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1. Introduction 

The Kalman filter has provided an efficient and elegant solution to control problems in 
linear stochastic systems. For nonlinear stochastic systems, control problems become much 
more difficult and a large part of the literature resorts to linear approximations so that an 
"extended Kalman filter" or a "mixture of Kalman filters" can be used in place of the 
Kalman filter for linear systems. Since these linear approximations are local expansions 
around the estimated states, they may perform poorly when the true state differs 
substantially from its estimate. Substantial progress was made in the past decade for the 
filtering problem with the development of particle filters. This development offers promise 
for solving some long-standing control problems which we consider in this chapter. 
As noted by Ljung & Gunnarsson (1990), a parameterized description of a dynamic system 
that is convenient for identification is to specify the model's prediction of the output yt as a 

function of the parameter vector  and past inputs and outputs us and ys, respectively, for s 

< t. When the function is linear in , this yields the regression model , 
which includes as a special case the ARX model (autoregressive model with exogenous 
inputs) that is widely used in control and signal processing. Here the regressor vector is 

  (1) 

consisting of lagged inputs and outputs. Whereas a comprehensive methodology has been 
developed for identification and control of ARX systems with time-invariant parameters 
(see e.g. Goodwin et al., 1981; Ljung & Soderstrom, 1983; Goodwin & Sin, 1984; Lai & Wei, 
1987; Guo & Chen, 1991), the case of time-varying parameters in system identification and 
adaptive control still awaits definitive treatment despite a number of major advances 
during the past decade (Meyn & Brown, 1993; Guo & Ljung, 1993a, b). In Section 3 we 
show how particle filters can be used to resolve some of the long-standing difficulties due 
to the nonlinear interactions between the dynamics of the regressor vector (1) and of the 

parameter changes in the model . Unlike continually fluctuating parameters 
modeled by a random walk in Meyn & Brown (1993) and Guo & Ljung (1993a, b), we 
consider here the parameter jump model similar to that in Eq. (21)-(22) of Ljung & 
Gunnarsson (1990). As reviewed in Ljung & Gunnarsson (1990, p. 11), an obvious way to 
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handle parameter jumps is to apply carefully designed on-line change detection algorithms 
to segment the data. Another approach, called AFMM (adaptive forgetting through 
multiple models), is to use Bayesian updating formulas to calculate the posterior prob-
ability of each member in a family of models locating the change-points. To keep a fixed 
number of such models at every stage, the model with the lowest posterior probability is 
deleted while that with the highest posterior probability gives birth to a new model by 
allowing for a possible change-point from it. The fast particle filters introduced by Chen & 
Lai (2007) enable them to develop a much more precise implementation of the Bayesian 
approach than AFMM, with little increase in computational cost, and to come up with 
more efficient adaptive control schemes, as shown in Section 3. 
Another area where particle filters have been recognized to offer promising solutions to 
important and difficult control problems is probabilistic robotics. Section 4 provides a brief 
summary of the applications of particle filters to estimate the position and orientation of a 
robot in an unknown environment from sensor measurements. It also reviews previous 
work and ongoing work on using these particle filters to tackle the difficult stochastic 
control problems in robotics. 
The stochastic models in Sections 3 and 4 are special cases of hidden Markov models. 
Section 2 gives a brief introduction to hidden Markov models and particle filters, which are 
sequential estimates of the hidden states by using Monte Carlo methods that involve 
sequential importance sampling and resampling. The basic idea underlying these 
sequential Monte Carlo filters is to represent the posterior distribution of the hidden state 
at time t given the observations up to time t by a large number of simulated samples 
("particles"). Simulating a large number of samples, however, makes the Monte Carlo 
approach impractical for on-line identification and control applications. We show in 
Section 3 that by choosing appropriate resampling schemes and proposal distributions for 
importance sampling, we can arrive at good approximations to the optimal filter by using a 
manageable number (as small as 50) of simulated samples for on-line identification and 
adaptive control. This point is discussed further in Section 5 where we consider related 
issues and give some concluding remarks. 

2. Particle Filters in Hidden Markov Models 

A hidden Markov model (HMM) is a stochastic process (xt, yt) in which (i) {xt} is an 

unobservable Markov process with transition probability density function  with 
respect to some measure  on the state space, and (ii) given {xt}, the observable random 

variables yt are conditionally independent such that ys has density function  with 
respect to some measure. The filtering problem for HMM is to find the posterior 
distribution of the hidden state xt given the current and past observations y1,... ,yt. In 

particular, the optimal filter with respect to squared error loss is . In 
engineering applications, there are often computational constraints for on-line updating of 
the filter and recursive algorithms are particularly attractive. For infinite state spaces, 
direct computation of the optimal filters is not feasible except in linear Gaussian state-space 
models, for which Kalman filtering provides explicit recursive filters. Analytic 
approximations or Monte Carlo methods are therefore used instead. Although Markov 
chain Monte Carlo has provided a versatile simulation-based tool to calculate the posterior 
distributions of hidden states in HMMs, it is cumbersome for updating and is too slow for 
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on-line filtering problems. Sequential Monte Carlo methods represent the posterior 
distributions by a large number M of random samples that are sequentially generated over 
time by using a combination of sequential importance sampling and resampling steps. 

