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Abstract

Chronic inflammation drives the progression of rheumatoid arthritis (RA) and osteo-
arthritis (OA) to synovial joint failure. The inflammatory state in both musculoskeletal 
diseases is associated with significantly elevated levels of pro-inflammatory cytokines 
in joint synovial fluid, which is best exemplified by increases in interleukin-1β (IL-1β), 
IL-6, IL-17, tumor necrosis factor-α, among others, as well as increased activity of soluble 
mediators such as nitric oxide and certain growth factors including vascular endothe-
lial growth factor and fibroblast growth factor. The multitude of these factors activate 
chondrocyte signal transduction pathways resulting in programmed cell death, other-
wise known as apoptosis as well as compromising chondrocyte autophagy. Importantly, 
chondrocyte apoptosis causes a loss of articular cartilage vitality which dampens carti-
lage repair mechanisms because at present, the possibility that chondrocyte progenitor 
cells could replace those differentiated chondrocytes lost via apoptosis remains debat-
able. Certain pharmacologic interventions which have been proven to induce apoptosis 
in various cancer cell studies in vitro suggest the possibility that drugs could be devel-
oped to specifically suppress or completely inhibit chondrocyte apoptosis in RA and 
OA cartilage. This review supports that contention and indicates that apoptosis can be 
inhibited by identifying novel cellular targets which promote apoptosis and autophagy.

Keywords: apoptosis, chondrocyte, osteoarthritis, rheumatoid arthritis, signal transduction

1. Introduction

Controlled cell death otherwise known as programmed cell death or apoptosis constitutes a criti-
cal event which is germane to the normal development of the immune system, the appropriate 
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integration of cells within tissues and organs and organ homeostasis [1–7]. However, the aber-
rant frequency of apoptotic cells can compromise normal tissue architecture and, in doing so, 
contribute to the loss of cell vitality [8–10]. This is especially the case in explaining the loss of 
chondrocyte viability in arthritic conditions of synovial joints, such as rheumatoid arthritis (RA) 
and osteoarthritis (OA).

Significant progress has been achieved over the previous decade or so in furthering our 
understanding of the cellular and molecular events that trigger the increased frequency of 
chondrocyte apoptosis in RA and OA [11–16]. These advances include (1) an appreciation 
that the significant increase in the levels of pro-inflammatory cytokines in synovial fluid from 
RA and OA patients also can induce chondrocyte apoptosis in vitro [17–21]; (2) that the ele-
vated frequency of chondrocyte apoptosis by these cytokines is deregulated by altered signal 
transduction which can involve continuous activation of stress-activated/mitogen-activated 
protein kinases (SAPK/MAPK) [22–25], the Janus kinase/Signal Transducers and Activators 
of Transcription (JAK/STAT) pathway [26–31], the phosphatidylinositide-3-kinase/Akt/mam-

malian target of rapamycin (PI3K/Akt/mTOR) pathway [32–36], and other protein kinase 
pathways [37–40]; (3) that specific co-factors are capable of regulating the activation of these 
signaling pathways [41–44]; and (4) that micro-RNAs (mi-RNAs) can regulate the activity of 
these co-factors and, in this manner, control the induction of apoptosis via these signaling 
pathways [45–48].

Furthermore, the increased frequency of chondrocyte apoptosis now confirmed in guinea 
pig OA cartilage [49] as well as human RA and OA articular cartilage [50–53] presents a 
particularly onerous scenario for the survival of synovial joints under these conditions. 
Although a population of chondroprogenitor cells was identified in several studies of adult 
normal and diseased articular cartilage [54–56], significant repair of damaged articular car-
tilage in RA and OA by these cells is effete. This effect on cartilage repair may result from 
elevated levels of pro-inflammatory cytokines such as IL-17, which was recently shown to 
inhibit the chondrocyte maturation lineage emanating from progenitor cells in RA [57]. 
Therefore, even if chondrocyte precursor cells exist in adult articular cartilage which could 
potentially become authentic chondrocytes lost from articular cartilage via apoptosis or 
chondrocytes lost via diffusion of cartilage extracellular matrix fragments into synovial 
fluid, the reduction in chondrocyte vitality via apoptosis would be a challenging event to 
overcome, especially in a synovial joint microenvironment replete with pro-inflammatory 
cytokines.

