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Abstract

UCH-L1 (ubiquitin carboxyl-terminal hydrolase L1) is a protein, which plays an 
important role in ubiquitin-proteasome system. Many previous reports showed the 
relation between UCH-L1 and neurodegenerative diseases, diabetes, as well as can-
cer. However, the mechanism still remains unclear. In the aim to investigate the func-
tions and regulatory mechanism of UCH-L1 in living organism, Drosophila melanogaster 
model was utilized to examine the role of UCH-L1. This chapter provides a summary 
on recent findings related to the roles of UCH-L1 based on the model. First, abnormal 
expression of Drosophila ubiquitin carboxyl-terminal hydrolase (dUCH) leads to the 
defects on fly tissue development and function. Gain function of dUCH in the eye ima-
ginal discs induced a rough eye phenotype in the adult, partly resulting from induction 
of caspase-dependent apoptosis, upset of photoreceptor cell distribution and omma-
tidium apical mispatterning. Interestingly, the dUCH overexpression of induced rough 
eye phenotype was completely recused by co-expression either Sevenless or Draf of 
the mitogen-activated protein kinase pathway. Besides, knockdown dUCH in dopa-
minergic neurons resulted in some Parkinson’s disease—like phenotypes in fly. Taken 
together, those findings in Drosophila model contributed a significant dUCH in tissue 
development and function.

Keywords: Drosophila melanogaster, UCH-L1, human diseases, eye development,  
anti-dUCH antibody

1. Introduction

Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), a protein of 223 amino acids (aa), 

weighs about 24,824 Da, a period lasting for more than 48 half-hour. UCH-L1 is an abun-

dant protein in neurons, accounting for 1–2% of the total protein in the human brain [1]. In 

addition to the brain, UCH-L1 is also expressed strongly in the peripheral nervous system, 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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including sensory and nervous system activity. UCH-L1 belongs to remove the tagged 

enzyme (deubiquitinating enzyme (DUB)), an important protein in ubiquitin proteasome 

system (UPS). UCH-L1 hydrolases the peptide bond between ubiquitins and also plays a 

function as a ligase when it be in dimer form [2, 3]. UCH-L1 is an enzyme which binds to 

the polyubiquitin chains and released the single ubiquitin in the ubiquitin proteasome sys-

tem. However, when UCH-L1 is in binary form, UCH-L1 leads to the formation of a polyu-

biquitin chain linked through lysine 63 (K63). Although the main activity of UCH-L1 is 

still unclear, UCH-L1 has been believed to play its role through maintaining a pool of free 

monomeric ubiquitin which is important for the function of ubiquitin proteasome system 

[4]. Abnormal function of UCH-L1 leads to the reduction of protein degradation, followed 

by the accumulation of ubiquitinated protein [5–7]. UCH-L1, therefore, may relate to many 

biological processes which dependent to ubiquitination including DNA repair, cell signal-

ling, trafficking, endocytosis and degradation.

In 1998, a missense mutation of UCH-L1 (I93M) was first identified in a German family with 
Parkinson’s disease (PD) [8]. By contrast, another variant of UCH-L1 (S18Y) was discovered 

as a factor in the risk reduction of PD [9]. Other studies also found that UCH-L1 was related 

to abnormal accumulation and aggregation of α-synuclein which leads to formation of Lewy 
bodies [3]. Furthermore, gracile axonal dystrophy (GAD) mouse which carries a deletion 
within UCH-L1 gene manifested motor ataxia, axonal degeneration and a reduction in the 

monoubiquitin level in neurons [10–12].

On the other hand, many studies indicated that UCH-L1 involved too many types of human 

cancer [4]. High expression of UCH-L1 was found in many types of cancers such as breast 

cancer, non-small cell lung cancer [13, 14]. UCH-L1 expression can be self-upregulated 

via oncogenic β-catenin/TCF activation. The UCH-L1 upregulates oncogenic β-catenin by 
which feedback regulates the expression of uch-l1 gene [15]. UCH-L1 may also promote 

cancer metastasis via β-catenin-induced epithelial-to-mesenchymal transition [16, 17]. 

