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Abstract

In this chapter, we reveal a dual-tensor-based procedure to obtain exact expressions for
the six degree of freedom (6-DOF) relative orbital law of motion in the specific case of two
Keplerian confocal orbits. The result is achieved by pure analytical methods in the general
case of any leader and deputy motion, without singularities or implying any secular
terms. Orthogonal dual tensors play a very important role, with the representation of the
solution being, to the authors’ knowledge, the shortest approach for describing the com-
plete onboard solution of the 6-DOF orbital motion problem. The solution does not
depend on the local-vertical–local-horizontal (LVLH) properties involves that is true in
any reference frame of the leader with the origin in its mass center. A representation
theorem is provided for the full-body initial value problem. Furthermore, the representa-
tion theorems for rotation part and translation part of the relative motion are obtained.

Keywords: relative orbital motion, full body problem, dual algebra, Lie group,
Lie algebra, closed form solution

1. Introduction

The relative motion between the leader and the deputy in the relative motion is a six-degrees-

of-freedom (6-DOF) motion engendered by the joining of the relative translational motion with

the rotational one. Recently, the modeling of the 6-DOF motion of spacecraft gained a special

attention [1–5], similar to the controlling the relative pose of satellite formation that became a

very important research subject [6–10]. The approach implies to consider the relative transla-

tional and rotational dynamics in the case of chief-deputy spacecraft formation to be modeled

using vector and tensor formalism.

In this chapter we reveal a dual algebra tensor based procedure to obtain exact expressions for

the six D.O.F relative orbital law of motion for the case of two Keplerian confocal orbits.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Orthogonal dual tensors play a very important role, the representation of the solution being, to

the authors’ knowledge, the shortest approach for describing the complete onboard solution of

the six D.O.F relative orbital motion problem. Because the solution does not depend on the

LVLH properties involves that is true in any reference frame of the Leader with the origin in its

mass center. To obtain this solution, one has to know only the inertial motion of the Leader

spacecraft and the initial conditions of the deputy satellite in the local-vertical-local-horizontal

(LVLH) frame. For the full body initial value problem, a general representation theorem is

given. More, the real and imaginary parts are split and representation theorems for the

rotation and translation parts of the relative orbital motion are obtained. Regarding transla-

tion, we will prove that this problem is super-integrable by reducing it to the classic Kepler

problem.

The chapter is structured as following. The second section is dedicated to the rigid body

motion parameterization using orthogonal dual tensors, dual quaternions and other different

vector parameterization. The Poisson-Darboux problem is extended in dual Lie algebra. In the

third section, the state equations for a rigid body motion relative to an arbitrary non-inertial

reference frame are determined. Using the obtained result, in the fourth section, the represen-

tation theorem and the complete solution for the case of onboard full-body relative orbital

motion problem is given. The last section is designated to the conclusions and to the future

works.

2. Rigid body motion parameterization using dual Lie algebra

The key notions that will be presented in this section are tensorial, vectorial and non-vectorial

parameterizations that can be used to properly describe the rigid-body motion. We discuss the

properties of proper orthogonal dual tensorial maps. The proper orthogonal tensorial maps are

related with the skew-symmetric tensorial maps via the Darboux–Poisson equation. Orthogo-

nal dual tensorial maps are a powerful instrument in the study of the rigid motion with respect

to an inertial and noninertial reference frames. More on dual numbers, dual vectors and dual

tensors can be found in [2, 16–23].

2.1. Isomorphism between Lie group of the rigid displacements SE3 and Lie group of the

orthogonal dual tensors SO
3

Let the orthogonal dual tensor set be denoted by.

SO
3
¼ R∈L V3;V3ð Þ RRT ¼ I;detR ¼ 1

�

�

��

(1)

where SO3 is the set of special orthogonal dual tensors and I is the unit orthogonal dual tensor.

The internal structure of any orthogonal dual tensor R∈SO
3
is illustrated in a series of results

which were detailed in our previous work [17, 18, 23].

Theorem 1. (Structure Theorem). For any R∈SO
3
a unique decomposition is viable
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R ¼ I þ εerÞQð (2)

where Q∈ SO3 and r∈V3 are called structural invariants, ε2 ¼ 0, ε 6¼ 0.

Taking into account the Lie group structure of SO
3
and the result presented in previous

theorem, it can be concluded that any orthogonal dual tensor R∈SO
3
can be used globally

parameterize displacements of rigid bodies.

Theorem 2 (Representation Theorem). For any orthogonal dual tensor R defined as in Eq. (2), a dual

number α ¼ αþ εd and a dual unit vector u ¼ uþεu0 can be computed to have the following Eq. [17, 18]:

R α,uð Þ ¼ I þ sinαeu þ 1� cosαð Þeu2
¼ exp αeuð Þ (3)

The parameters α and u are called the natural invariants of R. The unit dual vector u gives the

Plücker representation of the Mozzi-Chalses axis [16, 24] while the dual angle α ¼ αþ εd

contains the rotation angle α and the translated distance d.