In this chapter, we have systematically examined the mechanistic underpinning for iden-
tifying novel targets in order to suppress or even inhibit chondrocyte apoptosis in RA and 
OA. However, the scenario in RA, in particular, is even more complex than in OA because 
in the context of devising therapeutic strategies designed to inhibit chondrocyte apoptosis 
in RA, one must also take into account the fact that in the hyperplastic RA synovial tis-
sue, comprised of activated synoviocytes, immune cells, macrophages and other inflam-

matory cells are generally considered to be relatively “apoptosis-resistant” [58, 59]. Thus, 
this characteristic of the RA joint ensures a plentiful source of immune-mediated cells and 
non-immune inflammatory cells which drive the progression of RA. It is also likely that at 
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some time during the course of the progression of OA, immune-mediated inflammation 
may also cause a similar chronic inflammatory microenvironment, as found in RA, to arise 
and persist in OA synovial tissue [55] resulting, in part, in an increased frequency of apop-
totic chondrocytes [60].

2. Compelling evidence that many factors relevant to RA and OA 

promote or induce chondrocyte apoptosis in vitro

Analyses of synovial fluids and sera from RA and OA patients with active disease showed 
that these samples contained significantly elevated levels of various pro-inflammatory cyto-
kines and growth factors when compared to a control group [52–68]. Of note, incubation of 
rat [69], non-arthritic or human chondrocytes from OA cartilage [70–76] or immortalized 
lines of human chondrocytes [77] with physiological levels of these cytokines, growth fac-
tors (e.g., VEGF and FGF) or additional soluble mediators (e.g., nitric oxide) were shown 
to induce apoptosis, which was accompanied by activation of SAPK/MAPK, JAK/STAT 
or PI3K/Akt/mTor signaling in these cells [78–81]. In addition, mediators of inflamma-
tion, including prostaglandin E

2
 and neuropeptides (e.g., Substance P), are also implicated 

in perpetuating chronic inflammation [38]. The induction of apoptosis was also shown 
to be related to altered levels of various down-regulators of apoptosis. These included 
BCL-2-like protein-11 (Bim) [18], B-cell lymphoma-2 (Bcl-2) [75], cell-derived inhibitors of 
apoptosis proteins (IAPs) [81–84] and Suppressor of Cytokine Synthesis (SOCS) [85, 86]. 
Furthermore, alterations in the functions of mitochondria [87] and endoplasmic reticulum 
(ER) [88–91] related to cell stress, the generation of reactive oxygen species [92] and the 
recently described advanced oxidation protein products [93] with respect to their capacity 
to induce apoptosis were reported as well. Taken together, these results provided compel-
ling evidence that pro-inflammatory cytokines, growth factors and soluble mediators ger-
mane to the progression of RA and OA are responsible for inducing chondrocyte apoptosis 
in these conditions.

3. The relationship between apoptosis and autophagy

A recent review of RA pathogenesis by Angelotti et al. [94] emphasized the view that numer-
ous cells comprising the innate immune system, including macrophages, dendritic cells, mast 
cells, natural killer cells and neutrophils as well as T-cells and B-cells, regulators of adap-
tive immunity, are primarily responsible for perpetuating the state of chronic inflammation 
through their capacity to alter the survival of resident synovial fibroblasts. It is also likely that 
such cell combinations are also involved in the progression of OA as well, as evidenced by 
the skewing of cartilage homeostasis toward catabolism, and the loss of chondrocyte vital-
ity via the induction of apoptosis [95–97]. However, it was previously shown that the clas-
sical apoptosis cascade can be activated by various pro-inflammatory cytokines, and certain 
growth factors, chemokines, chemokine receptors (Table 1) and other interleukins, including 
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IL-8 (CXCL8) and adhesion molecules [64]. Thus, these factors are likely to be the most influ-

ential in inducing apoptosis pathway RA. However, a non-classical form of apoptosis, termed, 
“chondroptosis” is just as likely to be activated in OA. In that regard, “chondroptosis” involves 
an increase in the number of ER and Golgi apparatus reflecting an increase in protein synthesis 
that accompanies the loss of viable chondrocytes [98].