High levels of UCH-L1 may promote oncogenic transformation, invasion and metastasis, 

and the function of UCH-L1 might due to the enhancement of Akt signalling in vitro and 

in vivo [16, 18, 19].

By contrast, UCH-L1 had been also reported as a tumor suppressor in many other studies. 

The downregulation of UCH-L1 was observed in various types of cancer such as esophageal 

cancer, breast cancer, prostate cancer and pancreatic cancer [20–24]. Reduction in UCH-L1 

expression leads to cell proliferation arrest and p53-mediated apoptosis [22, 25].

In humans, the gene coding for UCH-L1 is located in the short arm of chromosome 4 at posi-

tion 14, from base pair 40,953,685 to 40,965,202, 11,518 base pairs long [26]. In Drosophila 

melanogaster, ubiquitin carboxyl-terminal hydrolase (dUCH) encoded by CG4265 gene is a 
homolog of human UCH-L1 (hUCH-L1). The identity and similarity between dUCH and 

hUCH-L1 are 44.5 and 75.7%, respectively. In this chapter, we provide a summary on recent 

findings related to the roles of UCH-L1 in living organisms by Drosophila models. Those find-

ings indicated that dUCH (ortholog of human UCH-L1 in Drosophila) plays an important role 

tissue development and involves in Parkinson’s disease.
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2. Drosophila model in the study role of UCH-L1

2.1. Homolog of human ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) in 

Drosophila melanogaster

The survey of the Drosophila genome database allowed an identification of the CG4265 as a 
homolog of the human UCH-L1. The CG4265 gene, named as dUCH (Drosophila ubiquitin 

carboxyl-terminal hydrolase), encodes a 224-amino-acid protein that shows 44.5% identity 

and 75.7% similarity with human UCH-L1. The Cys residue at amino acid (aa) position 90 and 

the His residue at aa 161, both of which are essential for hydrolase activity of human UCH-L1 

[27–29], are conserved in Drosophila melanogaster along with several other species including 

Mus musculus and Caenorhabditis elegans (Figure 1).

2.2. Generation of anti-dUCH antibody

Since Drosophila melanogaster has been shown to be a compatible model for studying human 

diseases, the UCH-L1 homologous protein in Drosophila melanogaster (dUCH) is utilized for 

analyzing the role of UCH-L1 in living system. Thereby, anti-dUCH antibody is essential for 

research and needs to be generated. The produced anti-dUCH antibody was shown to have 

high specificity and sensitivity to the dUCH protein. The affinity of the antibody is 1:320,000 
at 7.81 ng/μl antigen concentration. The 1:40,000 dilution-produced antibodies can detect anti-
gen at a low concentration 0.98 ng/μl [30]. Besides, the antibody showed a high specificity for 

Figure 1. Amino acid sequences of UCH-L1 protein between human (hUCH-L1), mouse (mUCH-L1), Drosophila 

(dUCH-L1) and C. elegans (cUBH-L1). The identity and similarity between human and Drosophila were 44.5 and 75.7%, 

respectively. Identical amino acids are shaded in dark grey, and similar amino acids are shaded in light grey. The red 

letters indicate the identical amino acids at active sites. Clustal Omega (1.2.4) multiple sequence alignment was applied.
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Drosophila either in Western blot or in immunostaining. When the dUCH was overexpressed 

in fly eye imaginal discs using the GAL4/UAS system, the dUCH protein level was specifically 
recognized by the anti-dUCH antibody, and the antibody sensitivity showed different levels 
of the dUCH target protein in Drosophila tissues either in Western blot or in immunostaining 

(Figure 2). Success in producing dUCH antibody provides a good material for further experi-

ments in the study role of UCH-L1 by Drosophila model.

