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Abstract

Aging is the main risk factor for cardiovascular diseases (CVD), and senescence in 
endothelial cells seems to be an initial step in the cascade of events that will culminate 
with the development of these pathologies. In this chapter, we examine the pathophysi-
ological mechanism(s) involved in endothelial senescence, leading to CVD as well as the 
biochemical and cellular pathways that may explain the activation and development of 
the process of endothelial senescence, and we discuss new hypotheses supported by 
experimental results which suggest that the senescent endothelial cell may induce a gen-
eral process of vascular senescence. This process is probably induced either by soluble 
 molecules secreted by these senescent cells and/or by intercellular signals transported in 
cellular vesicles that may be useful as biomarkers and as potential therapeutic targets in 
endothelial senescence.

Keywords: aging, biomarkers, cardiovascular disease, endothelium, microvesicles

1. Introduction

The term “cardiovascular diseases” (CVD) refers to a group of pathologies that share a com-

mon nexus, as they are preceded by process of damage and endothelial dysfunction. The 

imbalance of oxidative stress within the endothelium promotes the activation of cellular 

senescence processes, altering the biological functions of endothelial cells [1] and favoring 

CVD development. Indeed, chronologic aging or premature senescence (caused by pathologic 

environment) is significantly associated with CVD development [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Cellular senescence is an irreversible biological phenomenon triggered by potentially harmful 

stimuli which can damage the cell genome. During this process, the cell interrupts the division 

process, entering a state of cell cycle arrest and becoming quiescent. Senescence is a protective 

mechanism which affects the major part of the cells within the organism, including the vascular 
cells [3, 4]. It is considered indispensable to prevent tumor development, although turns to be 

pathologic when senescent cells extensively accumulate in tissues as a consequence of aging.

Cell senescence can be triggered prematurely due to aging-associated pathologies such as 

CVD or chronic kidney disease (CKD). In fact, several studies confirm that CKD patients 
manifest premature aging in several tissues, including those in the cardiovascular system 

[5]. This is partly explained because CKD patients show “classic” cardiovascular risk  factors 

(age, lifestyle, left ventricular hypertrophy, dyslipidemia, hypertension and diabetes melli-

tus). Kidney failure leads to the accumulation of circulating uremic toxins in the blood of 

those patients, causing stress and damage to the endothelium and activating endothelial 

cells senescence. Furthermore, CKD patients often show subclinical chronic inflammation 
 associated with an immunosenescence process, which seems to be induced by the uremic 

toxins and other factors [6]. The renal replacement therapies may have a significant role in 
this process, as they induce the activation of immunocompetent cells [7].

Taken together, these concepts show that blood circulating toxins cause endothelial cells to 

become senescent leading to the appearance of several CVD. For example, some studies have 

proved that, at least in atherosclerotic processes, the pathogenic basis by which the CVD is 

developed is endothelial senescence [8, 9]. When endothelial cells become senescent, their 

imbalanced functionality may lead to the loss of the vascular structure. Moreover, the senes-

cent endothelium cannot regulate correctly the repairing and regenerative activity of endo-

thelial progenitor cells (EPCs), which increases the harmful effect in the vascular bed [10]. It is 

easy to understand in this context that endothelial senescence acts as the first element in the 
development of CVD.

Recently, microvesicles (MVs) have been proposed as endothelial response elements that can 

take part both in damaging and repairing processes in the endothelium [10–12]. There is cer-

tain knowledge, yet scarce, about the mechanisms underlying the participation of MVs in 

endothelial homeostasis, although the implication of those MVs in endothelial senescence 

remains an unresolved question.

Therefore, to understand and characterize the mechanisms by which the senescent endothe-

lial cells show an imbalanced functionality, it is necessary to identify early biomarkers and to 

design therapeutic targets for CVD.

2. Endothelial dysfunction as the first step in the development of 
vascular disease

Endothelial dysfunction is an earlier pathophysiologic stage in CVD development. Ross in 

1976 published his theory of response to damage, where he hypothesized that the initial event 

in  atherogenesis is the endothelial injury, followed by the proliferation of smooth muscle 
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cells [13]. Over the past years, this theory has been consolidated as endothelial damage is 

shown to be decisive in the promotion of vascular diseases. Indeed, diverse pharmacologic and 

dietetic interventions are intended to prevent the imbalance of the endothelial function, trying 

to interfere with the development of atherosclerosis and its clinical consequences [14, 15].