Furthermore, changes in the number of viable articular chondrocytes in experimentally induced 
arthritis [99], human RA [100], and OA are almost certainly associated with the autophagic-
mediated cell death of chondrocytes [101–105], which occurs in concert with the activation of the 
extrinsic apoptosis pathway, the latter mediated by Tumor necrosis Factor-Related Apoptosis-
Inducing Ligand (TRAIL), Death Receptor-5 (DR5) and caspase-3 [106, 107]. In that regard, it was 
noteworthy that Huang et al. [108] reported that exogenous leptin promoted chondrocyte apopto-

sis while inhibiting chondrocyte autophagy via the up-regulation of lysyl oxidase-like 3 (LOXL3). 
Thus, in their study [108], overexpression of LOXL3 inhibited chondrocyte autophagy by acti-
vating mechanistic target of rapamycin complex-1 (mTORC1) [36]. In contrast, cartilage-specific  

Cytokine, chemokine, chemokine receptors and growth factors Reference

IL-17, IL-18BP [62]

IL-17, IL-20, IL-21 [63]

IL-7 [64]

IL-12/IL-23 [64]

IL-15/IL-16 [64]

IL-17/IL-18 [64]

IL-19/-20/-21 [64]

IL-32 [64]

VEGF1; TGF-β1
2; Leptin; FGF3 [64–66]

CXCR3; CXCR4,-5; CXCR-1,-5,-6; IL-8; MIP-1α4; GRO-α5(CXCL1); GRO-βγ6; MCP-17; RANTES8; 

Eotaxin-1
[65, 68]

IL-6 [64, 67, 68]

TNF-α [64, 67, 69]

IL-1β [64]

1Vascular endothelial growth factor.
2Transforming growth factor-β1.
3Fibroblast growth factor.
4Macrophage inflammatory protein-1 (CCL3).
5Growth-related oncogene-α.
6GRO-βγ.
7Monocyte chemotactic protein-1.
8Regulated on activation, normal T-cell expressed and secreted.

Table 1. Cytokines, chemokines, chemokine receptors and growth factors in RA and OA.
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deletion of mTOR resulted in the up-regulation of autophagy [102]. Autophagy protected 
mouse cartilage from degeneration [109]. Autophagy was also shown to protect chondrocytes 
from glucocorticoid-induced apoptosis via reactive oxygen species, Akt and FOXO3 signaling 
[110] as well as from advanced glycation end-product-induced apoptosis which was accompa-
nied by lower levels of MMP-3 and MMP-13 in rat chondrocyte cultures [111].

4. Do micro-RNAs play a critical role in chondrocyte apoptosis?

Micro-RNAs (miRs) are critical mediators of mRNA degradation as well acting as repres-
sors of translation. MiRs have been implicated in the development of skeletal long bones via 
their multiple effects on osteogenesis [112]. However, recent evidence has also improved the 
recognized role of miRs in RA pathology as a result of evidence that many miRs including 
miR-16, miR-146a/b, miR-150, miR-155 and miR-223 are over-expressed both in the peripheral 
circulation of RA patients and in the RA synovial joint [113], although other miRs relevant to 
RA, such as miR-21, miR-125a, miR-223, and miR-451 are principally found to be at elevated 
levels in the plasma and sera of RA patients.

Additional evidence has been presented to show that several of these miRs also regulate apop-
tosis. For example, the level of the pro-apoptotic protein, Bim, was increased when activated 
T-cells were incubated with a repressor of miR-148a resulting in an increase in the Th1 apoptotic 
response [114]. Thus, accumulating evidence showed that both the immune cells and chondro-
cyte apoptotic and autophagic response can be manipulated by either experimental overexpres-
sion or repression of various miRs which are relevant to OA [115] and RA [116] pathophysiology.

The results of numerous studies have confirmed the role of specific miRs as directly affect-
ing apoptosis or indirectly affecting apoptosis through their activity on other molecules that 
regulate chondrocyte apoptosis. For example, mIR-146a was reported to be over-expressed in 
OA [117]. In that regard, mIR-146a was shown to promote human OA chondrocyte prolifera-
tion and to inhibit apoptosis by targeting tumor necrosis factor receptor-associated factor 6 
(TRAF6) via NF-κB [118, 119]. By contrast, mIR-146a was also shown to target IL-1β, to induce 
VEGF production, and to promote rat chondrocyte apoptosis via Smad4 [120]. On the other 
hand, silencing of miR-34a inhibited rat chondrocyte apoptosis [121], whereas overexpression 
of mIR-34a promoted apoptosis in normal human chondrocytes by targeting SIRT1/p53 sig-
naling [122], although other evidences indicated that miR-34a was increased in intervertebral 
disc degeneration and was associated with an elevated frequency of apoptotic cartilage end 
plate chondrocytes [123]. In another study, glycerol-3-phosphate dehydrogenase 1-like pro-
tein was shown to be a target for mIR-181a, which is deregulated in OA wherein human chon-
drocyte apoptosis was increased [124]. In yet another study, phosphatase and tensin homolog 
deleted on chromosome 10 (PTEN) [36] was identified as the target for mIR-181 whereby mIR-
181 up-regulated the expression of proteins associated with apoptosis, including caspase-3 
and PARP. However, mIR-181 also up-regulated MMP-2 (gelatinase A; 72 kDa gelatinase) 
and MMP-9 (gelatinase B; 92 kDa gelatinase) [125] which are two MMPs directly relevant to 
cartilage matrix protein degradation in arthritis [126].
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Of note, several miRs were identified as potential targets for inducing chondrocyte survival 
and therefore could be considered anti-apoptosis factors; these included mIR-98 [127–129], 
mIR-9 [130], mIR-15a-5p [131], mIR-142-3p [132] and mIR-502-5p [133]. Additional mIRs, 
exemplified by miR-195 [134], mIR-139 [135], mIR-29b-3p [136], mIR-488-3p [137] and mIR-
203 [138] could very well be included in this group. For example, by employing the C28/I2 
line of immortalized human chondrocytes, Zhao et al. [138] showed that knockdown of mIR-
203 targeting the myeloid cell leukemia-1 (MCL-1) protein activated Wnt/β-catenin and JAK/
STAT signaling promoted chondrocyte survival.

