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1. Introduction 

The original and popular adaptive control theory usually deals with linear 
parameterizations (LP) of uncertainties, that is, it is assumed that uncertain quantities in 
dynamic systems are expressed linearly with respect to unknown parameters. Actually, 
most developed approaches such as gradient-based ones or recursive least squares [1, 2] rely 
heavily on this assumption and effective techniques have been proposed in this context [2]. 
However, LP is impossible in practical applications whose dynamic parameters are highly 
coupled with system states. Stribeck effect of frictional forces at joints of the manipulators 
[3] or nonlinear dynamics of space-robot in inertia space are typical examples [4]. 
Unfortunately, there were very few results in the literature addressing the adaptive control 
problem for NP in a general and direct manner. Recently, adaptation schemes for NP have 
been proposed [5, 6] with the assumption on the convexity/concavity and smoothness of the 
nonlinear functions in unknown parameters. In this approach, the controllers search a 
known compact set bounding the unknown parameters (i.e. the unknown parameter must 
belong to a prescribed closed and bounded set) for min-max parameter estimation. Also, the 
resulting controllers posse a complex structure and need delicate switching due to change of 
adaptation mechanism up to the convexity/concavity of the nonlinear functions. Such tasks 
may be hard to be implemented in a real-time manner. 
In this chapter, we propose novel adaptive control technique, which is applicable to any NP 
systems under Lipschitzian structure. Such structure is exploited to design linear-in-
parameter upper bounds for the nonlinear functions. This idea enables the design of 
adaptive controllers, which can compensate effectively for NP uncertainties in the sense that 
it can guarantee global boundedness of the closed-loop system signals and tracking error 
within any prescribed accuracies. The structures of the resulting controllers are simple since 
they are designed based on the nonlinear functions' upper bound, which depends only on 
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the system variables. Therefore, an important feature of the proposed technique is that the 
compactness of uncertain parametric sets is not required. Another interesting feature of the 
technique is that regardless of parametric dimension, even 1-dimension estimator-based 
control is available. This is an important feature from practical implementation viewpoint. 
This result is of course new even for traditional LP systems. As a result, the designed 
adaptive controls can gain a great amount of computation reduced. Also, a very broad class 
of nonlinearly parameterized adaptive control problems such as Lipschitzian 
parameterization (including convex/concave, smooth parameterizations as a particular 
case), multiplicative parameterization, fractional parameterization or their combinations can 
be solved by the proposed framework. 
The chapter is organized as follows. In Section 2, we formulate the control problem of 
nonlinear dynamic system with NP uncertainties. Adaptive control is designed for 
uncertainties, which satisfy Lipschitz condition (Lipschitzian parameterization). Our 
formulating Lipschitzian parameterization plays a central role to convert the NP adaptive 
control problem to a handleable form. Adaptation laws are designed for both nonnegative 
unknown parameters and unknown parameters with unknown sign. With the ability to 
design 1-dimension-observer for unknown parameter, we also redesign the traditional 
adaptive control of LP uncertain plants. Next is a design of adaptive control for a difficult 
but popular form of uncertainties, the multiplicative parameterizations. Examples of a 
control design of the proposed approach is illustrated at the end of the section. Section 3 
remarks our results extended to the adaptive controls in systems with indirect control 
inputs. In this section, we describe the control problems of the backstepping design method 
to control complex dynamic structures whose their control input can not directly 
compensate for the effect of unknown parameters (un-matching system). Section 4 is 
devoted to the incorporation of proposed techniques to a practical application: adaptive 
controller design applied to path tracking of robot manipulators in the presence of NP. A 
general framework of adaptive control for NP in the system is developed first. Then, 
adaptive control for friction compensation in tracking problem of a 2DOF planar robot is 
introduced together with comparative simulations and experiments. Conclusions and 
discussions are given in Section 5. 