The endothelium is a thin monocellular layer that covers the inner surface of blood vessels, 

separating the circulating blood from the interstitial fluid [16]. The endothelium is not an inert 

organ, as it can respond to physical or chemical stimuli by liberating the adequate regulatory 

substance to keep the correct vasomotor equilibrium and homeostasis [17]. The endothelium 

acts as an autocrine, paracrine and endocrine gland. Endothelial cells produce vasodilating, 

antiproliferative, antithrombotic and antiadherent mediators, like nitric oxide (NO), prostacy-

clin, the endothelium-derived hyperpolarizing factor (EDHF) and the natriuretic peptide, type 

C (CNP). The actions of those molecules are compensated by the release of substances with 

the opposing effect, as endothelin 1, thromboxane A2, prostaglandin H2 and the superoxide 
anion. Thus, endothelium regulates the tone of the smooth muscle cells of the vessel wall, 

causing its relaxation or contraction and conditioning the vasodilation or  vasoconstriction 

processes. Also, it regulates hemostasis by controlling the production of prothrombotic or 

antithrombotic molecules, as well as fibrinolytic and antifibrinolytic substances. Endothelium 
takes part in inflammatory and immune processes by regulating proliferation and cell migra-

tion, as well as adherence and leukocytes activation. It is capable of producing cytokines and 

adhesion molecules that regulate the inflammatory process, contributing to the defensive 
function of the organism by the activation of neutrophils and macrophages [18].

Cardiovascular risk factors provoke an oxidative stress which alter the function of the endo-

thelial cells and provoke endothelial dysfunction by reducing the ability of the endothelium 

to maintain the homeostasis and concluding with the development of vascular diseases [19]. 

The term “endothelial dysfunction” has been used to define diverse syndromes which include 
a change of the endothelial phenotype from a “basal” to an active state. It is a complex disor-

der which includes alterations in the vasomotor and antithrombotic responses, in the vascular 

permeability, the leukocytes recruitment and the proliferation of endothelial cells [20, 21]. In 

the progress of endothelial dysfunction, the presence of pathologic conditions can contribute 

accelerating CVD development [22, 23].

Among the cardiovascular risk factors, the age arises as a critical factor. It is associated with 

damage and endothelial dysfunction, as well with atherosclerosis development which will 

lead to vascular pathologies [24]. Epidemiologic studies have demonstrated that aging is the 

most important risk factor for the development of CVD, mainly atherosclerotic [23]. During 

the gradual aging, the incidence and prevalence of atherothrombotic and coronary diseases 

and cerebrovascular accidents increases. For that reason, there must be a causal relationship 

between the age-associated changes and vascular damage. It has been demonstrated that, dur-

ing aging, the vasculature of healthy subjects suffers several changes, as endothelial dysfunc-

tion [21], the arterial wall thickening and remodeling [25], angiogenesis alterations, incorrect 

vascular repair [26] and increased atherosclerosis prevalence [27]. The relationship between 

the development of these disorders and the aging process remain poorly understood, but it is 

possible that throughout the physiologic aging of the organisms some similar changes occur, 

comparable to those in the vascular diseases and sharing common cellular mechanisms.
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3. Endothelial cellular senescence as pathophysiological mechanism 
of vascular pathology

One of the mechanisms that have been postulated as a possible pathophysiological partici-

pant is the cellular senescence of the endothelium. Cellular senescence is an irreversible pro-

cess typical for all cells in which cells leave the cycle division as a consequence of the cellular 

damage associated with diseases [28] and aging [29]. Cell senescence processes appear to be 

involved in physiological processes of control such as cancer protection, biological develop-

mental processes, tissue repair in aging situations and age-related disorders. Although their 

involvement in the aging process was postulated by Shay and Wright (Hayflick limit) [30], 

the absence of specific markers of senescence has hampered efforts to characterize senescent 
cells that accumulate in vivo in tissues and organs. Nowadays, the process of cell senescence is 

becoming better known due to the availability of new techniques to determine and quantify the 
senescent characteristics. In general, the main characteristic of the senescent phenotype is that 

cells decline in DNA replication until they cease to proliferate associated with the molecular 

changes of elements related to the cell cycle [31]. In general, senescent cells exhibit an upreg-

ulation and secretion of growth factors, proinflammatory cytokines, and also they release 
extracellular matrix-degrading proteins, the overall contribution constitutes the senescence-

associated secretory phenotype (SASP) [32] and cells lose the ability to divide at the end of 

replicative lifespan and decrease their ability to migrate [33]. At a phenotypic level, senescent 

cells acquire the typical flattened and enlarged morphology [34] (Figure 1). Aforementioned 

Figure 1. Mechanisms by which endothelial cells become senescent and their characteristics. GF, growth factors; MMPs, 

matrix metalloproteinases; SASP, senescence-associated secretory phenotype; EMVs, endothelial microvesicles; ROS, 

reactive oxidative species.
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cells undergo distinctive phenotypic alterations, including profound chromatin and secre-

tome changes, telomere shortening, genomic and epigenomic damage,  unbalanced mitogenic 

signals and tumor-suppressor activation [28, 29]. Also, in human replicative senescence, telo-

mere lengths decline with each cell cycle [35]. Most of these cells are resistant to some apop-

tosis signals, therefore, they become senescent [31]. Senescence and apoptosis are responses 

to cellular stress, and both are important in the activation of tumor suppressors [36], but 

senescence avoids the damage in the stressed cells. To date, some senescence markers have 

been described (Table 1) that are involved in cellular senescence, most of which participate in 

cell cycle control and DNA repair [31]. Further analysis has highlighted that many common 

