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Abstract

Trypanosoma cruzi, during vertical transmission, crosses the placental barrier. The tropho-
blast, a continuous renewing epithelium, is the first tissue of this anatomical barrier to have 
contact with the parasite. The epithelial turnover, including the trophoblast, is part of the 
innate immune response due to the fact that pathogens attach to the surface of cells prior 
invasion. Cellular processes such as proliferation, differentiation, and apoptotic cell death 
are part of the trophoblast turnover. Interestingly, T. cruzi induces all of them. In addi-
tion, the placenta expresses TLRs, whose activation leads to the secretion of pro-inflam-
matory and immunomodulating cytokines. T. cruzi is recognized by TLR-2, TLR-4, TLR-7, 
and TLR-9. In the present review, we analyze the current evidence about the trophoblast 
epithelial turnover, the induction of a specific cytokine profile as a local placental innate 
immune response, as well as other possible defense mechanisms against the parasite.
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1. Introduction

Congenital Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is associated with prema-

ture labor, low birth weight, and stillbirths [1, 2]. The congenital transmission of pathogens 
is the consequence of complex interactions among the parasite, maternal and fetal/newborn 
immune responses, and placental factors. The placenta is the least-studied component of this 
“trilogy” [3, 4] but is essential in determining the probability of transmission since it forms 
the primary barrier between the maternal and fetal compartments throughout pregnancy [5].

Mother and developing fetus are protected against environmental challenges by the immune 
system; the placenta is able to modulate fetal as well as maternal immune responses. Maternal 
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immune system presents an enhanced capacity of cellular and molecular recognition and 
communication between each other. Therefore, during normal pregnancy, the maternal 
immune defenses assure the health of the mother and developing child. Moreover, the fetus 
during its development also acquires immune defenses that are able to modulate the maternal 
immune system. Considering this facts, the immune system responses are unique and par-

ticularly effective [6].

The maternal and the fetal developing innate and adaptative immune systems determine 
the probability of fetal/neonatal infection. Fetal infection is related to diverse pregnancy dis-

orders such as abortion, preterm labor, intrauterine growth retardation, and preeclampsia 

[7]. Particularly, congenital T. cruzi infection can cause abortion, stillbirth, and intrauterine 
growth restriction [1, 2, 8].

The innate immune system presents a main role in protecting the developing child against 
T. cruzi infection. Thus, increase of pro-inflammatory cytokines is present in the sera of unin-

fected babies born to infected mothers [9]. However, in newborns who suffer from congenital 
infection, the levels of inflammation markers as well as active NK cells are low [10]. Therefore, 
the innate immune response is effective in uninfected newborn from chagasic mothers. The 
adaptive immune system is also relevant; for instance, maternal anti-T. cruzi antibodies are 

transferred through the placenta to the fetus and where they reduce the parasitemia [9].

Importantly, congenital transmission rates for Trypanosoma cruzi (T. cruzi) are relatively low 
(3.9–5.6%) [11, 12]. Moreover, the typical amastigote nests (intracellular parasites) cannot be 
observed in placentas from mothers with chronic Chagas disease [13] nor in human placental 

chorionic villi explants (HPCVE) infected in vitro with the parasite [14]. In the latter, only 
a few parasite antigens and DNA can be identified [14, 15]. In addition, other infections of 
the placenta are not commonly observed [11]. All these evidences suggest the presence of 
systemic and local defense mechanisms against pathogen and that the placenta is a key factor 
against T. cruzi infection.

2. Antiparasitic mechanisms of the placenta

Importantly, during congenital transmission, the parasites must cross the placental barrier 
[8, 16].

2.1. Placenta

The placenta is a temporary organ that provides nutrition and gas exchange for the develop-

ing fetus, ensuring normal embryo-fetal growth and development and supporting pregnancy-
related changes in maternal physiological systems [17]. The human placenta is classified as 
discoidal, villous, and hemochorial and consists of a fetal portion, which originates from the 
Chorion frondosum, and a maternal portion, or basal decidua, which originates from the endo-

metrium. The functional units are the floating chorionic villi, formed by the trophoblast, and 
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the villous stroma. The trophoblast comes into contact with maternal blood in the intervillous 

space (IVS) and is delimited by a basal lamina from the villous stroma, which is the fetal con-

nective tissue containing the fetal capillaries. The placental barrier is formed by the tropho-

blast, basal laminae, villous stroma, and fetal capillary endothelium (Figure 1) [4, 8].