The Lie algebra of the Lie group SO
3
is the skew-symmetric dual tensor set denoted by

so
3
¼ eα ∈L V3;V3ð Þ eα ¼ �eαT

���
on
, where the internal mapping is eα1; eα2h i ¼ geα1 α2 .

The link between the Lie algebra so
3
, the Lie group SO

3
, and the exponential map is given by

the following.

Theorem 3. The mapping is well defined and surjective.

exp : so
3
! SO

3
,

exp eαð Þ ¼ eeα ¼
X∞

k¼0

eαk

k!

(4)

Any screw axis that embeds a rigid displacement is parameterized by a unit dual vector,

whereas the screw parameters (angle of rotation around the screw and the translation along

the screw axis) is structured as a dual angle. The computation of the screw axis is bound to the

problem of finding the logarithm of an orthogonal dual tensor R, that is a multifunction

defined by the following equation:

log : SO
3
! so

3
,

logR ¼ ec ∈ so
3
exp ec

� �
¼ R

���
on (5)

and is the inverse of Eq. (4).

From Theorem 2 and Theorem 3, for any orthogonal dual tensor R, a dual vector

c ¼ αu ¼ cþ εc0 is computed, represents the screw dual vector or Euler dual vector (that

includes the screw axis and screw parameters) and the form of c implies that ec ∈ logR. The

types of rigid displacements that is parameterized by the Euler dual vector c as below:

i. roto-translation if c 6¼ 0,c0 6¼ 0 and c∙c0 6¼ 0⇔ c

���
���∈R and cj j∉ εR;
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ii. pure translation if if c ¼ 0 and c0 6¼ 0⇔ c

���
���∈ εR;

iii. pure rotation if c6¼0 and c∙c0¼0⇔ c

���
���∈R.

Also, ck k < 2π, Theorem 2 and Theorem 3 can be used to uniquely recover the screw dual

vector c, which is equivalent with computing logR.

Theorem 4. The natural invariants α ¼ αþ εd,u ¼ uþεu0 can be used to directly recover the

structural invariants Q and r from Eq. (2):

Q ¼ I þ sinαeu þ 1� cosαð Þeu2

r ¼ duþ sinαu0 þ 1� cosαð Þu�u0

(6)

To prove Eq. (6), we need to use Eqs. (2) and (3). If these equations are equal, then the structure

of their dual parts leads to the result presented in Eq. (6).

Theorem 5. (Isomorphism Theorem): The special Euclidean group SE3; ∙ð Þ and SO
3
; ∙

� �
are

connected via the isomorphism of the Lie groups

Φ : SE3 ! SO
3
,

Φ gð Þ ¼ I þ εerÞQð
(7)

where g ¼
Q r

0 1

� �
, Φ∈SO3, r∈V3:

Proof. For any g1, g2 ∈SE3, the map defined in Eq. (7) yields

Φ g1∙g2
	 


¼ Φ g1
	 


∙Φ g2
	 


(8)

Let R∈SO
3
. Based on Theorem 1, which ensures a unique decomposition, we can conclude

that the only choice for g, such that Φ gð Þ ¼ R is g ¼
Q r

0 1

� �
. This underlines that Φ is a

bijection and keeps all the internal operations.

Remark 1: The inverse of Φ is

Φ
�1

: SO
3
$ SE3;Φ

�1 Rð Þ ¼
Q r

0 1

� �
(9)

where Q ¼ Re Rð Þ, r ¼ vect Du Rð Þ∙QT
	 


.

2.2. Dual tensor-based parameterizations of rigid-body motion

The Lie group SO
3
admits multiple parameterization and few of them will be discussed in this

section.
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2.2.1. The exponential parameterization (the Euler dual vector parameterization)

If R ¼ R α;uð Þ, then we can construct the Euler dual vector (screw dual vector) c ¼ αu,

c ∈V3 which combined with Theorem 2 and Theorem 3 lead to

R ¼ exp ec
� �

¼ I þ sinc c
���

���ec þ
1

2
sinc2

c

���
���

2
ec2

(10)

where

sinc xj jð Þ ¼

sin xj j

xj j
, xj j∉εR

1, xj j∈ εR

8
<
: (11)

2.2.2. Dual quaternion parameterization

One of the most important non-vectorial parameterizations for the orthogonal dual tensor SO
3

is given by the dual quaternions [20, 21]. A dual quaternion can be defined as an associated

pair of a dual scalar quantity and a free dual vector:

bq ¼ q;q
� �

, q∈R,q∈V3 (12)

The set of dual quaternions will be denotedQ and is organized as a R-module of rank 4, if dual

quaternion addition and multiplication with dual numbers are considered.