Characteristics Markers Regulation Techniques References

DNA replication 

(senescent cells 

decline in DNA 

replication)

BrdU ↓ Fluorescence microscope [31]

3H-dT ↓ Incorporation of radioactivity

PCNA ↓ Immunostaining/Western blot

Ki-67 ↓ Immunostaining/Western blot

SA-β-gal activity 
(the SA-β-gal 
derives from 

the lysosomal 

β-galactosidase 
and reflects the 
increased lysosomal 

biogenesis)

X-gal substrate ↑ Light microscopy (production of 

blue precipitate)

[41, 42]

C
12

FDG 

(fluorogenic 
substrate)

↑ Fluorescence microscopy 

(production of green fluorogenic 
color)

Cell cycle arrest 

proteins (early 

markers of DNA 

damage-induced 

senescence)

p16 ↑ Western blot/immunostaining [43–45]

p21 [29, 46]

p53

Cyclin D1 [38]

Lamin B1 ↓ [39]

SAHFs 

(reorganization 

of chromatin into 

discrete foci)

DNA dyes: 

DAPI

↑ Presence of certain 

heterochromatin-

associated histone 

modifications

Fluorescence microscopy [31, 47]

SDF (different DNA 
repair proteins)

γ-H2AX: 
marker of 

DNA double 

strand breaks 

and genomic 

instability

↑ Fluorescence microscopy/Western 

blot

[31]

53BP1: protein 

associated with 

DNA damage

↑ Fluorescence microscopy

BrdU, 5-bromodeoxyuridine; 3H-dT, 3H thymidine; PCNA, Proliferating cell nuclear antigen; SA-β-gal, Senescence-associated 
β- galactosidase; X-gal substrate, 5-bromo-4-chloro-3-indolyl-D-galactoside; C

12
FDG, 5-dodecanoylaminofluorescein di-

β-D-galactopyranoside; SAHFs, senescence-associated heterochromatin foci; DAPI, 4′,6-diamidino-2-phenylindole; SDF, 
senescence-associated DNA damage foci; γ-H2AX; phosphorylated histone H2AX; 53BP1, p53-binding protein-1.

Table 1. Senescence markers.
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cellular markers of senescence (upregulation of senescence-associated (SA)-β-galactosidase 
(gal) and p16) [29] are not robust and might overestimate the numbers of senescent cells that 

are present at low frequencies [37]. Thus, other cellular markers, such as cyclin D1 and lamin 

B1 [38, 39], are considered more reliable markers of senescence.

The use of all these elements to define senescent cells has provided convincing evidence that 
these senescent cells accumulate in tissues of humans, primates and rodents with advanced 

age, as well as in sites of tissue injury and remodeling. The most prominent feature of the 
senescent cells is a cell cycle arrest, which permanently withholds replication and the resis-

tance to apoptosis. An important fact to note is that the cells with senescent characteristics are 

found in damaged tissues of patients with chronic diseases such as osteoarthritis, pulmonary 

fibrosis, atherosclerosis, Alzheimer’s disease or CKD [40].

4. Chronic kidney disease, a model of chronic pathology that 
accelerates endothelial aging

CKD is known to promote cellular senescence and an accelerated aging. It is caused by the 

accumulation of toxins in the internal medium, and the consequence is the development 

of elderly associated pathologies, mainly CVD [48]. CKD-associated CVD show similar 

 characteristics to the natural CVD in elderly, and for this reason, several authors propose that 

the biggest challenge in the treatment of CVD may be to understand why CKD promote the 

premature aging of the cardiovascular system [49].

Even though the progress in the last few years in the renal replacement therapy is substantial, 

the mortality of terminal CKD patients remains excessively high, with an incidence between 

10 and 20-fold over the general population [50].

Uremic patients have higher rates of cardiovascular morbidity and mortality than would be 

predicted by Framingham risk factors [50–52]. However, the presence of those factors is not 

enough to explain the significant increment of the cardiovascular risk in those patients. CKD 
patients show additional factors associated with uremia that could explain this increased 

CVD risk [53]. The presence of microalbumin and uremic toxins in blood, hyperhomocyste-

inemia, anemia, the abnormal calcium/phosphate metabolism, parathyroid hormone (PTH) 

level alterations, the treatment with vitamin D derived substances, the volume overload, the 

electrolytic imbalance, oxidative stress, inflammation, malnutrition, thrombogenic factors 
and the imbalance of NO/endothelin are risk factors intrinsically associated to CKD [54]. The 

valuation and modulation of those factors are of high importance in CKD patients, as some 

are variable and the correct treatment may prevent the progression of the pathology.