2.3. Drosophila model for studying the UCH-L1 role in tissue development

Being a member of ubiquitin proteasome system (UPS), UCH-L1 is thought to be involved in 

many different processes in living organisms, such as cell proliferation and differentiation. 
In Drosophila model, tissue-specific knockdown of dUCH resulted in abnormal phenotype 
in adult flies. When dUCH was knocked down in posterior area of eye imaginal discs by 
the combination of GMR-Gal4 driver and UAS-duchIR cassette (GMR-Gal4 > UAS-duchIR), 
the duch knocked-down adult compound eye exhibited a rough eye phenotype, and omma-

tidium was bulged and sticked together, while the control fly showed a normal phenotype. 
Knockdown dUCH in the thorax by Pnr-Gal4 driver gave hair-deformed defection. The wing 
of the knocked-down dUCH flies also showed some extraordinary phenotype as the vein 
in the wing disappeared or deformed. When TH-Gal4 drives the synthesis of duch dsRNA 

Figure 2. Generation of polyclonal anti-dUCH antibody for studying UCH-L1 function in Drosophila melanogaster model. 

(A) GAL4/UAS system is used for overexpressing dUCH protein in transgenic flies. Gal4 protein was expressed under 
GMR driving promoter in Drosophila posterior eye imaginal discs. Then, the expressed Gal4 bound to UAS element on 
the upstream of duch gene in transgenic Drosophila and caused the duch gene expression. (B) Western blot analysis of 

total protein from eye imaginal discs with polyclonal anti-dUCH antibody (above) and monoclonal anti-alpha tubulin 

antibody (below). GMR-Gal4: total protein from eye imaginal discs of transgenic fly, which showed dUCH endogenous 
protein. 12-4, 23-4, 50-5, 59: total protein from four different transgenic fly lines, which overexpresses dUCH protein 
under GMR-Gal4 driver. (C) Immunohistochemistry analysis on eye imaginal discs from the third instar Drosophila 

melanogaster larvae with polyclonal anti-dUCH antibody. GMR-Gal4: eye imaginal discs of transgenic fly, which showed 
dUCH endogenous protein. 23-4, 50-5: eye imaginal discs from two different transgenic fly lines, which overexpresses 
dUCH protein under GMR-Gal4 driver.
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in Drosophila brain tissue, the third larval crawling ability was strongly defected (Figure 3). 

Emphatically, knockdown dUCH in whole bodies of the flies by Act5C-Gal4 resulted in pupal 
lethal effects. These observations strongly suggested that the dUCH plays an important role 
in maintaining normal Drosophila tissue development.

On the other hand, overexpression of dUCH in Drosophila melanogaster showed an apoptosis 

induction in eye imaginal discs and resulted in rough eye phenotype in adult flies. The apop-

tosis induction was vanished by co-expression of P35, a vacuolar viral protein that inhibits 

downstream effecter caspases. The apoptosis induction is followed by compensatory prolif-
eration (Figure 4) [31].

Furthermore, dUCH overexpression also caused the upset in distribution of photoreceptor 
clusters in fly pupal retina (Figure 5).

In Drosophila pupal retinae, the ommatidia were arranged precisely. Different cell types 
appeared in typical shape and position. However, overexpression of dUCH in pupal retinae 

increased apical mispatterning. In many regions of dUCH-overexpressing retinae, ommatidia 
showed defects in alignment and orientation. Cone cell clusters are in different sizes and 
distorted. In addition, the morphology of pigment cells was aberrant. Defects in the shape 

and the number of primary pigment cells were detected. The shape of secondary and tertiary 

pigment cells (interommatidial pigment cells) was altered. In addition to the morphological 

Figure 3. Tissue-specific knockdown of dUCH resulted in defects in adult flies.
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changes, the alignment of these cells was confused. In many regions, adjacent ommatidia 

were separated by more than one layer of interommatidial pigment cells. As a consequence, 

ommatidia in abnormal region did not maintain hexagonal shape. Bristles were misplaced, 

possibly due to the aberrance of pigment cells (Figure 6).