The placenta may contain as much as 500 mL of maternal blood, in the IVS, exposing the tro-

phoblast to pathogens that might be present in it [5]. Therefore, the trophoblast is a key factor 
against congenital infection since it is the first fetal tissue that comes into contact with patho-

gens circulating in the maternal blood [11]. On the other hand, the placenta, as an immune 

regulatory organ, acts as a modulator of fetal as well as maternal immune responses [6]. The 

placenta, in particular the trophoblast, is also part of a local innate immune response. Three 
types of defense mechanisms in innate immunity have been described: (i) anatomical barri-
ers, such as the placental barrier (Figure 1), (ii) cellular innate immune responses, and (iii) 

humoral innate immune responses. During tissue invasion, pathogen breaks the anatomical 
barriers, and innate immune cells are activated and secrete cytokines and chemokines to con-

trol pathogen replication [18, 19].

Figure 1. The placental barrier: the placental barrier is formed by the trophoblast composed by the superficial 
syncytiotrophoblast (ST) that contacts the maternal blood in the intervillous space (IVS) and the cytotrophoblast (CT) 
which corresponds to the germinative layer of the epithelium. The trophoblast is supported by the fetal connective tissue 
of the villous stroma (VS) that contains the fetal capillaries (FC). The placental barrier presents also two basal membranes 
(BM): (1) between villous stroma and trophoblast and (2) around fetal endothelium. The cells of the CT proliferate and 
afterward differentiate into the ST. The continuous incorporation of CT cells into the ST is counterbalanced by the 
formation of apoptotic ST knots, which are released into the IVS.
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2.2. The trophoblast

The trophoblast is a bistratified epithelium composed of the superficial syncytiotrophoblast 
(ST) and the basal cytotrophoblast (CT). There is strong evidence that the ST layer is resistant 
to numerous pathogens, including T. cruzi [20, 21]. However, damage of the syncytium might 
allow the parasite access to the villous core, increasing parasite infection [5, 22].

2.3. The trophoblast epithelial turnover

The basal CT cells are the only ones of the trophoblast with proliferative capacity. The super-

ficial multinucleated ST layer is highly differentiated and is unable to proliferate. Importantly, 
the ST contacts directly with the maternal blood [23–25], where in case of T. cruzi infection, 
the parasite circulates [11, 26]. The ST is a typical syncytium that is continuous and normally 
uninterrupted and covers all villous trees of the human placenta. The ST is formed and main-

tained by the continuous incorporation of CT cells through syncytial fusion, meaning that 
the CT cells suffer cellular differentiation. The continuous incorporation of CT cells into the 
ST is counterbalanced by the formation of apoptotic knots that are released into the mater-

nal blood present in the IVS [24, 25]. The normal epithelial turnover assures the integrity of 
diverse anatomical barriers, including the placental one. The maintenance of the integrity of 
anatomical barriers is part of the innate immune system due to the fact that pathogens, prior 
to cell invasion, must attach to the surface of cells. As these cells are continuously eliminated, 
the attached pathogens are removed with them [3]. Thus, the trophoblast turnover should be 

considered as a defense mechanism against pathogens, including T. cruzi.

2.3.1. Cell proliferation

We have previously shown that the parasite induces, in the trophoblast, cellular proliferation. 
These experiments were performed in HPCVE and in the trophoblastic cell line BeWo; both 
models are commonly used in trophoblast studies [27]. In HPCVE T. cruzi increases DNA 
synthesis as well as the PCNA proliferation marker [11]. On the other hand, in BeWo cells 

the parasite also induces significant DNA synthesis (as determined by BrdU incorporation), 
increase of the percentage of cells in the ST and G2/M cell cycle phases, and the expression of 
the widely used proliferation markers AgNORs, PCNA, and Ki67 [28]. Importantly, it should 
be taken into account that PCNA acts also as a molecular coordinator in multiple other cellu-

lar functions such as DNA damage repair, cell cycle control, cell survival, and gene expression 
[29]. Therefore, the increase of PCNA expression could also be a response to T. cruzi-induced 

cell and tissue damage. We have previously demonstrated that T. cruzi induces during ex vivo 

infection tissue disorganization of HPCVE [14] as well as apoptosis [30]. However, Ki67, a 
more specific proliferation marker that can be observed only during the active phases of the 
cycle [24], was significantly increased together with the other proliferation markers.

2.3.2. Cell differentiation

As described above, CT cells differentiate continuously and fuse with the ST [24, 25]. T. cruzi 

induces cell differentiation in the trophoblast in HPCVE and BeWo cells. Thus, the parasite 

Chagas Disease - Basic Investigations and Challenges24



increases the protein expression of the major biochemical markers of trophoblast differen-

tiation [31]: β-human chorionic gonadotropin (β-hCG) and syncytin [3]. Moreover, T. cruzi 

induces cell fusion in BeWo cells as demonstrated by a two-color fusion assay and by the anal-
ysis of the redistribution of the intercellular adhesion protein desmoplakin [3]. Previously, 
we have shown that T. cruzi activates the ERK1/ERK2 MAPK pathway [32]. Interestingly, 
the induction of trophoblast differentiation is mediated by the activation of the ERK1/ERK2 
MAPK and other MAPK signal transduction pathways [33].