To summarize this section, gaining a further understanding of how to manipulate specific 
mIRs to achieve increased or decreased synthesis of specific targets known to influence chon-
drocyte apoptosis may signal the next major advance in targeted OA and RA therapy designed 
to promote chondrocyte survival.

5. Pharmacologic interventions designed to specifically inhibit 
chondrocyte apoptosis

5.1. Signal transduction pathways

Lewis and Malemud [82] previously reviewed several potential pharmacologic strategies 
designed to limit the loss of chondrocyte vitality via apoptosis. These included, targeting 
x-linked inhibitor of apoptosis (XIAP), tumor necrosis factor-like weak inducer of apoptosis 
(TWEAK), TRAIL, decoy-receptor-3 (DcR3), tumor necrosis factor receptor protein-like mol-
ecules, p53 up-regulated modulator of apoptosis (PUMA), and apoptosis-signal-regulating 
kinases. In that regard, we proposed several interventional strategies which we acknowledged 
involved developing a deeper understanding of which signal transduction pathways were 
altered in RA and OA chondrocytes [19, 28, 36, 77, 82, 106]. For example, XIAP, an inhibitor 
of activated caspase-9, and caspases-3 and -7 [82] was also shown to interact with mitogen-
activated protein kinase kinase 2 (MEKK2) [139]. The interaction between XIAP and MEKK2 
resulted in a biphasic activation of NF-κB, a known downstream effector of TNF-α-mediated 
apoptosis. This finding is relevant to the regulation of chondrocyte apoptosis in both RA and 
OA primarily because XIAP is a well-known inhibitor of apoptosis protein-3 (IAP3) [140]. In 
fact, we had previously shown that recombinant human TNF-α (rhTNF-α) induced human 
chondrocyte apoptosis via activation of p38, JNK1/2 and STAT3 [72], whereas apoptosis of 
the immortalized human chondrocyte line, C-28/I2 induced by rhTNF-α, but not by rhIL-6, 
was dependent on upstream MEK1/2 [77]. Therefore, we posit that in order to consider using 
potential drug interventions that alter the activation of various signaling pathways it will be 
useful to consider what we know about how alterations in receptor-mediated signaling path-
ways (reviewed in [19]) may influence apoptosis.

Activation of SAPK/MAPK signaling is most often associated with induction of chondrocyte 
apoptosis. Thus, induction of rabbit articular chondrocyte apoptosis by the nitric oxide (NO) 
donor sodium nitroprusside (SNP) was linked to inhibition of c-Jun-amino-terminal kinase 
(JNK) by virtue of the finding that the JNK small molecule inhibitor (SMI) SP600125, reduced 
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the frequency of apoptotic chondrocytes along with NO-induced NF-κB, p53 and caspase-3 
[141]. IL-1β, another potent inducer of chondrocyte apoptosis, was also shown to be JNK-
dependent as both chemical inhibitors of JNK as well as RNA interference with Bim, the lat-
ter up-regulated by IL-1β, were shown to be phosphorylated-JNK-dependent [142]. In other 
studies, chondrocyte apoptosis was again linked to IL-1β-induced activation of p38 kinase 
[143–145], along with JNK [145], and MMP-3 gene expression with IL-1β negatively regulating 
chondrocyte autophagy [145]. Of note, AG490, a pan-JAK SMI significantly reduced leptin-
induced chondrocyte apoptosis in vitro as well as reducing STAT3 phosphorylation, reactive 
oxygen species, MMP-13 and B-cell lymphoma 2-associated X protein [146]. Interestingly, Li 
et al. [147] showed that the PI3K/NF-κB pathway was activated by TNF-α in human chondro-
cytes. However, the effect of leptin did not involve mTOR, suggesting that newly developed 
small molecule mTOR inhibitors (reviewed in [36]) might not be useful for neutralizing acti-
vated PI3K/NF-κB in response to leptin-induced apoptosis.