Interestingly, co-expressing dUCH with Sevenless or Draf in eye imaginal discs could sup-

press the rough eye phenotype induced by overexpressing dUCH. It is therefore likely that 

overexpression of dUCH downregulates the MAPK pathway, resulting in impairment of eye 

development (Figure 7) [31].

2.4. Drosophila model for studying the UCH-L1 role in Parkinson’s disease

UCH-L1 was first linked to PD when mutation UCH-L1I93M was found in two siblings from a 
family with autosomal dominant PD [8]. Transgenic mice that overexpression of UCH-L1I93M 

showed an accumulation of α-synuclein with ubiquitin in the brain [3]. UCH-L1-deficient 

Figure 4. Overexpression of dUCH induces caspase-dependent apoptosis in eye imaginal discs. (a–e) Scanning electron 

micrographs of adult compound eyes. (a’-e’) Immunostaining of the eye imaginal discs with anti-active caspase-3 

antibody. (a,a’) GMR-GAL4; (b,b’) GMR-GAL4;UAS-dUCH/+; (c,c’) GMR-GAL4;UAS-dUCH/+;UAS-P35/+; (d,d’)GMR-
GAL4;UAS-dUCH/+;UAS-LacZ/+; (e,e’) GMR-GAL4; UAS-P35/+. Note the increased number of caspase-3 positive cells 
(brackets) behind the morphogenetic furrow of eye discs overexpressing dUCH (b’) and the lack of signals detected in eye 

discs co-expressing both dUCH and P35 (c’). The arrow indicates the morphogenetic furrow (MF). The bars are for 50 μm.
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mice showed neuronal loss in the spinal gracile tract and exhibit early development sensory 

and progressive motor ataxia [7]. However, another mutation UCH-L1S18Y is dedicated that 

decreased rick in PD by antioxidant and neuron-protective function [32]. Therefore, the mech-

anism of UCH-L1 still remains unclear. In Drosophila model, specific knockdown dUCH in 
dopaminergic neuron caused a degeneration of DA neurons and resulted in locomotor dys-

functions (Figures 8 and 9).

2.5. Materials and methods

2.5.1. Fly stocks

Fly stocks were maintained at 25°C on standard food containing 0.7% agar, 5% glucose and 7% 
dry yeast. Wild-type strain Canton-S was obtained from the Bloomington Drosophila Stock Center 

(BDSC). RNAi lines carrying UAS-dUCH-IR fusion (GD#26468) for knockdown Drosophila ubiq-

uitin carboxyl-terminal hydrolase (dUCH, CG4265) were received from the Vienna Drosophila 

Resource Center (VDRC). GAL4 drivers were used to perform the targeted knockdown of 
dUCH in various tissues of D. melanogaster: Act5C-GAL4 (BDSC#3954), GMR-GAL4 (line #16), 
MS1096-GAL4 (BDSC#8860), pnr-GAL4 (BDSC#3039) and TH-GAL4 (BDSC#8848).

2.5.2. Western immunoblot analysis

Wild-type and transgenic adult flies carrying GMR-GAL4 > UAS-dUCH were frozen in liquid 
nitrogen and homogenized in a solution containing 50 mM Tris-HCl (pH 7.5); 5 mM MgCl

2
; 

150 mM NaCl; 10% glycerol; 0.1% Triton X-100; 0.1% NP-40; 1 mM phenylmethylsulfonyl fluo-

ride; 5 mM β-mercaptoethanol; 10 g/ml each of aprotinin, leupeptin and pepstatin A; and 1 g/ml 
each of antipain, chymostatin and phosphoramidon. Homogenates were centrifuged, and extracts 

(200 g of protein) were electrophoretically separated on SDS-polyacrylamide gels containing 10% 