The product of two dual quaternions bq
1
¼ q

1
;q

1

� �
and bq

2
¼ q

2
;q

2

� �
is defined by

bq
1
bq
2
¼ q

1
∙q

2
� q

1
∙q

2
; q

1
q
2
þ q

2
q
1
þ q

1
� q

2

� �
(13)

From the above properties, results that the R-module Q becomes an associative, non-

commutative linear dual algebra of rank 4 over the ring of dual numbers. For any dual

quaternion defined by Eq. (12), the conjugate denoted by bq∗
¼ q;�q

� �
and the norm denoted

by bq
���
���
2

¼ bqbq∗
can be computed. For bq

���
��� ¼ 1, any dual quaternion is called unit dual quater-

nion. Regarded solely as a free R-module, Q contains two remarkable sub-modules: QR and

Q
V3

. The first one composed from pairs q; 0
� �

, q∈R, isomorphic with R, and the second one,

containing the pairs 0;q
� �

,q∈V3, isomorphic with V3. Also, any dual quaternion can be

written as bq ¼ qþ q, where q ¼ q; 0
� �

and q ¼ 0;q
� �

, or bq ¼ bq þ εbq0, where bq, bq0 are real

quaternions. The scalar and the vector parts of a dual unit quaternion are also known as dual

Euler parameters [19].

Let denote with U the set of unit quaternions and with U the set of unit dual quaternions. For

any bq ∈U, the following equation is valid [17, 20]:
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bq ¼ 1þ ε

1

2
br

� �
bq (14)

where r∈V3 and bq ∈U. This representation is the quaternionic counterpart to Eq. (2). Also a

dual number α and a unit dual vector u exist so that:

bq ¼ cos
α

2
þ u sin

α

2
¼ exp

1

2
α u

� �
: (15)

Remark 2: The mapping exp : V3 ! U, bq ¼ exp 1
2Ψ, is well defined and surjective.

Remark 3: The dual unit quaternions set U, by the multiplication of dual quaternions, is a Lie

group withV3 being it’s associated Lie algebra (with the cross product between dual vectors as

the internal operation).

Using the internal structure of any element from SO
3
the following theorem is valid:

Theorem 6. The Lie groups U and SO
3
are linked by a surjective homomorphism

∆ : U ! SO
3
,∆ qþ q

� �
¼ I þ 2qeq þ 2eq2 (16)

Proof. Taking into account that any bq ∈U can be decomposed as in Eq. (15), results that

∆ bq
� �

¼ exp αeuð Þ∈ SO
3
. This shows that relation Eq. (16) is well defined and surjective. Using

direct calculus, we can also acknowledge that ∆ bq
2
bq
1

� �
¼ ∆ bq

2

� �
∆ bq

1

� �
.

An important property of the previous homomorphism is that for bq and �bq we can associate

the same orthogonal dual tensor, which shows that Eq. (16) is not injective and U is a double

cover of SO
3
.

2.2.3. N-order modified fractional Cayley transform for dual vectors

Next, we present a series of results that are the core of our research. These results are obtained

after using a set of Cayley transforms that are different than the ones already reported in

literature [17, 25–27].

Theorem 7. The fractional order Cayley map f : V3 ! U

cayn
2
vð Þ ¼ f vð Þ ¼ 1þ vð Þ

n
2 1� vð Þ�

n
2, n∈ℕ

∗ (17)

is well defined and surjective.

Proof. Using direct calculus results that f vð Þf ∗ vð Þ ¼ 1 and f vð Þj j ¼ 1. The surjectivity is proved

by the following theorem.
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Theorem 8. The inverse of the previous fractional order Cayley map, is a multifunction with n

branches f�1
: U! V3 given by

v ¼

ffiffiffiffiffiffi
bq2n

q
� 1

ffiffiffiffiffiffi
bq2n

q
þ1

: (18)

Remark 4: If vj j∈R then cayn
2
vð Þ is the parameterization of a pure rotation about an axis which does

not necessarily pass through the origin of reference system. Meanwhile, if vj j∈ εR the mapping cayn
2
vð Þ

is the parameterization of a pure translation. Otherwise, cayn
2
vð Þ is the parameterization of roto-

translation.

Taking into account that a dual number α and a dual vector u exist in order to have

bq ¼ cos
α

2
þ u sin

α

2
, (19)

from Eq. (18), results that:

v ¼ tan
αþ 2kπ

2n
u, k ¼ 0; 1;…; n� 1f g: (20)

The previous equation contains both the principal parameterization v0 ¼ tan
α

2nu, which is the

higher order Rodrigues dual vector, while for k ¼ 1;…; n� 1f g the dual vectors vk ¼ tan
αþ2kπ
2n u

are the shadow parameterization [25] that can be used to describe the same pose. Based on

v0j j ¼ tan
α

2n and vkj j ¼ tan
αþ2kπ
2n , results that vkj j ¼

v0j jþ tan kπ
n

1� v0j j tan kπ
n

.

If Re v0j jð Þ ! ∞ then Re vkj jð Þ ! � cot kπ
n , which allows the avoidance of any singularity of type

Re
α

2n

	 

¼ π

2 þ πℤ.