In CKD patients, the endothelium is exposed to an additional stress because of the presence of 

factors related to the uremic state. This state can be modified depending on the conservative treat-
ment or renal transplantation, but it has been demonstrated that it relies on a persistent microin-

flammatory state directly related to endothelial damage, partaking in atherosclerosis processes 
[7, 55, 56]. Under this hostile uremic-associated state, the endothelium loses its integrity. Some 

damage substances and molecules will be released as a reflection of the harmful stimuli [56, 57].
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Among several inflammatory factors, the subpopulation of monocytes habitually augmented 
in elderly, increases in the peripheral blood. The contribution of monocytes in inflammation 
and the CVD development has been widely studied by several groups, including ours [58]. 

Peripheral blood monocytes show a significant heterogeneity, reflected by the  differential 
expression of the lipopolysaccharide binding receptor (CD14) at their surface and the low-

affinity receptor Fc, FcγRIII (CD16). In the last years, monocytes have been divided into 
three populations or subsets based on the intensity of CD14 and CD16 expression (cell sur-

face marker phenotype) being functionally differentiated in: classical monocytes (CD14++/
CD16−), present mainly in healthy patients; intermediate monocytes (CD14++/CD16+) and 
non-classical monocytes (CD14+/CD16++). A possible causal role in the development of 
atherosclerosis in general population and CKD patients has been attributed to intermedi-
ate monocytes (CD14++/CD16+) [59]. CD14+/CD16++ monocytes are inflammatory senescent 
cells characterized by their increased capacity to produce proinflammatory cytokines and 
because of their strong function as dendritic cells [60]. CD14+/CD16++ can be differentiated 
in vitro from CD14++/CD16− monocytes by a cellular senescence process. CD14+/CD16++ 
show senescent cells characteristics, such as an increased content of the enzyme β-gal or a 
shortened telomere length in comparison to monocytes CD14++/CD16−, and they accumu-

late in peripheral blood of elderly or CKD patients as a result of their resistance to apoptosis  

[7, 61]. Intermediate monocytes (CD14++/CD16+) are a developmental step between the 
 classical monocytes (CD14++/CD16−) and non-classical (CD14+/CD16++) and whose activity 
is related to CVD [62, 63]. Moreover, non-classical CD14+/CD16++ monocytes appear to be 
involved in the endothelial damage which is usually by elderly people and CKD or others 

chronic inflamed patients [62, 63] leading to endothelial cells from the neighborhood achieve 

senescence status. Also, high frequency of CD14+/CD16++ (“non-classical”) monocytes is 
associated with increased vascular superoxide production and apoptosis in endothelial cells 

[64, 65]. In normal states, the vascular endothelium does not allow the adhesion of leukocytes 

and prevents their passage. When hemodynamic conditions are altered monocytes, adopt a 

peripheral position along the endothelial surface producing adhesion of monocytes to the 

activated endothelium. The injury of endothelial cells is associated with the senescence of 
endothelial cell [66].

In vitro studies performed with CD14+/CD16++ in mature endothelial cells cultures, we 
found that those monocytes express high levels of vascular adhesion molecules, have a high 

 adhesion capability to endothelial cells, produce chemokines, angiogenic factors and induce 

the  production of vascular damage-associated MVs [7, 56]. MVs may contain molecules such 

as proteins, nucleic acids and lipids, which could contribute to the CVD development and also 

the profile of these molecules, are specific of the cell type of origin [67]. Thus, the accumula-

tion of CD14+/CD16++ monocytes in peripheral blood not only can play a crucial role in the 
induction and can be responsible for prolonging the inflammatory response in elderly and 
CKD patients but can be directly related to CVD development. In CKD patients, we found that 

inflammatory monocytes are increased, mostly in those patients subjected to hemodialysis [68]. 

Proinflammatory or non-classical monocytes have a high binding affinity for endothelial cells 
conferred by their high expression of adhesion molecules. As a consequence, CD16-positive 

monocytes might preferentially adhere to the activated endothelium, enabling the propagation 

of further vascular damage by secretion of proinflammatory mediators [59].
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In addition to the activity of the immune cells in endothelial damage, some other factors could 

be involved, as some specific molecules are known to be increased in the peripheral blood of 
CKD. In different models, it has been shown that endothelial cells activated pathologically with 
uremic serum or uremic toxins enter into a premature senescent state. Also, they reduce their 

proliferative capability and show shortened telomeres, augmenting the expression of β-gal [69]. 

Another possible factor in the development of the CKD-associated CVD is the incorrect repair of 

the damaged endothelium by EPCs. This failure occurs mainly due to two factors: a decreased 

number of EPCs or their imbalanced function. In our studies, we demonstrated that in CKD 

patients there is a decrease in the number of EPCs and that this number is considerably lower in 

severe patients with, for example, vascular calcifications [10, 70]. Also, it has been demonstrated 

that EPCs lose their angiogenic capability, generally needed in the process of  regeneration of 

harmed vascular structures (vasculogenesis). In this regard, the association between some 

 diseases such as CKD-associated CVD and both number and function of EPCs, accelerate the 

processes of EPCs senescence and therefore damage in endothelial cells harboring.