Figure 5. Immunostaining of retinae at 42 h after puparium formation (APF) with anti-chaoptin antibody. (A) Control 
retina and (B) dUCH-overexpressing retina. The bars indicate 10 μm.
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acrylamide and then transferred to polyvinylidene difluoride membranes (Bio-Rad). The blotted 
membranes were blocked with TBS/0.05% Tween-20 containing 5% skim milk for 1 h at 25°C, fol-
lowed by incubation with rabbit polyclonal anti-dUCH at 1:1000 dilution or mouse monoclonal 
anti-α tubulin (Developmental Studies Hybridoma Bank (DSHB)) at 1:5000 dilution for 16 h at 
4°C. After washing, the membranes were incubated with HRP-conjugated secondary antibodies 
(GE Healthcare Bioscience) at 1:10,000 dilution for 1 h at 25°C. Detection was performed with ECL 
Western blotting detection reagents (GE Healthcare Bioscience), and images were analyzed with 
a Lumivision Pro HSII image analyzer (Aisin Seiki).

2.5.3. Immunostaining

Larval and adult brains were dissected in cold phosphate-buffered saline (PBS) and fixed in 4% 
paraformaldehyde at 25°C for 15 min. After washing with 0.3% PBS-T (PBS containing 0.3% 
Triton-X100) twice, the samples were blocked in blocking solution (0.15% PBS-T containing 

Figure 6. Overexpression of dUCH-induced apical mispatterning of 42 h APF retinae. (A) Normal adult Drosophila eye 

schematically representing orientation of the ommatidia with the green line representing the equator and schematically 

representing cross-sectional structure of a pupal ommatidium at the apical level with a, anterior cone cell; p, posterior cone 
cell; pl., polar cone cell; eq, equatorial cone cell. Red arrow marks equatorial-polar axis. (B-C) Immunostaining of retinae at 
42 h APF with anti-Dlg antibody, (B) control retina and (C) dUCH-overexpressing retina. (D-E) Diagrams show orientation 
of the ommatidia in control fly (D) and dUCH-overexpressing fly (E). Black segments represent apical orientation of the 
ommatidia, black circles represent unclear cases and grey lines represent the anterior-posterior axis of the retinae. (F-G) 
The magnification of the ommatidia in control fly (F) and dUCH-overexpressing fly (G). Bars in all figures indicate 10 μm.
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10% normal goat serum) at 25°C for 20 min. Samples were then incubated with the following 
primary antibodies diluted in blocking solution: rabbit anti-Drosophila ubiquitin carboxyl- 

terminal hydrolase (anti-dUCH; 1:500) at 4°C for 16 h or rabbit anti-tyrosine hydroxylase (anti-
TH; 1:250; Millipore, AB152) at 4°C for 20 h. After washing with 0.3% PBS-T, samples were 
incubated with secondary antibodies conjugated with Alexa 488 or FITC (1500, Invitrogen) at 
25°C for 2 h and then washed and mounted in VECTASHILED Antifade Mounting Medium 
(Vector Laboratories, Japan). Finally, the samples were inspected by a confocal laser scanning 
microscope (Olympus FluoView FV10i or Olympus BX41 Microscope).

2.5.4. Crawling assay

Male larvae in the early third instar stage were collected randomly and washed with PBS to 

discard food traces. After that, larvae were transferred to agar plates containing 2% agar with 

a density of 2–4 larvae per plate. The movement of larvae was recorded by a digital camera 

for 60 s. The recorded videos were then converted into AVI type by MOV to AVI converter 
(Pazera Jacek, Poland) and then analyzed by ImageJ (NIH, USA) with wrMTrck plugin (devel-
oped by Dr. Jesper Søndergaard Pedersen) to track larval movement and draw motion paths.

