diagnose diseases. It provides a velocity distribution within a voxel

instead of a mean velocity map like phase contrast but requires acceleration to be feasible in

the clinical setting. So was discussed six different strategies that can reduce drastically the

acquisition time. The acceleration techniques discussed are related to the use of variable-

density sampling, which may be used along spatial k-space and velocity k-space, partial

Fourier acquisition along velocity k-space, temporal acceleration methods such as UNFOLD

and k-t BLAST, parallel imaging methods and compressive sensing.

Figure 7. Validation experiment using a pulsatile carotid flow phantom: (a) reference phase contrast velocity map,

measured at the phantom’s bifurcation; (b) velocity map estimated from the simulated low-resolution spiral FVE data

with Δr = 2 mm spatial resolution with the proposed method (and associated error percentages); and (c) velocity map

estimated from the simulated low-resolution spiral FVE data with Δr = 2 mm spatial resolution with the method proposed

by Rispoli and Carvalho [55] (and associated error percentages).
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On the other hand, was proposed a novel method for estimating high-resolution velocity

maps from low-resolution FVE measurements. This method is based on a PDE-constrained

optimization that incorporates the FVE signal model and the Navier-Stokes equation.

Results showed that it is possible to obtain highly accurate velocity maps from the FVE

distributions. Finally, it can be concluded that FVE datasets can be acquired in time scale

comparable to the gold standard phase contrast, it provides more velocity information, since

it contains a velocity distribution, and also can provide the actual velocity map as long as a

constrained-optimization problem to restore the velocity map is solved.
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