2.1 Proposal Distribution for Sequential Importance Sampling 

Let , and  and  denote the conditional 
and the joint density functions (under the measure P) of the random variables indicated. 
Given , the conditional distribution of  is that of an inhomogeneous Markov chain 
with transition probability density 

  

(2)

 

in which the constant of proportionality is the normalizing constant that makes the left 
hand side of (2) integrate to 1. 
It is often difficult to sample directly from this Markov chain for Monte Carlo evaluation of 
the posterior distribution of xn given , which is used to estimate the optimal filter 

. Instead we sample from an alternative distribution Q under which  is 
an inhomogeneous Markov chain with transition density 

  (3) 

which is tantamount to replacing  in (2) by . The optimal 
filter can be expressed in terms of Q via 

  

(4)

 

where EQ denotes expectation under the measure Q. Therefore, instead of drawing M 

samples  from (2) and using  to estimate the optimal 

filter (4), we can draw M samples from (3) and estimate the optimal filter by 

  

(5)

 

where    are the importance weights given recursively by 

  (6) 

noting that  and  are 

proportionality constants and 
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In the case where x0 is specified by an initial distribution , we replace x0 above by  

drawn from  (j = 1,..., M). 

In situations where the normalizing constant  in (3) does not have 

a closed-form expression, sampling from Q defined by (3) can still be carried out by 
rejection sampling or other methods, but the importance weights (6) do not have explicit 
formulas and rejection sampling slows down the procedure considerably. A better idea is 
to choose another Q which is easier to sample from and has explicit formulas for the 
importance weights, and which approximates (3) in some sense. One way to do this is to 
use a finite mixture of Gaussian distributions to approximate (3), with suitably chosen 
mixing proportions, means and covariance matrices. Using (3) or more convenient 
approximations thereof as the proposal distribution for sequential importance sampling 
provides substantial improvement over the original particle filter of Gordon et al. (1993) 
who simply use , not adapting to the observed data . 

Whereas the adaptive transition probability density (2) is non-recursive (because  and 
 result in different transition probabilities  and , 

the proposal distribution (3) is adaptive and recursive. 

2.2 Periodic Rejuvenation via Resampling 

The particle filter of Gordon et al. (1993) is often called a "bootstrap filter" because, besides 

sampling  from  to form , it also resamples from 

 with probabilities proportional to the importance weights 

, thereby generating the particles (trajectories) . In 

other words, at every t there is an importance sampling step followed by a resampling 
step. We can think of importance sampling as generating a weighted representation 

 of  and resampling as transforming the weighted 

representation to an unweighted approximation of . For the bootstrap 

filter, since resampling introduces additional variability, resampling at every t may result 
in substantial loss in statistical efficiency. In addition, the computational cost of resampling 
at every t also accumulates over time. 
If we forgo resampling altogether, then we have a weighted representation 

 of  at stage n. In view of (4), if we use the 

normalized weights 

  

(7)
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then  is an unbiased estimate of . However, for large 

n, sequential importance sampling without resampling also has difficulties because of the 
large variance of wn. In particular, for the special cases (i)  and (ii) 

,  converges almost surely under certain 
integrability assumptions and  see Chan & Lai (2008) 
where an asymptotic theory of particle filters in HMMs, including consistent estimation of 
their standard errors, is given. 
A compromise between forgoing resampling altogether and resampling at every stage t is 
to resample periodically. The motivation for resampling is to make multiple copies of the 
trajectories with large weights and to prune away those with small weights. The 
trajectories with small weights contribute little to the final estimate and it is a waste to 
carry many trajectories with very small weights. In particular, Kong et al. (1994) propose to 
monitor the coefficient of variation (cv) of the importance weights wt, defined by 

  (8) 

and to perform resampling if the cv2 of the current weights wt is greater than or equal to a 
certain bound. Specifically the procedure can be described as follows, starting with M 

samples  having weights  at time t-1. 

a. Draw    from  and update the weight , j = 1, . . . , M. 

b. If the cv2 of  exceeds or equals a certain bound, resample from 

 with probabilities proportional to  to produce a random 

sample  with equal weights. Otherwise let  

and return to step a. 

Strictly speaking, since the weight  is associated with the entire path 

, resampling should be performed on . 