2. Lipschitzian parameterization-based techniques for Adaptive Control of NP 

2.1  Problem formulation 

We consider adaptive systems admitting a nonlinear parameterization in the form 

  (1) 

where  is the control input,  is the state vector,  is the system variable,  is an unknown 
time-invariant parameter. Both the state  and variable  are available for online 
measurement. The function  is nonlinear in both the system variable  and unknown 
parameter . The problem is to design a control signal  enforcing asymptotic 
convergence of the state, that is,  as . 
Note that any general adaptive control problem where the state  of uncertain plants 
(satisfying the model matching condition) is required to track the state of a reference model 

 can actually be reduced to the above described problem. 
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For the simplicity of description and without loss of generality, the following standard 
assumption is used throughout the chapter. 
Assumption 1.  (i.e. the state and control are scalars) and A = —I, whereas  
is bounded.  
From this assumption, it is clear that we can set B = 1 without loss of generality, so from 
now on, we are considering the system 

.  (2) 

Note that from [5, Lemma 3], it is known that indeed the vector case of the state can be 
easily transformed to the scalar case. Clearly, under the model matching condition, the 
methodology for scalar control can be easily and naturally extended to multidimensional 
controls. 
Let us also recall that a function  is increasing (decreasing, resp.) if and only if 

, resp.) whenever . 

We shall use the absolute value of a vector, which is defined as 

 

2.2 Lipschitzian parameterization 

We consider the case where  in (1) is Lipschitzian in . It suffices to say that any 
convex or concave or smooth function is Lipschitzian in their effective domain [7] . As we 
discuss later on, the Lipschitzian parameterization-based method allows us to solve the 
adaptive control problems in a very efficient and direct manner. The Lipschitz condition is 
recalled first.  
Assumption 2. The function  is Lipschitzian in , i.e. there are continuous functions 

, j = 1, 2, ...,p such that 

  
(3)

 

Note that in literature, the Lipschitz condition is often described by 

 

which can be shown to be equivalent to (3). In what follows, we shall set 

  (4) 

2.3 Adaptation techniques for unknown parameters 

To make our theory easier to follows, let's first assume that 

  (5) 

The following lemma plays a key role in the subsequent developments. 
Lemma 1  The function  is decreasing in  whereas the function  
is increasing in . 
Proof.   By (3), for every , 
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which implies 

 

i.e. function  is decreasing in , while  in increasing in . 
Now, take the following Lyapunov function for studying the stabilization of system (2) 

  
(6)

 

where  is an "observer" of  to be designed with the controller u. Then 

  (7) 

As a consequence of lemma 1 , we have  
Lemma 2  The function 

 

is decreasing in . 
Proof.   It suffices to show that function 

 

is decreasing in .  
When e > 0, 

 

and thus  is decreasing because  is decreasing (by lemma 1) and e > 
0. On the other hand, when e < 0, 

 

and again  is decreasing because  is increasing (by lemma 1) and e 
< 0. Finally,  is obviously decreasing (constant) when e = 0, completing the proof of 
lemma 2. 
From (7) and lemma 2, we have 

  
(8)

 

Therefore, we design the following controller u 

  (9) 

in tandem with the adaptive rule 
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  (10) 

which together lead to 

  
(11)

 

The last inequality implies that V is decreasing as a function of time, and thus is bounded by 

y(0). Therefore, by definition (6), e(t) and  must be bounded from which we infer the 

boundness of  as well. Also, (11) also gives , i.e. e(.) is in L2. 

Therefore, by a consequence of Barbalat's lemma [1, p. 205], 

 
Finally, let us mention that equation (10) guarantees  provided that 

. The following theorem summarizes the results obtained so far. 

Theorem 1 Under the assumption 2, the control u and observer  defined by (9) and (10) stabilizes 
system (2). 
The control law determined by (9) and (10) is discontinuous at e(t) = 0. According to a 
suggested technique in [5], we can modify the control (9) and (10) to get a continuous one as 
follows 

  (12) 

  (13) 

where  > 0 and 

  (14) 

  (15) 

Note that whenever |e| > , 

 

Then, instead of Lyapunov function (8), take the function 

 

and thus 

  (17) 
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  (18) 

The last inequality follows from the fact that function 

 

is decreasing in . 
Therefore, it can be proved that the control (12)-(13) guarantees that e(t) asymptotically 
tracks 0 within a precision of . 

2.4 1-dimension estimator for unknown parameters 

In controls defined by (9)-(10) and (12)-(13), the dimension of the observer  is the same as 
that of the unknown parameter . We now reveal that we can design a control with new 

observer  of even dimension 1 (!) which does not depend on the dimension of the 
unknown parameter . For that, instead of L(x) defined by (4), take 

  
(19)

 

then, by (3), it is obvious that 

  

(20)

 

and by an analogous argument as that used in the proof of lemmas 1, 2, it can be shown that 

Lemma 3  The function  is decreasing in  whereas the function  

 is increasing in 9. 