Theorem 9. If v∈V3 is the parameterization of a displacement obtained from Eq. (20), then

�bq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ vj j2
� �n

r pn vj jð Þ þ qn vj jð Þv
� �

(21)

where

pn Xð Þ ¼
Xn=2½ �

k¼0

�1ð Þk
2k

n

� �
X2k (22)

qn Xð Þ ¼
Xn�1ð Þ=2½ �

k¼0

�1ð Þk
2kþ 1

n

� �
X2k (23)
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In Eqs. (22) and (23), :½ � represents the floor of a number and
k

n

� �
are binomial coefficients.

Remark 5. The structure of the polynomials pn Xð Þ and qn Xð Þ, given by Eqs. (22) and (23), can

be used to obtain the following iterative expressions:

pnþ1 Xð Þ ¼ pn Xð Þ � X2qn Xð Þ

qnþ1 Xð Þ ¼ qn Xð Þ þ qn Xð Þ

p1 Xð Þ ¼ 1, q1 Xð Þ ¼ 1:

(24)

In order to evaluate the usefulness of the iterative expressions, we provide the second to third

order polynomials and the resulting dual quaternions and dual orthogonal tensors:

p1 Xð Þ ¼ 1; q1 Xð Þ ¼ 1; v ¼ tan
α

2
u;

�bq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ vj j2
q 1þ v½ �;

R ¼ I þ
2

1þ vj j2
ev þ ev2
h i

;

(25)

p2 Xð Þ ¼ 1� X2; q2 ¼ 2; v ¼ tan
αþ 2kπ

4
u;k ¼ 0, 1;

�bq ¼
1

1 þ vj j2
1� vj j2 þ 2v
h i

;R ¼ I þ
4

1þ vj j2
� �2

1� vj j2
� �

ev þ 2ev2
h i

;
(26)

p3 Xð Þ ¼ 1� 3X2; q3 ¼ 3� X2;v ¼ tan
αþ 2kπ

6
u;

k ¼ 0, 2; � bq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ vj j2
� �3

r 1� 3 vj j2 þ 3� vj j2
� �

v
h i

;

R ¼ I þ
2 3� vj j2
� �

1þ vj j2
� �3

1� 3 vj j2
� �

ev þ 3� vj j2
� �

ev2
h i

:

(27)

2.3. Poisson-Darboux problems in dual Lie algebra and vector parameterization

Consider the functions Q ¼ Q tð Þ∈SOR

3 and r ¼ r tð Þ∈VR

3 to be the parametric equations of

any rigid motion. Thus, any rigid motion can be parameterized by a curve in SO
3
where

R tð Þ ¼ I þ εer tð ÞÞQ tð Þð , where t is time variable. Let h0 embed the Plücker coordinates of a line

feature at t ¼ t0. At a time stamp t the line is transformed into:

h tð Þ ¼ R tð Þh0 (28)
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Theorem 10. In a general rigid motion, described by an orthogonal dual tensor function R, the velocity

dual tensor function Φ defined as

_h ¼ Φh, ∀h∈V3 (29)

is expressed by

Φ¼ _RR
T
: (30)

Let Φ¼ _RR
T, then _RR

T þ R _R
T
¼ 0, equivalent with Φ ¼ �Φ

T, which shows that Φ∈ soR

3
.

The dual vector ω ¼ vect _RR
T is called dual angular velocity of the rigid body and has the

form:

ω ¼ ωþ εv (31)

where ω is the instantaneous angular velocity of the rigid body and v ¼ _r �ω� r represents

the linear velocity of the point of the body that coincides instantaneously with the origin of the

reference frame. The pair (ω, v) is usually refereed as the twist of the rigid body.

2.3.1. Poisson-Darboux equation in dual Lie algebra

The next Theorem permits the reconstruction of the rigid body motion knowing in any

moment the twist of the rigid body that is equivalent with knowing the dual angular velocity

[5, 18].

Theorem 11. For any continuous function ω∈VR

3 a unique dual tensor R∈ SOR

3
exists so that

_R ¼ eωR

R t0ð Þ ¼ R0,R0 ∈ SO
3

(32)

Due to the fact that orthogonal dual tensor R completely models the six degree of freedom

motion, we can conclude that the Theorem 11 is the dual form of the Poisson-Darboux

problem [28] for the case when the rotation tensor is computed from the instantaneous

angular velocity. So, in order to recover R, it is necessary to find out how the dual angular

velocity vector ω behaves in time and also the value of R at time t ¼ t0.

The dual tensor R can be derived from ω, when is positioned in space, or from ω
B, which

denotes the dual angular velocity vector to be positioned in the rigid body.

Remark 6. The dual angular velocity vector positioned in the rigid body can be recovered from

ω
B ¼ R

T
ω, thus transforming Eq. (32) into:

_R ¼ ReωB

R t0ð Þ ¼ R0,R0 ∈SO
3

(
(33)
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Eqs. (32) and (33) represent the dual replica of the classical orientation Poisson-Darboux

problem [17, 28, 29].