2.3.3. Apoptotic cell death

T. cruzi also induces apoptotic cell death in the trophoblast. The ST releases continuously 
apoptotic knots into the IVS [24]. In HPCVE, the induction of apoptosis has been demon-

strated by the determination of the presence of pyknotic nuclei, induction of DNA fragmen-

tation, caspase-3 like activity, and presence of caspase-3 and cleaved cytokeratin 18 [30]. 

Cellular processes related to apoptosis are also regulating cell differentiation (fusion) in the 
trophoblast. For instance, CT cell differentiation is regulated by caspases [34, 35]. Particularly, 
caspase-8, an apoptosis initiator caspase, regulates trophoblast differentiation and fusion. 
Caspase-8 is activated in highly differentiated CT cells just prior to fusion and escorts the fus-

ing cell content including the nucleus into the ST, and it has not been found in proliferating 
CT cells [23, 36]. Moreover, the fusion of the trophoblast has been visualized by localizing 
caspase-8 [34]. T. cruzi induces in BeWo cells as well as HPCVE the expression and activation 

of caspase-8 [11, 37]. Moreover, the inhibition of caspase-8 increases the amount of parasite 
DNA and the number of intracellular parasites in BeWo cells [37]. The inhibition of caspase-8 
decreases parasite-induced cellular differentiation and apoptotic cell death, but not cellular 
proliferation [11, 37].

2.4. The trophoblast and the innate immune cellular response against T. cruzi

The innate immune response against pathogens is initiated by pathogen pattern recognition 
receptors (PRRs), which include Toll-like receptors (TLRs) that recognize and bind highly 
conserved sequences known as pathogen-associated molecular patterns (PAMPs). The human 
trophoblast expresses all ten of the known functional TLRs [7], and T. cruzi is recognized by 
TLR-2, TLR-4, TLR-7, and TLR-9. Surface TLRs (TLR-2 and TLR-4) recognize glycosylphos-

phatidylinositol (GPI)-anchored mucin-like glycoproteins from T. cruzi surface [16, 38, 39]. We 

have shown that T. cruzi infection is related to TLR-2, but not to TLR-4 and TLR-9, expression, 
and activation [16]. The binding of TLR-2 to its ligands leads to activation of signaling path-

ways and upregulation of genes involved in the innate immune response including cytokines 
and chemokines [7, 16]. T. cruzi induces the secretion of IL-1β, IL-6, IL-8, IL-10, and TNF-α in 
HPCVE [16]. Interestingly, IL-1β, IL-6, and TNF-α secretions are also associated with cellular 
proliferation and differentiation in the trophoblast [40, 41], and inhibition of TLR-2 impairs 
trophoblast turnover (manuscript under review in “Placenta”). However, up to now, we do 
not know whether the activation of TLRs occurs mainly in the trophoblast or if other placental 
cells are also involved in this matter that should be addressed in the future. Importantly, as a 
consequence of our results, the TLR-2-initiated cytokine profile should also be considered as 
a local placental defense mechanism.
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2.5. Other placental defense mechanisms against T. cruzi

The placenta, and particularly the trophoblast, expresses many noncoding RNAs including 
microRNAs (miRNAs) that regulate placental development function. Moreover, different 
miRNAs exhibit specialized functions during normal and pathological pregnancies. Placental 
miRNAs, packaged within exosomes and other vesicles or bound in protein complexes, are 
capable of communicating distinctive signals to maternal and fetal tissues [5]. Placenta-specific 
and trophoblast-derived miRNAs, encoded in the chromosome 19 miRNA cluster (C19MC), 
are released within exosomes and confer resistance to viral infection in other mammalian 
cells [42]. Preliminary results from our laboratory show that T. cruzi induces in HPCVE a 

specific C19MC-encoded miRNA profile. Some of those miRNAs are involved in the regu-

lation of immune functions, particularly those of TLR-mediated pathways [43]. Studies on 
T. cruzi-induced miRNAs and exosomes are currently ongoing, being of particular interest 
since miRNA pathways are potential diagnostic tools and targets for therapeutic control of 
parasitic diseases [44] and other pathologies, including placenta-derived ones [5]. Targeting 

miRNAs constitute a promising possibility for the treatment of different diseases due to the 
facts that (i) miRNAs are regulators of gene expression, (ii) are relatively easy to manipulate, 
(iii) can be administrated in vivo, and (iv) present an apparent lack of adverse effects when 
administered intravenously. Moreover, miRNAs are detectable in biological fluids, thus offering 
real potential as noninvasive biomarkers, providing new diagnostic and therapeutic options dur-

ing pregnancy and for several diseases as well [45, 46].

In summary, the studies about the placental defense mechanism that determines the probabil-
ity of infection, together with parasite, maternal, and fetal/newborn factors, are of outstand-

ing interest since they are potential diagnostic, prognostic, and therapeutic tools.
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