5. Microvesicles and endothelium

The endothelial MVs (EMVs) are extracellular vesicles produced by endothelial cells whose 

essential role is to act as a signaling system between the elements involved in the function and 

homeostasis of the vessel [71].

In general, the extracellular vesicles can be found in many body fluids, including plasma 
and urine. They have a variable size, between 0.05 and 5 μm [71], and are involved in 

physiological and pathophysiological processes, participating as mediators in  intercellular 

communication. They can act directly on the target cells by binding to ligands, cell 

 surface receptors and/or membrane-associated enzymes, delivering or releasing their 

contents directly into the cytoplasm. Extracellular vesicles are elevated in patients with 

 neurodegenerative, metabolic, pulmonary, autoimmune and vascular diseases, chronic 

inflammation and cancer [72]. The use of extracellular vesicles as markers for the predic-

tion, diagnosis and prognosis of the disease is increasingly interesting, as well as their 

potential as new therapeutic targets [73]. There are several types of extracellular vesicles: 

exosomes, the MVs or microparticles and the apoptotic bodies, which are produced by 

different mechanisms [65]. The MVs are a heterogeneous population of up 2 μm diameter, 

which are formed from the cell membrane in a regulated active process, dependent on 

enzyme activity and calcium.

Recently, it has been demonstrated that MVs may play an essential role in cellular senescence 

processes [74] since they have been proposed as elements of an endothelial response that can 

participate in the damaging and repair processes of the endothelium [10–12]. MVs generated 

from different cell types can induce endothelial dysfunction because they are responsible for 
increasing oxidative stress, reducing the bioavailability of NO and producing cardiovascu-

lar inflammation. The knowledge about their formation and release represent an attractive 
therapeutic goal to limit MVs levels, but the mechanisms underlying the release are not fully 

elucidated. On the other hand, a direct or indirect inhibition of the effect of MVs is a more 
effective proposal [75]. The effect of certain drugs that are used to decrease cardiovascular risk 
have been shown to affect the MVs plasma levels, suggesting that the beneficial effects of these 
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drugs could, at least in part, be mediated through a reduction of the concentration of MVs [76].  

Moreover, different authors have highlighted the importance of diet on MVs release, being 
perhaps one of the mechanisms involved in the role of diet in the development of CVD [14, 77]. 

The process of identification and separation of extracellular vesicles is  complicated due to 
their extensive variability. In fact, currently, the absolute separation of exosomes, apoptotic 

bodies and MVs is not possible because their size ranges may overlap. The most common 

method for the separation and isolation of extracellular vesicles is the serial centrifugation. In 

the majority of the studies, a first centrifugation is performed at 200–1500 × g to remove cells 
and cell debris. Extracellular vesicles more than 100 nm are pelleted at 10,000–20,000 × g and 
small vesicles of 100 nm at 100,000–200,000 × g [78]. Following these protocols, we can obtain 

EMVs from supernatants of mature endothelial cells cultures, cellular debris and exosomes-

free. The EMVs might also be obtained from plasma by similar processes, but would be found 

mixed with other MVs derived from other circulating cells.

The most common methods to study single MVs are flow cytometry (FC), tunable resistive pulse 
sensing (TRPS), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) [79]. 

To date, FC is the method most used to establish the cellular origin and the phenotype of the 

MVs and is based on the detection of light scatter and fluorescence intensity of the labeled MVs 
[80–82]. To characterize their cellular origin, different antigens expressed on the membrane of 
the MVs are identified. For this purpose, monoclonal antibodies (mAb) labeled with different 
fluorochromes that define the phenotype are used. To identify EMVs, specific fluorescent anti-
bodies against endothelial cell can be used to characterize the phenotype. Some markers used to 

describe EMVs are CD144, CD105 and CD146. Moreover, the phospholipids are a class of lipids 

that are a major component of all biological membranes and in MVs are externalized. For this 
reason, these phospholipids present in the MVs membrane have also been used for EMVs detec-

tion and characterization [83]. The combination of several mAb simultaneously can facilitate the 

identification of the origin and the state of activation or apoptosis of the cell from which the MVs 
originate [84]. The EMVs determination protocol includes some preliminary steps designed to 

identify sizes, with beads that allow adjustments to the equipment, before the introduction of the 
samples. However, this method has limitations in identifying the smallest MVs that are below the 

detection limit of conventional FC equipment (diameter size lower 300 nm) [79]. Recent studies 

have shown that FC equipment with high sensitivity can amplify the forward scatter  parameter 
capacity, which is used to identify the size of the MVs [85]. On the other hand, it is very helpful 

to provide information regarding functional activity of the extracellular vesicles [86–89].