Several attempts to employ various compounds and/or natural products to inhibit chondro-
cyte apoptosis have taken advantage of various findings related to the role of these com-

pounds and natural products in many of the aforementioned signal transduction pathways. 
For example, IL-1β-induced chondrocyte apoptosis was inhibited by oligomeric proantho-
cyanidin, a water-soluble plant polyphenolic compound [148]. Thus, the over-expression of 
peroxiredoxin 4 (PRDX4), a member of the PRDX family (a molecule essential for scavenging 
free radicals and reducing reactive oxygen species) reduced IL-1β-induced rat chondrocyte 
apoptosis [149]. Importantly, AZD5363, an inhibitor of Akt activation also reduced the apop-
tosis protective effect of PRDX4. In another aspect, chondrocyte apoptosis induced by IL-1β 
not only involved reduced Bcl-2 levels, activated (i.e., phosphorylated) Akt, and activated 
PRAS40, a proline-rich 40 kDa Akt substrate and an inhibitor of mTORC1 kinase activity, but 
was also linked to increasing the levels of Bax, and activated caspase-3/-9 [149].

Shikonin, a compound with anti-tumor, anti-inflammatory, anti-viral and pharmacological 
efficacy significantly inhibited apoptosis by decreasing IL-1β, TNF-α and inducible NO syn-
thase (iNOS) in rats with experimentally induced OA [150]. The effect of shikonin in this 
animal model of OA was accompanied not only by reduced caspase-3 and cyclooxygenase-2 
activity but also by increased activation of Akt, indicating a prominent role for PI3K/Akt sig-
naling in this rat model of OA. Finally, a few novel targets, including protein kinase R-like 
endoplasmic reticulum kinase and activating transcription factor 6, were identified as potent 
regulators of chondrocyte apoptosis in vitro and in vivo [151], although the precise signaling 
mechanisms attributed to these molecules have yet to be completely established.

5.2. Additional potential targets related to apoptosis

Several experimental studies, of note, have focused on several cellular components which may 
eventually become suitable pharmacologic targets for altering chondrocyte apoptosis and/or 
autophagy in osteoarthritis (Table 2). However, the results of these mainly in vitro studies point 
out why it will be necessary to determine the underlying mechanisms regarding how these fac-
tors work to inhibit apoptosis. Thus, only after successful evaluation in animal models of RA 
and OA, can we envision that these targets could eventually be employed in a clinical setting.
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6. Conclusions and future perspectives

It is now generally agreed upon by many investigators that a chronic state of inflammation 
is, in part, responsible for driving and perpetuating the progression of RA (reviewed in [94]) 
and OA (reviewed in [58, 164]). Moreover, additional recent evidence has indicated that both 
apoptosis and an altered state of autophagy are critical events in chronic musculoskeletal dis-
orders, such as RA and OA [60, 102–105, 164–167]. Although the loss of chondrocyte vitality 

Factor Target Reference

HIF-1α/HIF-2α1 HIF-1α—SOX9; HIF-2α—Fas [152]

Integrin-β1 G1T12 [153]

IGFBP-33 Nur774 [154]

SGBT5 Caspase-3/Hsp706 [155]

UCP47 ROS8 [156]

DEL19 Caspase-3/Caspase-7 [157]

Rela10 Pik3r111 [158]

Beclin12 Bcl-2; Bcl-2 associated X [159]

AST13 LC3-II/I14; P62/SQSTM115 [160]

AQP-116 Caspase-3 [161]

Mt1/Mt217 ROS8 [162]

Sirt118 Bcl-2; Bax [163]