However, because of the Markovian structure, the past observations 1,..., s-1 can be 

discarded after generating the current state s. This explains why  are 

discarded in Step b above. In the second paragraph of Section 3.1, since the sequential 
importance sampling with resampling (SISR) filter is defined via certain functions of the 
Markov chain (instead of the Markov chain itself), resampling has to be performed on the 
sample of M trajectories. 

3. Fast Particle Filters in Change-Point ARX Models 

3.1 Preliminaries: Normal Mean Shift Model 

Before considering the more general change-point regression model  , we 
find it helpful to explain some important ideas for constructing fast particle filters in the 
simple case of univariate , dating back to Yao's (1984) simple mean shift model, in 
which the observations yt are independent normal with variance 1 and means  such that 
at time t,  equals  (i.e. undergoes no change) with probability  and assumes a 
new value, which is normally distributed with mean 0 and variance , with probability . 

Note that  forms a HMM, with  being the normal density function 
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with mean  and variance 1 and such that the transition probability distribution of  has 
(i) a discrete component putting mass  at  and (ii) an absolutely continuous 

component having density function , where  denotes the standard normal 

density function. The proposal distribution (3) (with xt = ) for  is a mixture of a 

degenerate distribution at  and a normal distribution with mean  and 

variance , with mixing probabilities proportional to  and 

, respectively. It is, therefore, easy to sample from this 
proposal distribution. Because of the discrete and absolutely continuous components of the 
transition probability distribution, the importance weights (see (6)) wt are now given 
recursively by w1 = 1 and 

 

Instead of working with the unobserved Markov chain , it is more efficient to consider 

the latent variable , indicating whether t is a change-point. The reason is 

that given  the  are Bernoulli random variables that can be generated recursively and 

 can be easily computed by a closed-form formula, where 
. Following Yao (1984), we rewrite the optimal filter as 

(9)
 

where , i.e.,  is the most recent change-point up 

to time t. Consider the proposal distribution Q for which  has the same distribution 

as . It is easy to sample I1,... ,In sequentially from Q, under which 
 is Bernoulli assuming the values 1 and 0 with probabilities in the proportion 

  
(10)

 

where . Letting  and  denote the two terms in (10), note 

that . Combining this with 

 

yields the following recursive formula for the importance weights wt. 

  (11) 

When  is small, change-points occur very infrequently and many sequences  sampled 
from Q may contain no change-points. We can modify Q by increasing  in (10) to , 
thereby picking up more change-points, and adjust the importance weights accordingly. 
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Specifically, take  and choose the proposal distribution  for which  is a 
Bernoulli random variable with success probability . Since 

 

the importance weights  can be determined recursively by 

  
(12)

 

with , assuming . 

3.2  A Numerical Example 

Table 1 studies how the cv2 bound for resampling affects performance, using the sum of 

squared error criterion  to evaluate the performance of a 

procedure. For  = 0.001, 100 sequences of observations, each of length n = 10000, were 
generated. We applied SISR (M = 50) with  to each sequence, using different cv2 
bounds. As pointed out in the paragraph preceding Section 3, resampling is performed at 
time t with the entire vector  (instead of It) so that we can keep track of the most recent 
change-point. Table 1 displays the average number of resamplings (Resampling #) used for 
each cv2 bound, together with the SSE and its standard error (s.e.) based on 100 simulation 
runs. It shows the best value of SSE around 188 when we choose 1 as the cv2 bound, 
involving an average of 51 resamplings. 

 

 

Table 1. Effect of cv2 bound on performance of SISR for mean shift model 

We have also computed the SSE of the SISR filter based on  and have found over 50% 
reduction in SSE by working with In instead of . In addition, we have studied how SISR 
performs when different 's are used in the sampling distribution by simulating data from 
the same setting as Table 1, but with the cv2 bound fixed at 1. Our results in Table 2 show 
that for  (= 0.001) <  < 100 , the SSE is always smaller than that of , with the 
smallest SSE at  = 5 , which shows the benefits of tilting. 
 

 

Table 2. Effect of  on performance of SISR for mean shift model with  = 0.001 

3.3  Change-Point ARX Models 

Letting , we can write the ARX model 
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  (13) 

in the regression form . Suppose that the change-

times of  form a discrete renewal process with parameter , or equivalently, that 

 are independent Bernoulli random variables with P(It = 1) =  

for , assuming . At a change-point,  takes a new value which is 

assumed to have the multivariate normal distribution with mean  and covariance matrix 
V. Assume also that the  are independent normal with mean 0 and variance , which is 
chosen to be 1 in the following for simplicity. 
Let Ct be the most recent change-time up to time t. The conditional distribution of  given 
Ct, yt and , is normal with mean  and covariance matrix , where for 

, 

  

(14)

 

which can be computed by standard recursions that follow from the matrix inversion 
lemma: 

 

Therefore, analogous to (9), the optimal filter is given by 

  
(15)

 