Consequently, the function  is decreasing in . 

Based on the result of this lemma, instead of the Lyapunov function defined by (6) and the 
estimator defined by (10), (13), taking 

  

(21)

 

  (22) 

  (23) 

it can be readily shown that 
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Theorem 2 With function  defined by (14), (15) and the scalar estimator  obeys 
either differential equation (22) or differential equation (23), the control (9) still stabilizes the system 
(2) whereas the control (12) guarantees that e(t) asymptotically tracks 0 within a precision of . 

2.5 Estimator for unknown parameters with unknown sign 

First, every  can be trivially expressed as 

  

(24)

 

For the new function  defined by  by 

  
(25)

 

it is immediate to check that the Lipschitz condition (3) implies 

 

(26)

 

Then according to lemma 2, the function 

 

is decreasing in ( (1), (2)). 
Note that for (1), (2) defined by (24), 

  

(27)

 

Therefore, using the Lyapunov functions defined by 

  
(28)

 

  

(29)

 

analogously to Theorems 1 and 2, it can be shown that 
Theorem 3 All statements of Theorems 1 and 2 remain valid with the assumption in (5) removed. 
Namely, 
i.  With the Lyapunov function (28) used for checking the stability and  defined by (4), the 

control (9), (10) still stabilizes system (2) while the control (12), (13) guarantees that e(t) 
asymptotically tracks 0 with a precision of . 

ii. (ii) With the Lyapunov function (29) used for checking stability and L(x) defined by (19), the 
control (9), (22) still stabilizes system (2) while the control (12), (23) still guarantees that e(t) 
asymptotically tracks 0 within a precision of . 
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2.6 New nonlinear control for linearly parameterized uncertain plants 

It is clear that when applied to linearly parameterized uncertain plants, Theorem 3 provides 
a new result on 1-dimension estimator for uncertain parameters as well. Let's describe this 
application in some details. A typical adaptive control problem for linearly parameterized 
uncertain plants can be formulated as follows [1, 8]. For uncertain system 

 
(30)

 

with unknown parameter , design a control to makes the state  track a reference 

trajectory  described by the equation 

  (31) 

where  is asymptotically stable with one negative real eigenvalue —k. 

The problem is thus to design the control u such that the state  of the error 

equation 

  (32) 

is asymptotically stable. Taking  such that  and 
defining  , then 

  (33) 

and it is known [5] that  if and only if . It is obvious that the function 

 satisfies the Lipschitz condition 

 

and applying Theorem 3, we have the following result showing that 1-dimension estimator 
can be used for update law, instead of full n-dimension estimator in previously developed 
results of linear adaptive control. 
Theorem 4  The nonlinear control 

  

(34)

 

makes  track;  asymptotically, while the nonlinear control 

  

(35)

  

guarantees  tracking  asymptotically with a precision of . 
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2.7 Case of Multiplicative parameterizations 

It is assumed in this section that 

  
(36)

 

where the assumption below is made. 
Assumption 3.   The functions  and  are 

Lipschitzian in , i.e. there are continuous functions  such that 

  

(37)

 

true. 
Let L(x) be defined by (19) and 

 

Then, whenever , 

 

As in the proof of lemma 2, the last inequality is enough to conclude:  
Lemma 4  On , the function 

  

(38)
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is decreasing in . 
Therefore, similarly to Sub-section 2.5, using the Lyapunov function 

  

(39)

 

we can prove the following theorem 
Theorem 5  The following discontinuous control guarantees  

 (40) 

  (41) 

  (42) 

while the following continuous control with  and  defined by (12), (13) 
guarantees the tracking of e(t) to 0 with any prescribed precision , 

  

 (43)

  

  (44) 

  (45) 

Remark 1 By reseting  if necessarily, we can also assume without loss of 

generality that . Then, using the inequality 

 

it can be shown that the function 

 

is still decreasing in . Thus, the statement of Theorem 5 remains valid with  

and  in (40)-(45) replaced by  and , respectively. 