1Hypoxia-inducible factor-1α/-2α.
2G-protein-coupled receptor kinase interacting protein-1.
3Insulin-like growth factor-1 binding protein-3.
4Nerve growth factor 1B.
5Small glutamine-rich tetratricopeptide repeat-containing β.
6Heat shock protein-70.
7Uncoupling protein-4.
8Reactive oxygen species.
9Developmental endothelial locus-1.
10RelA/p65 of NF-κB complex.
11Pik3r1 encodes a p85α regulatory protein that is a subunit of phosphatidylinositol 3-kinase (PI3K).
12Beclin-1, a product of the BECN1 gene is a mammalian ortholog of the yeast autophagy-related gene 6 (Atg6) and BEC-
1 in the C. elegans nematode.
13Astragaloside IV.
14Microtubule-associated protein 1A/1B-light chain-I/II.
15P62/sequestosome-1.
16Aquaporin-1.
17Metallothionein-1/metallothionein-2.
18Silent information regulation of transcription 1.

Table 2. Cellular factors that regulate chondrocyte apoptosis and/or autophagy in vitro.
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is a  common pathological finding in RA and OA, cellular mechanisms that result in synovial 
fibroblast and immune-cell-mediated “apoptosis-resistance,” such as those that were found to 
underlie B-cell activity in RA [168–171], aids in distinguishing between the fundamental under-
pinning responsible for bony abnormalities in the two conditions. However, equally important 
is that the increased frequency of apoptotic chondrocytes in both RA and OA constitutes a 
major contributor to inefficient cartilage repair and synovial joint failure. We contend that any 
pharmacologic strategies designed to simultaneously target the “apoptosis-resistance” in the 
RA hyperplastic synovial tissue and the elevated frequency of chondrocyte apoptosis would be 
an onerous undertaking. So for the present, concentrating on developing agents that suppress 
or inhibit chondrocyte apoptosis might be the initial way to proceed. For example, the current 
literature on this subject has already indicated that certain drugs used in the medical therapy 
of RA suppress chondrocyte apoptosis in vitro. In that regard, the drug sulphasalazine, com-

monly employed in combination with methotrexate, for treating RA [172] was found to inhibit 
rabbit chondrocyte apoptosis induced by SNP [173]. In this study, the reduced frequency of 
chondrocyte apoptosis was accompanied by an increase in phosphorylated p38 kinase and 
ERK1/2 expression compared to treatment of chondrocytes with SNP alone.

Another area worthy of consideration is to employ in vitro studies to, in effect, rule out for fur-
ther considerations for developing drugs for treating potential targets of chondrocyte apopto-
sis. A suitable example of this strategy was a recent finding by Nasi et al. [174] that the NALP3 
inflammasome (reviewed in [175]) was not involved in chondrocyte apoptosis characteristic 
of several alterations in cartilage characteristically found in a murine menisectomy model of 
OA. Although alterations in the structure of articular cartilage such as cartilage destruction, 
synovial inflammation, cell death and calcification were seen in this OA animal model, a defi-
ciency in IL-1α had no impact on these features. Importantly, deficiencies in IL-1β and NALP3 
actually resulted in an enhancement of cartilage damage in this OA animal model.

The suppression or more favorably the complete inhibition of chondrocyte apoptosis in RA 
and OA using pharmacologic interventional strategies would be a laudable achievement in 
the continuing search for novel disease-modifying-anti-rheumatic drugs. A variety of poten-
tial novel targets have now been identified during the previous 3 years that at least employing 
cancer cells induces the frequency of apoptosis. Thus, targets have been identified to induce 
apoptosis in these cancers and therefore, may be eventually exploited for blocking chondro-
cyte apoptosis. For example, the activity of 2,5-dihydroxy-3-undecyl-1,4 benzoquinone, 6 g, 
also known as embelin was reviewed [82] as an inducer of apoptosis in inflammatory breast 
cancer cells and pancreatic cancer cells. Embelin was also shown to block the transcription of 
several gene products relevant to tumor cell survival, proliferation, invasiveness and meta-
static cancer cell proliferation. Of note, treatment with non-toxic concentrations of embelin 
could also sensitize cultured malignant glioma to TRAIL-induced apoptosis [176]. Lewis and 
Malemud [82] reviewed the findings showing that embelin blocked the activation of NF-κB, 
RANKL and, STAT3, the latter finding demonstrating “proof-of-principle” that STAT3-
activated transcription could also be employed to probe the extent to which this signaling 
pathway was required for maintaining chondrocyte survival in vitro [177]. In that regard, 
these pre-clinical results may provide a suitable platform for exploiting the overall objective 
of preventing synovial joint failure in RA and OA through the maintenance of normal articu-
lar chondrocyte viability and cartilage integrity.
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