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1. Introduction 

In most adaptive control algorithms, parameter estimate errors are not guaranteed to 
converge to zero. This lack of convergence adversely affects the global performance of the 
algorithms. The effect is more pronounced in control problems where the desired reference 
setpoint or trajectory depends on the system's unknown parameters. This paper presents a 
parameter estimation routine that allows exact reconstruction of the unknown parameters in 
finite-time provided a given excitation condition is satisfied. The robustness of the routine to 
an unknown bounded disturbance or modelling error is also shown. 
To enhance the applicability of the finite-time (FT) identification procedure in practical 
situations, a novel adaptive compensator that (almost) recover the performance of the FT 
identifier is developed. The compensator guarantees exponential convergence of the 
parameter estimation error at a rate dictated by the closed-loop system's excitation. It was 
shown how the adaptive compensator can be used to improve upon existing adaptive 
controllers. The modification provided guarantees exponential stability of the parametric 
equilibrium provided the given PE condition is satisfied. Otherwise, the original system's 
closed-loop properties are preserved. 
The results are independent of the control structure employed. The true parameter value is 
obtained without requiring the measurement or computation of the velocity state vector. 
Moreover, the technique provides a direct solution to the problem of removing auxiliary 
perturbation signals when parameter convergence is achieved. The effectiveness of the 
proposed methods is illustrated with simulation examples. 
There are two major approaches to online parameter identification of nonlinear systems. The 
first is the identification of parameters as a part of state observer while the second deals with 
parameter identification as a part of controller. In the first approach, the observer is 
designed to provide state derivatives information and the parameters are estimated via 
estimation methods such as least squares method [19] and dynamic inversion [6]. The 
second trend of parameter identification is much more widespread, as it allows 
identification of systems with unstable dynamics. Algorithms in this area include parameter 
identification methods based on variable structure theory [22, 23] and those based on the 
notion of passivity [13]. 
In the conventional adaptive control algorithms, the focus is on the tracking of a given 
reference trajectory and in most cases parameter estimation errors are not guaranteed to 
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converge to zero due to a lack of excitation [10]. Parameter convergence is an important 
issue as it enhances the overall stability and robustness properties of the closed-loop 
adaptive systems [14]. Moreover, there are control problems whereby the reference 
trajectory is not known a priori but depends on the unknown parameters of the system 
dynamics. For example, in adaptive extremum seeking control problems, the desired target 
is the operating setpoint that optimizes an uncertain cost function [8, 21]. 
Assuming the satisfaction of appropriate excitation conditions, asymptotic and exponential 
parameter convergence results are available for both linear and nonlinear systems. Some 
lower bounds which depends (nonlinearly) on the adaptation gain and the level of 
excitation in the system have been provided for some specific control and estimation 
algorithms [11, 17, 20]. However, it is not always easy to characterize the convergence rate. 
Since the performance of any adaptive extremum seeking control is dictated by the 
efficiency of its parameter adaptation procedure. This chapter presents a parameter 
estimation scheme that allows exact reconstruction of the unknown parameters in finite-
time provided a given persistence of excitation (PE) condition is satisfied. The true 
parameter estimate is recovered at any time instant the excitation condition is satisfied. This 
condition requires the integral of a filtered regressor matrix to be invertible. The finite-time 

(FT) identification procedure assumes the state of the system ( )x ⋅  is accessible for 

measurement but does not require the measurement or computation of the velocity state 

vector ( )x ⋅& . The robustness of the estimation routine to bounded unknown disturbances or 