2.5.5. Climbing assay

Newly eclosed adult male flies were collected and transferred to conical tubes which have 
heights of 15 cm and diameters of 2 cm. After that, the tubes were tapped to collect the flies 
to the bottom, and the length of time to record the movement of flies was 30 s. The pro-

cedures were repeated five times and recorded by a digital camera. For all of the climbing 
experiments, the height which each fly climbed to was scored as follows: 0 (less than 2 cm),  

Figure 7. Suppression of the dUCH-induced rough eye phenotype by co-expression of sev or Draf. (a) GMR-GAL4;+; (b) 
GMR-GAL4;UAS-d;CH/+; (c) GMR-GAL4;UAS-dUCH/+;hsp-Draf/+; (d) GMR-GAL4/hsp-sev;UAS-dUCH/+; (e) GMR-
GAL4;+;UAS-LacZ/+. Magnifications are 200× for the upper and 700× for the lower panels. Flies were reared at 28°C. The 
bars indicate 50 μm.
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1 (between 2 and 4 cm), 2 (between 4 and 6 cm), 3 (between 6 and 8 cm), 4 (between 8 and 

10 cm) and 5 (more than 10 cm). The climbing assay was performed every 5 days until all flies 
lose their locomotor abilities.

2.5.6. Conclusion and perspective

UCH-L1 was known as a complex and unclear function protein. It has several irrelevant 

activities as hydrolase and ligase, which are also related to ubiquitin. Previous reports 

showed that abnormal UCH-L1 functioning, caused by mutations or change in levels of pro-

tein expression. Those reports also implied that UCH-L1 could have many negative effects, 
with impacts on cell proliferation, cell cycling and cell death through activation of many 

genes [33, 34]. In this chapter, some data compatibly demonstrated that overexpression of 

dUCH, a homolog of human UCH-L1 in Drosophila melanogaster-induced apoptosis, inter-

fered eye development by upset distribution of photoreceptor cell distribution and caused 

Figure 8. Loss of DL1 dopaminergic (DA) neurons in dUCH knockdown brain lobe. DA neuron clusters in the third 

instar larval were stained by anti-tyrosine hydroxylase antibody (anti-TH (green)). (A) Whole brain lobe with DA 

clusters in dUCH knockdown fly: TH-GAL4/UAS-dUCH-IR (TH > dUCH-IR). (A1) The magnification of DL1 DA cluster 
in knockdown fly brain lobe. (B) Whole brain lobe with DA clusters in control fly: TH-GAL4/+. (B1) The magnification 
of DL1 DA cluster in control fly brain lobe.
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apical mispatterning in ommatidium. The effects of dUCH overexpression may involve in 
mitogen-activated protein kinase pathway. On the other hand, knockdown dUCH resulted 

in defect of tissue development and function. Particularly, knockdown dUCH in dopami-

nergic neuron impaired fly locomotion and degenerated dopaminergic neurons. Besides 
the Drosophila model’s benefits, as well as the correlation between Drosophila UCH (dUCH) 

and human UCH (UCH-L1), these data strongly demonstrated that Drosophila melanogaster 

is an advantage model to investigate the functions and regulatory mechanism of UCH-

L1 in living organism.

Figure 9. The dysfunction in locomotor in dopaminergic neuron-specific dUCH knockdown flies. (A) Motion paths of 
larvae: control and dUCH knockdown larvae (TH > dUCH-IR). Knockdown larvae exhibit shorter and disorder crawling 
paths (upper panel) compared to control (below panel). (B) Climbing assay for measurement of adult fly locomotor 
ability. (C) Crawling velocity of control (TH) and knockdown larvae (TH > dUCH-IR). Knockdown larvae showed the 
reduction in crawling pace and parametric unpaired t test with Welch’s correction, ****p < 0.0001; error bars present SD. 
(D) Climbing ability of control (TH) and dUCH knockdown adult flies (TH > dUCH-IR). Knockdown flies start to exhibit 
the decline in climbing ability at 5 days after eclosion, repeatedly measuring two way ANOVA with Bonferroni’s post 
hoc test, **p < 0.01; error bars present SEM.
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