Remark 2 Clearly, the statements of lemma 4 and Theorem 5 remain valid by replacing 

 and  in (38) and (40)-(42), (43)-(45) by any continuous functions 

 and  , respectively. 
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2.8 Example of controller design 

We examine some problems of adaptive friction compensation and show that they belong to 
the classes considered in Sections 2.2-2.7 and thus the results there can be directly applied to 
solve these problems. 
The model of a process with friction is given as 

  (46) 

where u is the control force, x is the motor shaft angular position, and F is the frictional force 
that can be described in different ways depending on model types. In this discussion, we 
consider the Armstrong-Helouvry model [3] 

  (47) 

where FC, FS, Fv are coefficients characterizing the Coulomb friction, static friction and 
viscous friction, respectively, and vS is the Stribeck parameter.   The unknown static 
parameters are FC, FS, Fv, vS. 
To facilitate the developed results, we introduce the new variable 

  (48) 

which according to (46) obeys the equation 

  (49) 

For (47), set . First consider F defined by (47), 

  (50) 

where f has the form (36) with 

  

(51)

 

Clearly,  and function is Lipschitzian in : 

 

Applying Theorem 5 to system (49) and taking the Remark 2 in Section 2.7 into account, the 
following controls are proposed for stabilizing system (46), (47), 

  (52) 

and 

  (53) 
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On the other hand, (47) can be rewritten alternatively as 

  (54) 

with known parameters . Again, by Theorem 5, the following 

controller is proposed 

  

(55)

 

One may guess that the term  in (55) causes its nonsmooth behavior. Considering the 
term Fc in (54) as a Lipschitz function in Fc with Lipschitz constant 1 and applying 
Theorem 2 to handle this term, an alternative continuous control to (55) is derived as 

 

(56)

 

3. Extension to the adaptive controls in systems with indirect control inputs 

3.1 Control problems of the generalized matching system with second-order 

Without loss of generality, we describe the control problems of the generalized matching 
system with second-order, i.e. 

  
 (57)

 

where  is the control input,  is the system state. Function  is 
nonlinear in both the variable x1 and the unknown parameter . The problem is to 
design a stabilizing state-feedback control u such that the state x1(t) converges to 0. 
A useful methodology for designing controllers of this class is the adaptive backstepping 
method [9], under the assumption of a linear parameterization (LP) in the unknown 
parameter , i.e. the function  in (57) is assumed linear. The basic idea of 
backstepping is to design a "stabilizing function", which prescribes a desired behavior for x2 
so that x1(t) is stabilized. Then, an effective control u(t) is synthesized to regulate x2 to track 
this stabilizing function. Very few results, however, are available in the literature that 
address adaptive backstepping for NP systems of the general form (57) [10]. The difficulty 
here is attributed to two main factors inherent in the adaptive backstepping. The first one is 
how to construct the stabilizing function for xi in the presence of nonlinear 
parameterizations [5, 11, 12]. The second one arises from the fact that as the actual control 
u(t)  involves derivatives of the stabilizing function, the later must be constructed in such a 
way that it does not lead to multiple parameter estimates (or overparameterization) [13]. 
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3.2 Remarks on adaptive back-stepping design incorporated with Lipschitzian 
parameterization-based techniques 

The proposed approach in Sectionl has been extended to address the adaptive backstepping 
for the above general matching system. Our approach enables the design of the stabilizing 
function containing estimates of the unknown parameter  without overparameterization. 
The compactness of parametric sets is not required. The proposed approach is naturally 
applicable to smooth nonlinearities but also to the broader class of Lipschitzian functions. 
Interested reader can refer [14, 15, 16] for the results in details. 

4. Adaptive controller design applied to path tracking of robot manipulators 
in the presence of NP. 

4.1 Robot manipulators with NP uncertainties 

Nonlinear frictions such as Stribeck effect are very common in practical robot manipulators. 
However, adaptive controls for robot manipulators (see [17, 18] for a survey) cannot 
successfully compensate for NP frictions since they are based on the LP structure of 
unknown parameters. Also, most of adaptive friction compensation schemes in the 
literature of motion control only deal with either frictions with LP structure [19] or 
linearized models at the nominal values of the Stribeck friction parameters [20]. Recently, a 
Lyapunov-based adaptive control has been designed to compensate for the Stribeck effect 
under set-point control [21]. 
In this section, a general framework of adaptive control for NP in the system is developed. 
An application of adaptive control for friction compensation in tracking problem of a 2DOF 
planar robot is introduced together with comparative simulations and experiments. 