In this regard, novel instruments including NTA or DLS have shown their advantages in the anal-

ysis of extracellular vesicles. NTA measures the distribution of the absolute size of the vesicles that 

range from 50 nm to 1 μm [90]. The vesicles in suspension are illuminated by a laser that produces 

light scattering or fluorescence. A microscope determines the position of individual vesicles, which 
are continuously moving due to Brownian motion [91]. When a fluorescent marker is used, NTA 
can also be used to determine the size of a subgroup of vesicles [92]. The principal advantage of 

this method is the detection of particles below 100 nm in diameter. In contrast, the limitation of this 

technique, the low resolution, therefore, NTA is incapable of distinguishing MVs from particles in 

suspension (debris) with the same size [79]. DLS, also known as photon correlation spectroscopy, 

measures the size distribution of vesicles between 1 nm and 6 μm. However, the absolute concen-

tration of the vesicles cannot be determined by DLS because the average amplitude of the signal 

depends on the diameter, concentration and the refractive index of the vesicles [93–95].
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The last method TRPS consists in the movement of the MVs through tunable nanopores which 

are capable of registering MVs between 80 and 1000 nm [96]. Particles passing the pore gener-

ate a change in the electric resistance, thus providing information on diameter, surface charge 

and concentration of single particles. The major disadvantage of TRPS is that it cannot dis-

tinguish between MVs and similarly sized particles [79]. Independently of the method used 

to study of the MVs, it has been recommended to confirm the presence of MVs by measuring 
them at least with two different techniques.

In addition, enzyme-linked immunosorbent assay (ELISA), Western blot or quantitative real-

time PCR (qPCR) are useful tools for the detection of proteins or RNA in preparations of 

purified MVs. Electron microscopy can provide information concerning the vesicular mor-

phology, size and the presence of markers. Moreover, proteomic analysis and profiles of 
RNA/microRNA (miRNA) may help to determine the composition of the MVs.

In the absence of pathology, the EMVs are involved in the maintenance of vascular homeo-

stasis, participating in the metabolism of the vascular environment [97]. The EMVs can act on 

the vascular wall, at the endothelial level, and on smooth muscle cells [98], regulating both 

vasomotor reactivity and angiogenesis. In fact, the formation of EMVs and their elimination 

seems to reflect a balance between activation and cell damage, cell survival/apoptosis and 
 angiogenesis. Endothelial responses may be immediate; releasing various factors or can be 

delayed, modulating the expression of genes involved in regulating the structure and func-

tion of the vascular system (Figure 2). In in vitro models, endothelial cell cultures produce 

EMVs in a meager percentage without additional stimulus. However, in response to  activation 

Figure 2. Mechanisms of endothelial microvesicles (MVs) action upon target cells. SMCs, smooth muscle cells; ECs, 

endothelial cells.
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 processes and/or apoptosis, the number of EMVs increases significantly. Physiological blood 
levels of EMVs present in healthy individuals are between 103 and 104 EMVs/mL and path-

ological concentrations (present in individuals with CVD) are 105 EMVs/mL [99]. Several 

authors have found that mature endothelial cells in culture, exposed to activation by cyto-

kines, released more EMVs [100, 101].

MVs concentration in blood from healthy subjects is clinically irrelevant. However, in patients 
with cardiovascular risk factors and after cardiovascular events, EMVs concentrations are 

increased significantly [10, 102]. In fact, in patients with CVD, an association between the 

number of circulating EMVs and the Framingham risk score has been shown [72]. In par-

ticular, high levels of EMVs in diseases associated with vascular injury seem to reflect an 
inflammatory and prothrombotic process. EMVs may participate in the development and 
amplification of CVD through both cardiac and vascular cells. On the other hand, numer-

ous studies have emphasized the effect of cardioprotective drugs on reducing concentrations 
of extracellular vesicles [73] which reinforces the evidence about the possible correlation of 

EMVs and vascular injury.

EMVs, and in general all extracellular vesicles, carry a specific load that is capable of 
 delivering to other cells, even in remote locations. Extracellular vesicles share character-

istics with their parental cells such as cell surface receptors, integral membrane proteins, 

cytosolic molecules, organelles, mRNAs, miRNAs or small amounts of DNA and proteins, 

including transcription factors, cytokines and growth factors [103]. Cell receptors and trans-

membrane proteins can help in the identification of EMVs, and also are indicative of the 
ability of vesicles to interact directly with receptors on the surface of target cells, resulting in 

an intracellular signal transmission. In addition to its effect on specific receptors, it has been 
shown that EMVs may be fused to the target cell and transfer its contents directly inside as 

a vehicle for transfer of genetic information [11, 67, 104, 105]. Extracellular vesicles are con-

sidered as the main source of miRNAs, released into the bloodstream during cell activation 

or apoptosis [106]. In fact, most miRNAs are associated with extracellular vesicles and only 

small amounts of them can be found free in plasma. It is thought that extracellular vesicles 

are necessary to protect circulating miRNAs from degradation by RNases, transferring 

safely functional miRNAs from the parental cells receptor cells. miRNAs act as regulatory 

 molecules in endothelial cells, vascular smooth muscle cells, platelets and inflammatory 
cells that contribute to modulate the initiation and progression of atherosclerosis. It is 

known that the release of miRNAs does not occur randomly but they are produced and 

released by controlled mechanisms [107, 108]. It has been described that there are several 

miRNAs involved in the regulation of vascular function and repair. It is expected that in the 

future, a better understanding of these molecules provides new options both diagnostic and 
therapeutic in the vascular pathology.