modeling errors is also examined. It is shown that the parameter estimation error can be 
rendered arbitrarily small for a sufficiently large filter gain. 
A common approach to ensuring a PE condition in adaptive control is to introduce a 
perturbation signal as the reference input or to add it to the target setpoint or trajectory. The 
downside of this approach is that a constant PE deteriorates the desired tracking or 
regulation performance. Aside from the recent results on intelligent excitation signal design 
[3, 4], the standard approach has been to introduce such PE signal and remove it when the 
parameters are assumed to have converged. The fact that one has perfect knowledge of the 
convergence time in the proposed framework allows for a direct and immediate removal of 
the added PE signal. The result on finite-time identification has been published in [2]. 
The main drawback of the finite-time identification algorithm is the requirement to check 
the invertibility of a matrix online and compute the inverse matrix when appropriate. To 
avoid these concerns and enhance the applicability of the FT method in practical situations, 
the procedure was employed to develop a novel adaptive compensator that (almost) recover 
the performance of the FT identifier. The compensator guarantees exponential convergence 
of the parameter estimation error at a rate dictated by the closed-loop system's excitation. It 
was shown how the adaptive compensator can be used to improve upon existing adaptive 
controllers. The modification provided guarantees exponential stability of the parametric 
equilibrium provided the given PE condition is satisfied. Otherwise, the original system's 
closed-loop properties are preserved. 

2. Problem Description and Assumptions 

The system considered is the following nonlinear parameter affine system 

  (1) 

www.intechopen.com



Advances in Parameter Estimation and Performance Improvement in Adaptive Control 

 

191 

where  is the state and  is the control input. The vector  is the 
unknown parameter vector whose entries may represent physically meaningful unknown 
model parameters or could be associated with any finite set of universal basis functions. It is 
assumed that  is uniquely identifiable and lie within an initially known compact set . 
The nx-dimensional vector f(x, u) and the -dimensional matrix  are 
bounded and continuous in their arguments. System (1) encompasses the special class of 
linear systems, 

 

where Ai and Bi for i = 0 . . .  are known matrices possibly time varying.  
Assumption 2.1   The following assumptions are made about system (1). 

1. The state of the system ( )x ⋅  is assumed to be accessible for measurement. 

2. There is a known bounded control law  and a bounded parameter update law  
that achieves a primary control objective. 

The control objective can be to (robustly) stabilize the plant and/or to force the output to 
track a reference signal. Depending on the structure of the system (1), adaptive control 
design methods are available in the literature [12, 16]. 
For any given bounded control and parameter update law, the aim of this chapter is to 
provide the true estimates of the plant parameters in finite-time while preserving the 
properties of the controlled closed-loop system. 

3. Finite-time Parameter Identification 

Let  denote the state predictor for (1), the dynamics of the state predictor is designed as 

  (2) 

where  is a parameter estimate generated via any update law , kw > 0 is a design matrix, 
 is the prediction error and w is the output of the filter 

  (3) 

Denoting the parameter estimation error as , it follows from (1) and (2) that 

  (4) 

The use of the filter matrix w in the above development provides direct information about 

parameter estimation error  without requiring a knowledge of the velocity vector x& . This 

is achieved by defining the auxiliary variable 

  (5) 

with , in view of (3, 4), generated from 

  (6) 

Based on the dynamics (2), (3) and (6), the main result is given by the following theorem. 
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Theorem 3.1 Let   and  be generated from the following dynamics: 

  (7a) 

  (7b) 

Suppose there exists a time tc and a constant c1 > 0 such that Q(tc) is invertible i.e. 

  
(8)

 

then 

  (9) 

Proof: The result can be easily shown by noting that 

.  
(10)

 

Using the fact that , it follows from (10) that 

  

(11)

 

and (11) holds for all since .  

The result in theorem 3.1 is independent of the control u and parameter identifier  
structure used for the state prediction (eqn 2). Moreover, the result holds if a nominal 

estimate  of the unknown parameter (no parameter adaptation) is employed in the 

estimation routine. In this case,  is replaced with  and the last part of the state predictor 

(2) is dropped (  = 0).  
Let 

  (12) 

The finite-time (FT) identifier is given by 

  
(13) 

The piecewise continuous function (13) can be approximated by a smooth approximation 
using the logistic functions 

  (14a) 

  (14b) 
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  (14c) 

where larger  correspond to a sharper transition at t = tc and  . 