The tensorial Eqs. (32) and (33) are equivalent with 18 scalar differential equations. The

previous parameterizations of the orthogonal dual tensors allow us to determine some solu-

tions of smaller dimension in order to solve the dual Poisson- Darboux problem.

2.3.2. Kinematic equation for Euler dual vector parameterization

Consider Ψ∈V
R

3
such that R ¼ expfΨ . According to the Eq. (10), the Poisson-Darboux prob-

lem (32) is equivalent to

_Ψ ¼ Tω

Ψ t0ð Þ ¼ Ψ0

(
(34)

where expfΨ 0 ¼ R0, and T is the following dual tensor:

T ¼
Ψj j

2
cot

Ψj j

2
I �

1

2
fΨ �

1

2 Ψj j
cot

Ψj j

2
fΨ2

(35)

The representation of the Poisson-Darboux problem from Eq. (33) is equivalent to

_Ψ ¼ T
T
ω

B

Ψ t0ð Þ ¼ Ψ0

(
(36)

2.3.3. Kinematic equation for high order Rodrigues dual vector parameterization

Let v∈V
R

3
such that R ¼ caynv. The problems (32) and (33) are equivalent to:

_v ¼ Sω

v t0ð Þ ¼ v0 ,

(
(37)

_v ¼ S
T
ω

B

v t0ð Þ ¼ v0

(
(38)

where caynv0 ¼ R0, and S is the following dual tensor [29]:

S ¼
pn vj j

2qn vj j
I �

1

2
ev þ

1þ vj j2
� �

qn vj j � npn vj j
	 


2n vj j2qn vj j
ev2 (39)

and the polynomials pn, qn are given by the Eqs. (22)–(24).

Eqs. (34), (36)–(38) are equivalent with six scalar differential equations. This is a minimal

parameterization of the Poisson-Darboux problem in dual algebra.
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2.3.4. Kinematic equation for dual quaternion parameterization

Let bq ∈U
R such that ∆ bq

� �
¼ R. According to Eq. (16), the Poisson–Darboux problems (32) and

(33) are equivalent to:

_bq ¼
1

2
ωbq

bq t0ð Þ ¼ bq
0

8
<

: (40)

and

_bq ¼
1

2
bqωB

bq t0ð Þ ¼ bq
0

8
><

>:
(41)

where ∆ bq
0

� �
¼ R0

Eqs. (40) and (41) are equivalent to eight scalar differential equations.

3. Rigid body motion in arbitrary non-inertial frame revised

To the author’s knowledge, in the field of astrodynamics there aren’t many reports on how the

motion of rigid body can be studied in arbitrary non-inertial frames. Next, we proposed a dual

tensors based model for the motion of the rigid body in arbitrary non-inertial frame. The

proposed method eludes the calculus of inertia forces that contributes to the rigid body relative

state. So, the free of coordinate state equation of the rigid body motion in arbitrary non-inertial

frame will be obtained.

Let RD and RC be the dual orthogonal tensors which describe the motion of two rigid bodies

relative to the inertial frame.

If R is the orthogonal dual tensor which embeds the six degree of freedom relative motion of

rigid body C relative to rigid body D, then:

R ¼ R
T
CRD (42)

Let ωC denote the dual angular velocity of the rigid body C and ωD the dual angular velocity

of the rigid body D, both being related to inertial reference frame. In the followings, the inertial

motion of the rigid body C is considered to be known. If ω is the dual angular velocity of the

rigid body D relative to the rigid body C, then, conforming with Eq. (42):

ω ¼ ωD �ωC (43)

Considering ωB
D being the dual angular velocity vector of the rigid body D in the body frame,

the dual form of the Euler equation given in [30] results that:
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M _
ω

B
D þω

B
D �Mω

B
D ¼ τ

B (44)

In Eq. (44) τB ¼ F
B þ ετ

B, where FB the force applied in the mass center and τ
B is the torque.

Also in Eq. (44), M represents the inertia dual operator, which is given by M ¼ mD
d
dε
IþεJ,

where J is the inertia tensor of the rigid body D related to its mass center and mD is the mass of

the rigid body D. Combining M�1 ¼ J�1 d
dε
þ ε

1
mD

I with Eq. (44) results:

_ω
B
D þM�1

ω
B
D �Mω

B
D

	 

¼ M�1

τ
B (45)

Taking into account that ωD ¼ RωB
D, the dual angular velocity vector can be computed from

ω ¼ RωB
D �ωC (46)

this through differentiation gives:

_ω þ _ωC ¼ _Rω
B
D þ R _ω

B
D (47)

If the previous equation is multiplied by RT, then

RT
_ω þ _ωCð Þ ¼ RT _Rω

B
D þ _ω

B
D (48)

which combined with _R ¼ eωR generates:

RT
_ω þ _ωCð Þ ¼ RT eωRωB

D þ _ω
B
D (49)