The MVs from different sources such as endothelial cells, monocytes and lymphocytes can 
promote oxidative stress in the endothelium through processes that may involve several 

enzymatic systems [109]. The MVs can regulate the production of reactive oxygen species 

(ROS), although there are some discrepancies regarding ROS generation systems affected. 
These contradictory results may be due to the fact that MVs populations studied are from 

 different sources or produced by different stimuli [105, 110]. From the biological point of 
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view, these differences in the production of MVs have a significant for the potential to define 
MVs populations with different biological activities.

One of the best-provided properties of MVs is its ability to promote coagulation [98]. In fact, 

the MVs are elevated in hypercoagulative disorders probably as a result of their active par-

ticipation [98]. It is not clear how far MVs contribute to the in vivo coagulation, but there 

are several in vitro studies that demonstrate their procoagulant role. This capacity has been 

extensively studied in platelet-derived MVs, but the fact is that the MVs have two specific 
and  common physical characteristics that may be responsible for this procoagulant activity: 

firstly, the externalization of phosphatidylserine as coagulation promoter and secondly, the 
expression of tissue factor, which is a critical component of the early stages of coagulation 

[11]. Indeed, tissue factor is not expressed under physiological conditions in circulating and 

endothelial cells, but it is expressed in pathological conditions.

Chronic inflammation is a crucial factor in the development of atherosclerosis, and the effects 
of EMVs in inflammatory processes have been the subject of numerous studies since they may 
 represent both a cause and a consequence of inflammation [12]. The MVs isolated from human 

atherosclerotic plaques can transfer intercellular adhesion molecule-1 (ICAM-1) to  endothelial 

cells and could increase the ability to recruit inflammatory cells in a manner dependent of phos-

phatidylserine, which may increase the progression of the atherosclerotic plaque. The most con-

clusive evidence of a proinflammatory role for EMVs is that the  administration of exogenous 
EMVs to rats is associated with acute lung injury, with increased levels of proinflammatory cyto-

kines (IL-1β and TNF-α) and neutrophil infiltration on  histological lesion perivascular space [111].

Different studies have described a role of MVs in the regulation of angiogenesis [112]. Platelet-

derived MVs were first involved in the angiogenesis process since platelets contain at least 
20 factors that regulate angiogenesis. Platelet-derived MVs stimulate proliferation, survival, 

migration, and formation of capillary-like structures in endothelial cells in vitro. Furthermore, 

injection of platelet-derived MVs increases myocardial post-ischemic capillary density in rats 
[113]. Subsequent studies have shown that MVs isolated from atherosclerotic plaques are 

involved in the formation of new blood vessels and in the progression of the plaques to rup-

ture. Endothelial cells in the culture containing MVs that release matrix metalloproteinases 

(MMP-2 and MMP-9) and promote matrix degradation and the formation of new blood vessels.

In addition to being a potent stimulus for the formation of MVs, apoptosis can also be a conse-

quence of MVs signaling [112]. Monocyte, erythrocytes, platelets and endothelial cells-derived 

MVs contain caspase-3. It is thought that the content of caspases may be a mechanism directed 

to control the apoptosis, suggesting that MVs could release caspase-3 into the target cells, 

 participating in the induction of apoptosis. In addition, caspase-3 is implicated in numerous 

cellular processes, so the release of this protein could have an even more significant impact 
on the target cell.

The MVs contain proteolytic enzymes, and then some of its effects could be attributed to 
alterations in the extracellular matrix or proteolytic cleavage of various signaling molecules. 

For example, the microvasculature-derived EMVs containing MMP-1, MMP-2, MMP-13 

and MMP-7, which degrade fibronectin in vitro [114]. Moreover, MVs isolated from human 

 atherosclerotic plaques contain an active form of ADAM17 (metallopeptidase domain 17), an 

enzyme with a role in the control of inflammation and tissue regeneration. This enzyme could 
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contribute to the release of cytokines and the development of alterations mediated by MVs in 

the extracellular environment [115].