An example of such approximation is depicted in Figure 1 where the function 

 

is approximated by (14) with . 

 

Figure 1. Approximation of a piecewise continuous function. The function z(t) is given by 
the full line. Its approximation is given by the dotted line 

The invertibility condition (8) is equivalent to the standard persistence of excitation (PE) 
condition required for parameter convergence in adaptive control. The condition (8) is 
satisfied if the regressor matrix  is PE. To show this, consider the filter dynamic (3), from 
which it follows that 

  (15) 

Since  is PE by assumption and the transfer function  is stable, minimum phase 

and strictly proper, we know that w(t) is PE [18].   Hence, there exists tc and a c1 for which (8) 
is satisfied. The superiority of the above design lies in the fact that the true parameter value 
can be computed at any time instant tc the regressor matrix becomes positive definite and 
subsequently stop the parameter adaptation mechanism. 
The procedure in theorem 42 involves solving matrix valued ordinary differential equations 
(3, 7) and checking the invertibility of Q(t) online. For computational considerations, the 
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invertibility condition (8) can be efficiently tested by checking the determinant of Q(t) 
online. Theoretically, the matrix is invert-ible at any time det(Q(t)) becomes positive definite. 
The determinant of Q(t) (which is a polynomial function) can be queried at pre-scheduled 
times or by propagating it online starting from a zero initial condition. One way of doing 
this is to include a scalar differential equation for the derivative of det(Q(i)) as follows [7]: 

  
(16)

 

where Adjugate(Q), admittedly not a light numerical task, is also a polynomial function of 
the elements of Q. 

3.1 Absence of PE 

If the PE condition (8) is not satisfied, a given controller and the corresponding parameter 
estimation scheme preserve the system established closed-loop properties. When a bounded 

controller that is robust with respect to input  is known, it can be shown that the state 
prediction error e tends to zero as . An example of such robust controller is an input-
to-state stable (iss) controller [12]. 

Theorem 3.2 Suppose the design parameter kw in (2) is replaced with  
, and . Then the state predictor (2) and the parameter 

update law 

  
(17)

 

with , a design constant matrix, guarantee that 

1. . 

2. , a constant.  
Proof: 

1. Consider a Lyapunov function 

  

(18)

 

It follows from equations (4), (5), (6) and (17) that 

 (19)
 

  
(20)

 

  (21) 

where . This implies uniform boundedness of  as well as 

global asymptotic convergence of  to zero. Hence, it follows from (5) that 
. 

2. This can be shown by noting from (17) that  . 

Since (.) and e are bounded signals and , the integral term exists and it is 
finite.  
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4. Robustness Property 

In this section, the robustness of the finite-time identifier to unknown bounded disturbances 
or modeling errors is demonstrated.   Consider a perturbation of 

(1): 

  (22) 

where  is a disturbance or modeling error term that satisfies  . If 
the PE condition (8) is satisfied and the disturbance term is known, the true unknown 
parameter vector is given by 

  

(23)

 

with  and the signals  generated from (2), (3) and 

  (24) 

respectively. 

Since  is unknown, we provide a bound on the parameter identification error 

 when (6) is used instead of (24). Considering (9) and (23), it follows that 

  

 (25)

 

  

(26)

 

where  is the output of 

  (27) 

Since , it follows that 

  
(28)

 

and hence 

  

(29)

 

where . 

This implies that the identification error can be rendered arbitrarily small by choosing a 

sufficiently large filter gain . In addition, if the disturbance term  and the system 
satisfies some given properties, then asymptotic convergence can be achieved as stated in 
the following theorem. 

Theorem 4.1 Suppose , for p = 1 or 2 and , then 

asymptotically with time. 

www.intechopen.com



Frontiers in Adaptive Control 

 

196 

To proof this theorem, we need the following lemma  
Lemma 4.2  [5]: Consider the system 

  (30) 

Suppose the equilibrium state xe = 0 of the homogeneous equation is exponentially stable, 

1. if  for , then and 

2. if  for p = 1 or 2, then as . 