4.2 Problem formulation 

The dynamic model of a robot manipulator can be described by the following equation 

  (58) 

where  is the joint coordinates of the manipulator,  is the torque applied to 
the joints,  is the symmetric positive definite inertia matrix of the links, 

 is a matrix representing Coriolis and centrifugal effects,  is the 
gravitational torques,  represents dynamics whose constant or slowly-
varying uncertain parameter  
appears nonlinearly in the system. Note that  can be any component of the system state, 

for instance . 

We focus on the case where the uncertainties admit a general multiplicative form, i.e., 

  (59) 

Here i stands for the i-ih joint of the manipulator and functions  are 

assumed nonlinear and Lipschitzian in . As it will be 
discussed later, a typical example of uncertainty admitting this form is the Stribeck effect of 
frictional forces in joints of robot manipulators [3]. 
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Property 2.1 The inertia matrix  is positive definite and satisfies  
with  where  are minimal and maximal eigenvalues of 

.  

Property 2.2 The matrix  is skew-symmetric. 

Property 2.3 The sum of the first three terms in the LHS of equation (58) are expressed 
linearly with respect to a suitable set of constant dynamic parameters: 

  (60) 

where  matrix function and  is a vector of unknown dynamic 
parameters. 
The following lemma will be frequently used in subsequent developments 
Lemma 5  Given Lipschitzian functions , let  and  be defined as 

  

(61)

 

then, for  the following inequalities 

  

(62)

 

hold true for any . 
Proof. Since, 

 

it is sufficient to prove that 

 
(63)

 

where  are defined in (61) and note that the subscripts i is neglected lor simplicity. 
Actually, 

(64) 
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and 

  

(65)

 

leads to (63). 
Our goal is to control the rigid manipulator to track a given trajectory  by designing a 
nonlinear adaptive control to compensate for all uncertainties which are either LP uncertain 
dynamics according to Property 2.3 or NP as defined by (59), in system (58). For simplicity 
of the derivations throughout the paper, it is assumed that , i.e. , j = 1, 2, 3, 
...,pi. At the end of Section 4.3.2, we will see that the general case  can be easily 
retrieved from our results. While traditional adaptive controls can be effectively applied 
only in the context of LP [2], lemma 5 reveals an ability to approximate the NP by its certain 
part plus a part of LP. We will use the key property (62) to design a novel nonlinear 
adaptive control for the system. 

4.3 A framework for adaptive control design 

Define vector   as a "velocity error" term 

  (66) 

where  is an arbitrary positive definite matrix, 

  is the position tracking error, and , called the 
"reference velocity". According to Property 2.3, the dynamics of the system (58) can be 
rewritten in terms of the "velocity error" s(t) as 

  (67) 

with the identity  used. 
By definition (66), the tracking error  obtained from Si(t) through the above designed 
first-order low pass filter is 

 

where  is the tracking error of joint iih of the robot manipulator at the time to. If 

 then 

  (68) 

The relation (68) means that  whenever . Therefore, in 

the  next development, the model (67) is used for designing a control input  which 
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guarantees the velocity error  under LP uncertainty  and NP uncertainty . As 
shown above, such performance of s(t) ensures the convergence to 0 of tracking error  
when . 

4.3.1 Discontinuous adaptive control design 

Consider a quadratic Lyapunov function candidate 

 

By Property 2.2, its time derivative can be written as 

 

where the notations on  are neglected for simplicity.   In view of relation (62), it 
follows that 

(69) 

With the definitions 

  (70) 

the inequality (69) can be rewritten as 

  (71) 

Therefore, the control input 

  (72) 

results in 

  (73) 
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where  and  are parameter errors and  is an arbitrary 
positive definite matrix. 
To derive update laws for the parameter estimates, we employ the following Lyapunov 
function 

  
(74)

 

where  are arbitrary positive definite matrices. It follows form (73) that 

  (75) 

Therefore, the following update laws 

  (76) 

yield 

  
(77)

 

The last inequality implies that V(t) is decreasing, and thus is bounded by V(0). 

Consequently,  and  must be bounded quantities by virtue of definition (74). 
Given the boundedness of the reference trajectory , one has  from the 

system dynamics (67). Also, relation (77) gives , i.e. 