After a few steps, Eq. (49) is transformed into

_ω þ _ωC ¼ R _ω
B
D þω�ωC (50)

which combined with Eq. (45) gives:

_ω þ _ωC ¼ RM�1
τ
B � RM�1

ω
B
D �Mω

B
D

	 

þω�ωC (51)

Because ωB
D ¼ RT

ω�ωCð Þ, the final equation is:

_ω þ _ωC ¼ RM�1
τ
B � RT

ωþωCð Þ �MRT
ωþωCð Þ

� �
þω�ωC (52)

The system:

_R ¼ eωR

_ω þ _ωC ¼ RM�1½RT
τ � RT

ωþωCð Þ�

�MRT
ωþωCð Þ� þω�ωC

ω t0ð Þ ¼ ω0,ω0 ∈V3

R t0ð Þ ¼ R0,R0 ∈ SO
3

8
>>>>>>><
>>>>>>>:

(53)
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is a compact form which can be used to model the six D.O.F relative motion problem. In

the previous equation the state of the rigid body D in relation with the rigid body C is

modeled by the dual tensor R and the dual angular velocities field ω. This initial value

problem can be used to study the behavior of the rigid body D in relation with the frame

attached to the rigid body C. In Eq. (53), all the vectors are represented in the body frame

of C, which shows that the proposed solution is onboard and has the property of being

coupled in R and ω.

Next, we present a procedure that allows the decoupling of the proposed solution.

In order to describe the solution to Eq. (53), we consider the following change of variable:

ω
∗
¼ R

T
ωþωCð Þ (54)

This change of variable leads to _ω
∗
¼ _R

T

ωþωCð Þ þ R
T

_ω þ _ωCð Þ ¼ �R
T eω ωþωCð Þ þ R

T
_ωð

þ _ωCÞ. The result is equivalent with _ω
∗
¼ R

T
ωC �ωþ _ω þ _ωCð Þ or

ωC �ωþ _ω þ _ωC ¼ R _ω
∗

(55)

After some steps of algebraic calculus, from Eqs. (54), (55) and (52), results that:

M _ω
∗
þω

∗
�M ω

∗
¼ τ

∗

ω
∗
t0ð Þ ¼ ω

0
∗

(
(56)

Where τ
∗
¼ R

T
τ is the dual torque related to the mass center in the body frame of the rigid

body D and ω
0
∗
¼ R

T

0 ω0 þωC t0ð Þð Þ. Eq. (56) is a dual Euler fixed point classic problem.

For any R∈ SO
R

3
, the solution of Eq. (53) emerges from

_R ¼ eω R

R t0ð Þ¼R0

(
(57)

Making use of Eq. (54), results that Rω
∗
¼ ωþωC. If e operator used, the previous calculus is

transformed into gR ω
∗
¼ eω þ eωC⇔R eω

∗
R

T ¼ _R R
T þ eωC. After multiplying the last expres-

sion by R, we obtain the initial value problem:

_R ¼ R eω
∗
� eωC R

R t0ð Þ ¼ R0

(
(58)

Using the variable change Eq. (54), the initial value problem (53) has been decoupled into two

distinct initial value problems (56) and (58).

Let R�ω
C

∈SO
R

3
be the unique solution of the following Poisson-Darboux problem:
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_R þ eωC R ¼ 0

R t0ð Þ ¼ I�εerC t0ð Þ

(
(59)

Considering R ¼ R�ωC
R∗, a representation theorem of the solution of Eq. (53) can be formu-

lated.

Theorem 12. (Representation Theorem). The solution of Eq. (53) results from the application of the

tensor R�ωC
from Eq. (59) to the solution of the classical dual Euler fixed point problem:

_R∗ ¼ R∗
eω∗

M _ω∗ þω∗ �M ω∗ ¼ τ∗

ω∗ t0ð Þ ¼ ω∗0

R∗ t0ð Þ ¼ R∗0

8
>>>>><
>>>>>:

(60)

where ω∗0 ¼ R
T
0 ω0 þωC t0ð Þð Þ,R∗0 ¼ I þ εerC t0ð ÞÞR0

	
, τ∗ ¼ R

T
τ.

Different representations can be considered for the problem (60).

Using dual quaternion representation R∗¼∆ bq
∗

� �
, Eq. (60) is equivalent with the following one:

_

bq∗ ¼
1

2
bq
∗

ω∗

M _ω∗ þω∗ �M ω∗ ¼ τ∗

ω∗ t0ð Þ ¼ ω∗0

bq∗ t0ð Þ ¼ bq∗0

8
>>>>>>>><
>>>>>>>>:

(61)

For the n-th order of Cayley transform based representation R∗ ¼ cayn ξ
� �

, ξ ¼ tan
α

2nu, the

Eq. (60) becomes:

_ξ ¼ S ξ
� �

ω∗

M _ω∗ þω∗ �M ω∗ ¼ τ∗

ω∗ t0ð Þ ¼ ω∗0

ξ t0ð Þ ¼ ξ
0

8
>>>>>>><
>>>>>>>:

(62)

where the tensor S is:

S ¼¼
pn ξ

�� ��
� �

2qn ξ
�� ��

� � I þ
1

2
eξ þ

1þ ξ
�� ��2

� �
qn ξ
� �

� npn ξ
�� ��

� �

2n ξ
�� ��2qn ξ

�� ��
� � ξ⊗ ξ (63)

when pn Xð Þ and qn Xð Þ are defined by Eqs. (22) and (23).
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Different particular cases can be analyzed for Eq. (62):

1. Let ξ ¼ tan
α

2 u be the Rodrigues dual vector for n = 1:

S ¼
1

2
I þ

1

2
eξ þ

1

2
ξ⊗ ξ

2. Let ξ ¼ tan
α

4 u be the modified Rodrigues dual vector (Wiener-Milenkovic dual vector) for

n = 2:

S ¼
1� ξ

�� ��2

4
I þ

1

2
eξ þ

1

2
ξ⊗ ξ:

The initial value problem (62) is a minimum parameterization of the six degrees of freedom

motion problem. The singularity cases can be avoided using the shadow parameters of the n-th

order Modified Rodrigues Parameter dual vector.

4. A dual tensor formulation of the six degree of freedom relative orbital

motion problem

The results from the previous paragraphs will be used to study the six degrees of freedom

relative orbital motion problem.

The relative orbital motion problem may now be considered classical one considering the

many scientific papers written on this subject in the last decades. Also, the problem is quite

important knowing its numerous applications: rendezvous operations, spacecraft formation

flying, distributed spacecraft missions [3, 4, 6–10].

The model of the relative motion consists in two spacecraft flying in Keplerian orbits due to the

influence of the same gravitational attraction center. The main problem is to determine the pose

of the Deputy satellite relative to a reference frame originated in the Leader satellite center of

mass. This non-inertial reference frame, known as “LVLH (Local-Vertical-Local- Horizontal)” is

chosen as following: theCx axis has the same orientation as the position vector of the Leader with

respect to an inertial reference frame with the origin in the attraction center; the orientation of the

Cz is the same as the Leader orbit angular momentum; the Cy axis completes a right-handed

frame. The angular velocity of the LVLH is given by vectorωC, which has the expression:

ωC ¼ _f C
hC

hC
¼

1

r2C
hC ¼

1þ eC cos f C tð Þ

pC

� �2
hC (64)

where vector rC is

rC ¼
pC

1þ eC cos f C tð Þ

r0C
r0C

(65)

where pC is the conic parameter, hC is the angular momentum of the Leader, f C tð Þ being the

true anomaly and eC is the eccentricity of the Leader.
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We propose dual tensors based model for the motion and the pose for the mass center of the

Deputy in relation with LVLH. Both, the Leader satellite and the Deputy satellite can be

considered rigid bodies.

Furthermore, the time variation of rC is:

_rC ¼
eC hCj j sin f C tð Þ

pC

r0C
r0C

(66)

In order to a more easy to read list of notations, for t ¼ t0 there will be used the followings:

ω
0
C ¼

1þ eC cos f C t0ð Þ

pC

� �2
hC (67)

_r0C ¼
eC hCj j sin f C t0ð Þ

pC

r0C
r0C

(68)

where
r0
C

r0
C

is the unity vector of the X-axis from LVLH.

The full-body relative orbital motion is described by Eq. (53) where the dual angular velocity of

the Chief satellite is:

ωC ¼ ωC þ ε _rC þωC � rCð Þ (69)

and the dual torque related to the mass center of Deputy satellite is:

τ ¼ �
μ

rc þ rj j3
rc þ rð Þ þ ετ: (70)

The representation theorem (Theorem 12) is applied in this case using the conditions (66)–(69),

the solution of the Poisson-Darboux problem (59) is:

R�ωC
¼
	
I � εer

C
tð ÞÞ I � sin f 0c

ehC
hc

þ 1� cos f 0c
	 
ehC

2

hc
2

 !
: (71)

In (71), we’ve noted hc ¼ hck k and f 0c ¼ f c tð Þ � f c t0ð Þ:

Theorem 13. (Representation Theorem of the full body relative orbital motion). The solution of

Eq. (53) results from the application of the tensor R�ωC
from Eq. (71) to the solution of the classical dual

Euler fixed point problem (60).

4.1. The rotational and translational parts of the relative orbital motion

The complete solution of Eq. (53) can be recovered in two steps.

Consider first the real part of Eq. (53). This leads to an initial value problem:
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_Q ¼ eωQ

_ω þ _ωc ¼ QJ�1½QT
τ�QT

ωþωcð Þ�

�JQT
ωþωcð Þ� þω�ωc

ω t0ð Þ ¼ ω0,ω0 ∈V3

Q t0ð Þ ¼ Q0,Q0 ∈ SO3

8
>>>>>><
>>>>>>:

(72)

which has the solutionQ¼Q tð Þ, the real tensorQ being the attitude of Deputy in relation with

LVLH. In Eq. (72), ω is the angular velocity of the Deputy in relation with LVLH, ωc is the

angular velocity of LVLH, τ is the resulting torque of the forces applied on the Deputy in

relation with is mass center, J is the inertia tensor of the Deputy in relation with its mass center.