Proof of theorem 4.1. It follows from Lemma 4.2.2 that  as  and therefore 

 is finite. So 

  
(31)

 

5. Dither Signal Design 

The problem of tracking a reference signal is usually considered in the study of parameter 
convergence and in most cases, the reference signal is required to provide sufficient 

excitation for the closed-loop system. To this end, the reference signal  is 
appended with a bounded excitation signal d(t) as 

  (32) 

where the auxiliary signal d(t) is chosen as a linear combination of sinusoidal functions with 
 distinct frequencies: 

  

(33)

 

where 

 

 is the signal amplitude matrix and 

 

is the corresponding sinusoidal function vector. 
For this approach, it is sufficient to design the perturbation signal such that the regressor 
matrix  is PE. There are very few results on the design of persistently exciting (PE) input 
signals for nonlinear systems. By converting the closed-loop PE condition to a sufficient 
richness (SR) condition on the reference signal, attempts have been made to provide 
verifiable conditions for parameter convergence in some classes of nonlinear systems [3, 1, 
14, 15]. 
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5.1  Dither Signal Removal 

 

Figure 2. Trajectories of parameter estimates.  Solid(-) : FT estimates  dashed(--) : standard 

estimates  [15]; dashdot(-.): actual value 

Let  denotes the number of distinct elements in the dither amplitude matrix 
 and let  be a vector of these distinct coefficients. The amplitude of the 

excitation signal is specified as 

  

(34)

 
or approximated by 

  
 (35)

 

where equality holds in the limit as . 
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6. Simulation Examples 

6.1 Example 1 

We consider the following nonlinear system in parametric strict feedback form [15]: 

  

(36)

 

where  are unknown parameters. Using an adaptive backstep-ping 
design, the control and parameter update law presented in [15] were used for the 
simulation. The pair stabilize the plant and ensure that the output y tracks a reference signal 

yr(t) asymptotically. For simulation purposes, parameter values are set to  = [—1, —2,1, 2, 
3] as in [15] and the reference signal is yr = 1, which is sufficiently rich of order one. The 
simulation results for zero initial conditions are shown in Figure 2. Based on the 
convergence analysis procedure in [15], all the parameter estimates cannot converge to their 
true values for this choice of constant reference. As confirmed in Fig. 2, only 1 and 2 
estimates are accurate. However, following the proposed estimation technique and 
implementing the FT identifier (14), we obtain the exact parameter estimates at t = 17sec. 
This example demonstrates that, with the proposed estimation routine, it is possible to 
identify parameters using perturbation or reference signals that would otherwise not 
provide sufficient excitation for standard adaptation methods. 

6.2 Example 2 

To corroborate the superiority of the developed procedure, we demonstrate the robustness 
of the developed procedure by considering system (36) with added exogeneous 
disturbances as follows: 

  

(37)

 

where  and the tracking signal remains a constant yr = 1. 
The simulation result, Figure 3, shows convergence of the estimate vector to a small 
neighbourhood of  under finite-time identifier with filter gain kw = 1 while no full 
parameter convergence is achieved with the standard identifier. The parameter estimation 

error (t) is depicted in Figure 4 for different values of the filter gain kw . The switching time 
for the simulation is selected as the time for which the condition number of Q becomes less 
than 20. It is noted that the time at which switching from standard adaptive estimate to FT 
estimate occurs increases as the filter gain increases. The convergence performance 
improves as kw increases, however, no significant improvement is observed as the gain is 
increased beyond 0.5. 
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7. Performance Improvement in Adaptive Control via Finite-time Identification 
Procedure 

This section demonstrates how the finite-time identification procedure presented in section 
3 can be employed to improve the overall performance (both transient and steady state) of 
adaptive control systems in a very appealing manner. Fisrt, we develop an adaptive 
compensator which guarantees exponential convergence of the estimation error provided 
the integral of a filtered regressor matrix is positive definite. The approach does not involve 
online checking of matrix in-vertibility and computation of matrix inverse nor switching 
between parameter estimation methods. The convergence rate of the parameter estimator is 
directly proportional to the adaptation gain and a measure of the system's excitation. The 
adaptive compensator is then combined with existing adaptive controllers to guarantee 
exponential stability of the closed-loop system. 