, where  denotes the minimum eigenvalue of . Applying Barbalat's 
lemma [2] yields . However, the control (72) is still discontinuous at  = 0, 
and thus is not readily implemented. As a next stage, we make the control action continuous 
by a standard modification technique which leads to a practically implementable control 
law. 

4.3.2 Continuous adaptive control design 

A continuous control action can be derived by modifying the velocity error . First, 
introduce a new variable   by setting 

  
(78)

 
where 

  (79) 

.  
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It is standard to show that such  is continuously differentiable in time t (see also Figure 
1). Using Property 2.3, the dynamics of system (58) in terms of the modified "velocity error" 

 is expressed by 

  
(80)

 

where  

Now, take the following Lyapunov function 

  
(81) 

 

Figure 1. Smooth function ci(si) 

Like (71), it is clear that 

 (82) 

where let us recall that  is already defined by formula (70).  

Note that whenever , one has 

 

and for   

  (83) 

Hence, introducing the saturated function 

  (84) 

and taking (82), (83) into account, the following continuous control input 
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  (85) 

with 

 

together with the update laws 

  (86) 

yield 

 

Finally, by a similar analysis as done in Section 4.3.1, the error  of the system converges 

to 0, or equivalently .  From relation (68), the tracking 

error  converges to  as . We are now in a position to sum up our 

results. 
Theorem 6  The adaptive controller defined by equations (78),(79),(84)-(86) enables system to 

asymptotically track a desired trajectory  within a precision of . 

Remark 1 In the general case where , it follows in a straightforward manner from 
lemma 5 that 

 

Therefore, with a Lyapunov function defined in (81) where 

 

Theorem 6 remains valid for . 
Remark 2 The new variable (78) and the function (79) are properly designed to make the 
stabilizing control (72) continuous. Of course, there are other appropriate choices other than 
the variable (78) and the function (79), which also make the stabilizing control (72) 
continuous, too. 

4.3.3 1-dimension estimator 

In the design of sections 4.3.1 and 4.3.2, the dimensions of estimators are equal to the 

number of unknown parameters in the system, i.e. . Thus, increasing the 
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number of links may result in estimators of excessively large dimension. Tuning updating 
gains  for those estimators then becomes a very laborious task. In this section, we 
show that it is possible to design an adaptive controller for system (58) with simple 1-

dimension estimators  independently of the dimensions of the unknown parameters 
. 

For that purpose, first consider the term  in (69) where . It is clear that 

 

Also note from (70) that 

 

As a result, the inequality (71) can be rewritten as follows 

 

where 

 

Note that ymax is the function whose notations on variables  are neglected for 
simplicity. Therefore, with the definitions 

 

the following control input 

  (87) 

where  and  are arbitrary positive scalars, together with the following Lyapunov 
function 

 (88) 

yield 
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Therefore, the discontinuous control (87) results in the convergence to 0 of velocity error 
, which ensures the convergence to 0 of tracking error  when . As in section 

4.3.2, we can alter the discontinuous control (87) into a continuous one as follows 

  (89) 

where 

 

Then the continuous control (89) ensures the convergence to , i = 1, ..., n of the 

tracking error  when . 

4.4  Example of nonlinear friction compensation 

In this section, we examine how effectively our designed adaptive controllers can 
compensate for the frictional forces in joints of robot manipulators. 

4.4.1 Friction model and friction compensators 

Frictional forces in system (58) can be described in different ways. Here, we consider the 
well-known Amstrong-Helouvry model [3]. For joint i, the frictional force is described as 

  (90)  

where Fci, Fsi, Fvi are coefficients characterizing the Coulomb friction, static friction and 
viscous friction, respectively, and vsi is the Stribeck parameter. Note that the friction term 
(90) can be decomposed into a linear part fLi and a nonlinear part fNi as 

  (91) 

where 

  (92) 

with , and 

  (93) 
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Practically, the frictional coefficients are not exactly known. In such case, the frictional force 
fLi can be compensated by a traditional adaptive control for LP. However, the situation 
becomes non trivial when there are unknown parameters appearing nonlinearly in the 
model of fNi.  
The NP friction term of joint i, fNi, can be expressed in the form (59) with 

  (94) 

where 

 

Clearly,  and  are Lipschitzian in  with Lipschitzian coefficients . 
Also, we have . Therefore, by Theorem 6, the following adaptive 
controller enables the system (58), (90), (94) to asymptotically track a desired trajectory  
within a precision of , i=1,...,n. 