Initially, proliferation and migration of adjacent endothelial cells have been identified as a 
factor of endothelial repair, and subsequent studies have shown that the maintenance of the 

endothelial structure is associated with EPCs and their ability to differentiate and repair dam-

aged endothelial tissue. Due to the importance of this repair mechanism in the maintenance of 

vascular homeostasis, it is logical to think about the existence of close communication between 

damaged endothelial cells and EPCs. Previous studies performed by our group suggest that 

plasma EMVs, both of healthy subjects and patients with CKD; participate in the activity of 
the EPCs [10]. Our hypothesis is that EMVs can be an essential and necessary physiological 

mechanism of signaling to initiate the recruitment of EPCs from bone marrow. In in vitro 

models, we have shown that EMVs may be the key element in the regeneration and mainte-

nance of vascular homeostasis, acting on EPCs [116]. Indeed, in response to  different stimuli, 
the endothelial cells can induce EMV with different membrane characteristics, miRNA and 
other molecules in your content that reduce the ability of EPC to regenerate and participate 

in the signaling pathways involved in apoptosis and oxidative stress [117]. These specific 
mechanisms may constitute therapeutic objectives in future studies.

Vascular calcification is an increasingly constant process in developed countries and can con-

tribute significantly to increased cardiovascular risk. The processes and mechanisms involved 
in the formation of vascular calcifications are poorly understood and are needed to develop new 
therapeutic strategies to prevent or avoid calcification. Patients CKD have a higher incidence 
of vascular calcification, and our group has shown that EMVs are increased in patients with 
an elevated degree of calcification [10]. In in vitro studies, EMVs produced in an inflammatory 
environment or obtained from patients with CKD promoted the calcification of smooth muscle 
cells, as assessed by some calcification markers (bone morphogenetic protein-2 (BMP-2) and 
alkaline phosphatase (ALP)) and the phenolsulfonephthalein method [100]. Other authors have 

also described a role of the MVs in the mineralization of vascular smooth muscle cells [118].

MVs have also been associated with endothelial senescence. As we said before, senescent cells 

release characteristic molecules and substances composing the SASP. However, some of those 

substances which are known to be part of this SASP cannot be released as soluble molecules due 

to their nature, as some transmembrane proteins [119]. It is known that the premature induction 

of cellular senescence in vitro increases the release of extracellular vesicles [120]. Those concepts 

suggest the contribution of MVs as part of the SASP, which have two important consequences: 

(1) SASP MVs can be the mechanism by which those insoluble proteins are released and (2) the 

carrier molecules can activate signaling processes in the target cells. Nevertheless, the specific 
mechanisms underlying MVs releasing from the senescent cells are still unresolved. It has been 

described that p53, a tumor-suppressor protein, remarkably upregulated in senescence, modu-

lates the release of extracellular vesicles [121]. Also, p53 takes part in the transcription of some 

molecules implicated in extracellular vesicles biogenesis, partly explaining how senescence and 

MVs releasing activation can be related [122–124]. Moreover, the content within those MVs may 

be necessary in the induction of senescence in the target cells, as it has been shown that some 

miRNAs can regulate the p53 and pRB pathways [125–127]. Loss of pRB results in deregulated 

cell proliferation and apoptosis, whereas loss of p53 desensitizes cells to checkpoint signals, 

including apoptosis [128]. Thus, the presence of those miRNAs in MVs may be associated with 
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hormonal changes driving aging (endocrine senescence induction) playing a critical role in the 

aging process and adding a new perspective on the mechanisms involved in aging.

6. Conclusions and perspectives

CVD seem to begin as a consequence of a damaging process and endothelial dysfunction, and there 

are pieces of evidence implying cellular senescence in the functional imbalance of the endothelium. 

Cellular senescence is a physiological mechanism which occurs as a consequence of aging, but 

Figure 3. Different characteristics of young and senescent endothelial cells. Senescent cells undergo distinctive phenotypic, 
morphological alterations and senescence-associated secretory phenotype (SASP). The number of endothelial microvesicles 

(EMVs) of the senescent cells is greater than those derived from young cells. Also, the reactive oxygen species (ROS) 

production is higher in senescent endothelial cells compared with young endothelial cells. Moreover, the secretion of 

growth factors (GF) and proinflammatory cytokines (infl. cytokines) from senescent endothelial cells are reduced.
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under different pathologic conditions, its regulation is modified, as in CVD or CKD. Senescent 
endothelial cells change their morphological and functional characteristics (Figure 3) and cannot 

correctly regulate the repairing and regenerative activity of EPCs. In the endothelial senescence 

context, the role of EMVs appears to be important. EMVs are considered as biomarkers of endo-

thelial injury and are associated with an inflammatory and prothrombotic state. However, the 
perspectives of their study are beyond their role as biomarkers, as they are capable of transmitting 
biologic information in several physiologic and physiopathologic processes. EMVs are increased 

in elderly, but also in patients with CVD and CKD. Many questions remain unresolved to under-

stand the role of EMVs in the endothelial function and damage. To comprehend and characterize 

the mechanisms by which the senescent endothelial cells show an imbalanced functionality is of 

great interest, opening new perspectives to increase our knowledge and to identify useful bio-

markers in the timely diagnostics and to design therapeutic objectives in CVD.
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