 
Figure 3. Trajectories of parameter estimates. Solid(-) : FT estimates for the system with 

additive disturbance , dashed(--): standard estimates  [15]; dashdot(-.): actual value 
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8. Adaptive Compensation Design 

Consider the nonlinear system 1 satisfying assumption 2.1 and the state predictor 

  (38) 

where kw  > 0 and  is the nominal initial estimate of .   If we define the auxiliary variable 

  (39) 

 

Figure 4. Parameter estimation error for different filter gains kw 

and select the filter dynamic as 

  (40) 

then  is generated by 

  (41) 

Based on (38) to (41), our novel adaptive compensation result is given in the following 
theorem. 
Theorem 8.1  Let Q and C be generated from the following dynamics: 

  (42a) 

  (42b) 

and let tc be the time such that , then the adaptation law 

  (43) 
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with  guarantees that  is non-increasing for to   and 
converges to zero exponentially fast, starting from tc. Moreover, the convergence rate is lower 

bounded by . 
Proof: Consider a Lyapunov function 

  
(44)

 

it follows from (43) that 

  (45) 

Since  (from (39)), then 

  
(46)

 

and equation (45) becomes 

  (47) 

  (48) 

This implies non-increase of  for  and the exponential claim follows from the fact 

that  is positive definite for all . The convergence rate is 

shown by noting that 

   (49) 

  (50) 

which implies 

  (51) 

Both the FT identification (9) and the adaptive compensator (43) use the static relationship 
developed between the unknown parameter  and some measurable matrix signals C, i.e, 
Q  = C. However, instead of computing the parameter values at a known finite-time by 
inverting matrix Q, the adaptive compensator is driven by the estimation error 

. 

9. Incorporating Adaptive Compensator for Performance Improvement 

It is assumed that the given control law u and stabilizing update law (herein denoted as ) 
result in closed-loop error system 

  (52a) 
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  (52b) 

where the matrix A is such that  is a bounded matrix function 

of the regressor vectors, and  is a vector function of the 
tracking error with  . This implies that the adaptive controller guarantees 

uniform boundedness of the estimation error  and asymptotic convergence of the tracking 
error Z dynamics. Such adaptive controllers are very common in the literature. Examples 
include linearized control laws [16] and controllers designed via backstepping [12, 15]. 

Given the stabilizing adaptation law , we propose the following update law which is a 
combination of the stabilizing update law (52b) and the adaptive compensator (43) 

  
(53)

 

Since C(t) = Q(t) , the resulting error equations becomes 

  

(54)

 

Considering the Lyapunov function  and differentating along (54) 

we have 

  
(55)

 

Hence  exponentially for  and the initial asymptotic convergence of Z is 
strengthened to exponential convergence.  
For feedback linearizable systems 

 

the PE condition  translates to a priori verifiable sufficient condition on the 

reference setpoint. It requires the rows of the regressor vector  to be linearly 
independent along a desired trajectory xr(t) on any finite interval 

. This condition is less restrictive than the one given in [9] for the 

same class of system. This is because the linear independence requirement herein is only 
required over a finite interval and it can be satisfied by a non-periodic reference trajectory 
while the asymptotic stability result in [9] relies on a T-periodic reference setpoint. 
Moreover exponential, rather than asymptotic stability of the parametric equilibrium is 
achieved. 
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10. Dither Signal Update 

Perturbation signal is usually added to the desired reference setpoint or trajectory to 
guarantee the convergence of system parameters to their true values. To reduce the 
variability of the closed-loop system, the added PE signal must be systematically removed 
in a way that sustains parameter convergence. 
Suppose the dither signal d(t) is selected as a linear combination of sinusoidal functions as 
detailed in Section 5. Let  be the vector of the selected dither amplitude and let T > 0 be 
the first instant for which d(T) = 0, the amplitude of the excitation signal is updated as 
follows: 