  (95) 

where 

  (96) 

Note that with the control (95), the term  compensates for the LP frictions fLi. 

4.4.2  Simulations 

A prototype of a planar 2DOF robot manipulator is built to assess the validity of the 
proposed methods (Figure 2) . The dynamic model of the manipulator and its linearized 
dynamics parameter are given in Section 6 (Appendix). 
The manipulator model is characterized by a real parameter a, which is identified by a 
standard technique (See Table 3 in Section 6). The parameters of friction model (90) are 
chosen such that the effect of the NP frictions fNi are significant, i.e. 

 

In order to focus on the compensation of nonlinearly parameterized frictions, we have 
selected the objective of low-velocity tracking. The manipulator must track the desired 

trajectory . Clearly, the selected trajectory 

contains various zero velocity crossings. 
For comparison, we use 2 different controllers to accomplish the tracking task. 
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Figure 2.  Prototype of robot manipulator 

 

Table 1.  Parameters of the controllers for simulations 

• A traditional adaptive control based on the LP structure to compensate for uncertainty 
in dynamic parameter a of the manipulator links and the linearly parameterized 
frictions fLi (92) in joints of motors. 

  (97) 

The gains of the controller are chosen as in Table 1, . 

• Our proposed controller (95) with the same control parameters for LP uncertainties. 
Additionally,  = diag(50, 50, 50, 50),  = 0.05 for NP friction compensation, . 

Both controllers start without any prior information of dynamic and frictional parameters, 

i.e. . 
Tradition LP adaptive control vs. proposed control 
It can be seen that the position error is much smaller with the proposed control (Figure 3), 
especially at points where manipulator velocities cross the value of zero. Indeed, the 
position error of joint 1 decreases about 20 times. The position tracking of joint 2 is 
improved in the sense that our proposed control obtains a same level of position error as the 
one of LP, but the bound of control input is reduced about 3 times. This means that the 
nonlinearly parameterized frictions are effectively compensated by our method. 
1-dimension estimators 
The performances of the controller with 1-dimension estimators (89) is shown in Figure 4. 
One estimate is designed for the manipulator dynamics a , one is for the LP friction 
parameters a , and one is for the NP friction parameters . Thus, by using 1-
dimension estimators, the estimates dimension reduces from 11 to 3. The resulting controller 
benefits not only from a simpler tuning scheme, but also from a minimum amount of on-line 
calculation since the regressor matrices  reduce to the vectors ymax,wmax in this case. 
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Figure 3.   Simulation results:  Tracking errors of joints (left) and characteristics of control 
inputs (right),   (a): Traditional LP adaptive controller (97), (b): proposed controller (95) 

 

Figure 4. Simulation results for proposed 1-dimension estimators (89):   Tracking errors of 
joints (left), the adaptation of the estimates and characteristics of control inputs (right) . 
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Table 2.  Parameters of the controllers for experiments 

Indeed, under the current simulation environment (WindowsXP/Matlab Simulink), 
controller (89) requires a computation load 0.7 time less than the one of controller (95) and 
only 1.2 time bigger than the one of tradition LP adaptive control (97). Also, it can be seen 
in Figure 4 that these advantages result in a faster convergence (just few instants after the 
initial time) of the tracking errors to the designed value (0.0035 (rad) in this simulation). 
Note that the estimates converge to constant values since the adaptation mechanism in 
controller (89) becomes standstill whenever the tracking errors become less than the 
design value. However, it is worth noting that the maximum value of control inputs of 
controller (89), which is required only at the adaptation process of the estimates, is about 6 
times bigger than the one of controller (95). It can be learnt from the simulation result that 
controller (89) can effectively compensates the NP uncertainties in the system provided 
that there is no limitation to the control inputs. Therefore, controller (95) can be a good 
choice for practical applications whose the power of actuators are limited. 