The angular velocity of Deputy in respect to LVLH at time t0 is denoted with ω0 and Q0 is the

orientation of Deputy in respect to LVLH at time t0.

Consider now the dual part of Eq. (53). Taking into account the internal structure of R, which is

given by Eq. (2), after some basic algebraic calculus we obtain a second initial value problem

that models the translation of the Deputy satellite mass center with respect to the LVLH

reference frame:

€r þ 2ωc � _r þωc � ωc � rð Þ þ _ωc � rþ

þ
μ

rcþrj j3
rcþrð Þ�

μ

r3c
rc¼0

r t0ð Þ¼r0, _r t0ð Þ¼v0

8
>>>><
>>>>:

(73)

where μ > 0 is the gravitational parameter of the attraction center and r0, v0 represent the

relative position and relative velocity vectors of the mass center of the Deputy spacecraft with

respect to LVLH at the initial moment of time t0 ≥ 0.

Based on the representation theorem 12, the following theorem results.

Theorem 14. The solutions of problems Eqs. (72) and (73) are given by

Q ¼ R�ωC
Q

∗

r ¼ R�ωC
r∗ � rc

(74)

where Q
∗
and r∗ are the solutions of the the classical Euler fixed point problem and, respectively,

Kepler’s problem:

_Q
∗
¼ Q

∗
eω
∗

J _ω∗ þω∗ � Jω∗¼τ∗

ω∗ t0ð Þ ¼ QT
0 ω0 þωc t0ð Þð Þ

Q
∗
t0ð Þ ¼ Q0

8
>>><
>>>:

(75)

and
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€r∗ þ
μ

r3
∗

r∗ ¼ 0;

r∗ t0ð Þ ¼ r0c þ r0;

_r∗ t0ð Þ ¼ _r
0
C þ v0 þω

0
C � r0C þ r0

	 


8
>>><
>>>:

(76)

where

R�ωC
¼ I � sin f 0c

ehC
hcj j

þ 1� cos f 0c
	 
 ehC

2

hcj j2
Þ (77)

and rc is given by Eq. (65).

Remark 7: The problems (72) and (73) are coupled because, in general case, the torque τ

depends of the position vector r.

The relative velocity of the translation motion may be computed as:

v ¼ R�ωC
_r∗�fωcR�ωC

r∗�
ec hcj j sin f c tð Þ

pc

r0c
r0c

(78)

This result shows a very interesting property of the translational part of the relative orbital

motion problem (73). We have proven that this problem is super-integrable by reducing it to

the classic Kepler problem [11, 12, 31, 32]. The solution of the translational part of the relative

orbital motion problem is expressed thus:

r¼ r t; t0; r0; v0ð Þ; v¼v t; t0; r0; v0ð Þ (79)

The exact closed form, free of coordinate, solution of the translational motion can be found in

[11, 12, 31, 32, 34].

5. Conclusions

The chapter proposes a new method for the determination of the onboard complete solution to

the full-body relative orbital motion problem.

Therefore, the isomorphism between the Lie group of the rigid displacements SE3 and the Lie

group of the orthogonal dual tensors SO
3
is used. It is obtained a Poisson-Darboux like

problem written in the Lie algebra of the group SO
3
, an algebra that is isomorphic with the

Lie algebra of the dual vectors. Different vectorial and non-vectorial parameterizations

(obtained with n-th order Cayley-like transforms) permit the reduction of the Poisson-Darboux

problem in dual Lie algebra to the simpler problems in the space of the dual vectors or dual

quaternions.
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Using the above results, the free of coordinate state equation of the rigid body motion in

arbitrary non-inertial frame is obtained.

The results are applied in order to offer a coupled (rotational and translational motion) state

equation and a representation theorem for the onboard complete solution of full body relative

orbital motion problem. The obtained results interest the domains of the spacecraft formation

flying, rendezvous operation, autonomous mission and control theory.

Nomenclature

a real number

a dual number

a real vector

a dual vector

A real tensor

A dual tensor

V3 real vectors set

V3 dual vectors set

V
R

3
time depending real vectorial functions

V
R

3
time depending dual vectorial functions

ea skew-symmetric dual tensor corresponding to the dual vector a

f c true anomaly

pc conic parameter

hc specific angular momentum of the leader satellite

L V3;V3ð Þ dual tensor set

bq real quaternion

bq dual quaternion

R real numbers set

R dual numbers set

SO3 orthogonal real tensors set

SO
3

orthogonal dual tensor set
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SO
R

3
time depending real tensorial functions

SO
R

3
time depending dual tensorial functions

U unit quaternions set

U unit dual quaternions set
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