  
(56)

 

where the gain  is a design parameter,  and  

 

It follows from (56) that the reference setpoint will be subject to PE with constant amplitude 
 if  . After which the trajectory of  will be dictated by the filtered regressor 

matrix Q. The amplitude vector  will start to decay exponentially when Q(t) becomes 
positive definite. Note that parameter convergence will be achieved regardless of the value 
of the gain  selected as the only requirement for convergence is . 
Remark 10.1 The other major approach used in traditional adaptive control is parameter estimation 
based design. A well designed estimation based adaptive control method achieves modularity of the 
controller-identifier pair. For nonlinear systems, the controller module must possess strong 
parametric robustness properties while the identifier module must guarantee certain boundedness 
properties independent of the control module. Assuming the existence of a bounded controller that is 

robust with respect to , the adaptive compensator (43) serves as a suitable identifier for modular 
adaptive control design. 

11. Simulation Example 

To demonstrate the effectiveness of the adaptive compensator, we consider the example in 
Section 6 for both the nominal system (36) and the system under additive disturbance (37). 
The simulation is performed for the same reference setpoint yr = 1, disturbance vector 

, parameter values  = [—1, —2, 1, 2, 3] and zero initial 
conditions. 
The adaptive controller presented in [15] is also used for the simulation. We modify the 
given stabilizing update law by adding the adaptive compensator (43) to it. The 
modification significantly improve upon the performance of the standard adaptation 
mechanism as shown in Figures 5 and 6. All the parameters converged to their values and 
we recover the performance of the finite-time identifier (14). Figures 7 and 8 depict the 
performance of the output and the input trajectories. While the transient behaviour of the 
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output and input trajectories is slightly improved for the nominal adaptive system, a 
significant improvement is obtained for the system subject to additive disturbances. 

 

 

 

 

 

 

 

 

Figure 5. Trajectories of parameter estimates.    Solid(-) :    compensated estimates;   
dashdot(-.): FT estimates;   dashed(--) : standard estimates [15] 
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Figure 6. Trajectories of parameter estimates under additive disturbances. Solid(-): 
compensated estimates; dashdot(-.): FT estimates; dashed(--) : standard estimates [15] 
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Figure 7. Trajectories of system's output and input for different adaptation laws. Solid(-): 
compensated estimates; dashdot(-.): FT estimates; dashed(--) : standard estimates [15] 

 
 

 

Figure 8. Trajectories of system's output and input under additive disturbances for different 
adaptation laws. Solid(-) : compensated estimates; dashdot(-.): FT estimates; dashed(--) : 
standard estimates [15] 
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12. Conclusions 

The work presented in this chapter transcends beyond characterizing the parameter 
convergence rate. A method is presented for computing the exact parameter value at a 
finite-time selected according to the observed excitation in the system. A smooth transition 
from a standard estimate to the FT estimate is proposed. In the presence of unknown 
bounded disturbances, the FT identifier converges to a neighbourhood of the true value 
whose size is dictated by the choice of the filter gain. Moreover, the procedure preserves the 
system's established closed-loop properties whenever the required PE condition is not 
satisfied. We also demonstrate how the finite-time identification procedure can be used to 
improve the overall performance (both transient and steady state) of adaptive control 
systems in a very appealing manner. The adaptive compensator guarantees exponential 
convergence of the estimation error provided a given PE condition is satisfied. The 
convergence rate of the parameter estimator is directly proportional to the adaptation gain 
and a measure of the system's excitation. The adaptive compensator is then combined with 
existing adaptive controllers to guarantee exponential stability of the closed-loop system. 
The application reported in Section 9 is just an example, the adaptive compensator can 
easily be incorporated into other adaptive control algorithms. 
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