4.4.3 Experiments 

All joints of the manipulator are driven by YASKAWA DC motors UGRMEM-02SA2. The 
range of motor power is [—5,5] (Nm). The joint angles are detected by potentiometers 
(350°, ±0.5). Control input signals are sent to each DC motor via a METRONIX amplifier 
(±35V, ±3A). The joint velocities are also calculated from the derivation of joint positions 
with low-pass niters. Designed controller is implemented on ADSP324-OOA, 32bit DSP 
board with SOMhz CPU clock. I/O interface is ADSP32X-03/53, 12bit A/D, D/A card. 
The DSP and the interface card are mounted on Windows98-based PC. The sampling time 
is 2ms. 
Here again, the performances of controller (97) and the proposed control (95) are 
compared. The gains of the controllers are chosen as in Table 2. The additional control 
parameters for NP friction compensation with (95) are  = diag(l, 1,1,1),  = .1. 
Figure 5 depicts the performances of LP adaptive controller (97). The fact that the 
trajectory tracking error of joint 2 become about twice smaller as shown by Figure 6 
highlights how effectively the NP frictions are compensated by the proposed controller. 
The estimates of unknown parameters with adaptation mechanisms in LP adaptive 
controller (97) and proposed controller (95) are shown by Figure 7 and Figure 8, 
respectively. Since the adaptation mechanism of LP adaptive controller (97) can not 
compensate for the NP friction terms, its estimates can not converge to any values able to 
make the trajectory tracking errors converge to 0. For the proposed controller, a better 
convergence of the estimates can be observed. That the motion of the manipulator has 
lower frequencies in case of the proposed control (see Figure 9) shows its more robustness 
in face of noisy inputs. These results can be obtained because the NP frictions are 
compensated effectively. 
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Figure 5. Experimental results for traditional LP adaptive controller (97): Tracking errors of 
joints (left) and characteristics of control inputs (right) 

 
Figure 6. Experimental results for proposed controller (95): Tracking errors of joints (left) 
and characteristics of control inputs (right) 
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Figure 7. Experimental results: Estimates of unknown parameters with traditional LP 
adaptive controller (97). (a)-estimate . (b)-estimate 

  

 

Figure 8. Experimental results: Estimates of unknown parameters with proposed controller 
(95). (a)-estimate . (b)-estimate  
estimate  
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Figure 9. Experimental results: FFT of trajectory tracking errors for traditional LP adaptive 
controller (97) (left) and proposed controller (95) (right) 

5. Conclusions 

We have developed a new adaptive control framework which applies to any nonlinearly 
parameterized system satisfying a general Lipschitzian property. This allows us to extend 
the scope of adaptive control to handle very general control problems of NP since 
Lipschitzian parameterizations include as special cases convex/concave and smooth 
parameterizations. As byproducts, the approach permits also to treat uncertainties in 
fractional form, multiplicative form and their combinations thereof. Moreover, the proposed 
control approach allows a flexibility in the design of adaptive control system. This is because 
the ability of designing 1-dimension estimators provides system designers with more 
freedom to to balance the dimension of the design estimators and the power required by 
system control inputs. Otherwise, when it is necessary, simple structure is a key factor 
enabling the extension of the proposed adaptive controls to more complex control 
structures. Our next efforts are directed to the following research in order to integrate the 
proposed adaptive control technique to industrial control systems. 

• Mechanisms to control the convergence time of the designed tracking errors. In this 
context, Lyapunov stability analysis incorporated with dynamic models of signals 
in the system can be used as an effective synthesis tool. 
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• Improvement on the robustness of the adaptive schemes toward noise in the 
system due to un-modeled dynamics or unknown disturbances. In this context, 
sensing and monitoring the level of noise, and incorporating on-line noise 
compensation schemes will play an important role. 

• Incorporation of the below system's actual working conditions in to the adaptive 
control system (i) Constrains on the limitation of actuators outputs (ii) Requirement 
of human-friendly interface (easy-to-tune interface and failure-safe). In this context, 
control systems need more complex control structure with more intelligent 
adaptation rules for dealing with wider range of system operation. 

6. Appendix 

Model and parameters of the manipulator 
The equation of motion in joint space for a planar 2DOF manipulator is 

 
or, 

  
(98) 

where, 

 
mli, mmi are the masses of link i and motor i, respectively. Ili, Imi are the moment of inertia 
relative to the center of mass of link i and the moment of inertia of motor i. li is the distance 
from the center of the mass of link i to the joint axis. ai is the length of link i. kri is the gear 
reduction ratio of motor i. 

A constant vector  of dynamic parameters can be defined as follows: 

 

 
Table 3. Parameters of the 2DOF manipulator 
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