We can compute (15) by simulating M trajectories  (j = 1,...,M) via sequential 

importance sampling with resampling. The proposal distribution Q is similar to that in 
Section 3.1. Analogous to (10), the conditional distribution of It given  is Bernoulli 

assuming the values 1 and 0 with probabilities in the proportion 

  

(16)

 

Letting  and  denote the two terms in (16), we can define the importance weights 
wt recursively by (11). Resampling is performed when the squared coefficient of variation 
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of the importance weights  exceeds some threshold, which we can choose as 1 that 

usually works quite well. When ρ is small, we can modify Q by increasing  in (16) to  
and adjusting the importance weights accordingly. 
Chen and Lai (2007, Section IIIA) have applied the above particle filter, with M = 50 
sequentially generated trajectories to an open-loop change-point ARX model with k = 2, h = 
1,  = 0.001, V =identity matrix. The actual autoregressive parameters are assumed to 

belong to the stability region , and the inputs are assumed 
to be independent standard normal random variables. They carry out simulation studies of 

the Bayes estimate (particle filter)  of  given by (14)-(15) that ignores, for 

computational and analytic tractability, the stability constraint on the prior distribution . 

These studies also compare  with the following two modifications  and  of the 

usual least squares estimate which have been commonly used to handle occasional jumps 
in  (cf. Benveniste et al., 1987, pp. 140, 161): 

a. Sliding window estimate : The least squares estimate is applied only to data in the 

immediate past, i.e., to the data set , where k is the window 

size. 

b. Forgetting factor estimate :   A weighted least squares estimate is used, with 

weight  for , i.e., the estimate at time t minimizes ; 

where 0 < p < 1 is the "forgetting factor" to discount past observations. 
They use the following two performance measures 

  

(17)

 

to compare these estimates. The second measure considers how well  estimates , 

whereas the first measure evaluates how well  estimates the minimum variance 

predictor  of yt+1. The results reported in their Table 2, which chooses 1-500, 501-1000, 
1001-2000 and 2001-3000 as the ranges from n' to n", show substantial improvements of 

 over  and  , especially for n' exceeding 1000. 

3.4 Application of Fast Particle Filters to Adaptive Control 

Section IIIB of Chen and Lai (2007) considers the control problem of choosing the inputs ut 
in the ARX model (13) so that the outputs yt+1 are as close as possible (in L2) to , some 

reference signal such that  and  are independent. In the case of known , 

the optimal input is defined by , assuming that . When  is 

unknown, the certainty equivalence rule replaces  in the optimal input by an estimate 

 based on the observations up to time t so that ut is given by  if 

. Letting 
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they modify the certainty equivalence rule by 

  

(18)

 

where  is some small prespecified number and ωt is extraneous noise used to enhance the 
information content of the reference signal (including the case ωt  0 if the reference signal 
is already persistently exciting); see Caines & Lafortune (1984). 
Chen and Lai (2007) also consider an alternative approximation to the optimal control in 
the case of unknown  by using the one-step ahead error  without making 

use of dynamic programming to determine how the current control ut impacts on the 

information content of the estimates  for the future errors . 

Noting that 

  
(19)

 

where Et denotes conditional expectation given , they define the 
following variant of (18) that incorporates uncertainty adjustments due to unknown 

parameters into the optimal rule  assuming known : 

   

(20)

 

To implement this adaptive control rule, one needs to compute the one-step ahead 

predictors  and . Note that 

  

(21)

 

The first term on the right hand side of (21) can be approximated by fast particle filters, 
whereas the second term corresponds to a change-point at time t+1. Note that replacing 

 by  in (20) reduces 

it to the certainty equivalence rule (18), which simply uses the estimates  to 

substitute for  in the optimal control assuming known . The rule (20) 

introduces uncertainty adjustments for the unknown  by considering the expected one-

step ahead control error  that leads to (19), and by introducing extraneous 
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white noise to enhance the information content of the control for future estimates of  
whenever (19) has a small denominator that may lead to a large (and numerically unstable) 
control action. The choice of  depends on whether  is known to belong to some stability 
region. If the  are restricted to a stability region, then white noise perturbations do not 
destabilize the system while improving the experimental design for future estimates of . 
On the other hand, without such a priori stability assumption on the , small  should be 
used in (20) because the perturbations can have an explosive effect. 
Table III of Chen and Lai reports the results of a simulation study for an ARX model (13) in 
which k = 2, h = 1 and the inputs ut are determined by the certainty equivalence rule (18) or 
the uncertainty-adjusted certainty equivalence rule (20), in which  = 1/4 and the ωt are 
independent and identically distributed normal random variables. The  are 
assumed to belong to a stability region. The table shows that the certainty equivalence 

rules based on  or  perform much worse than those based on  implemented by 

fast particle filters, and that the modification (20) of the certainty equivalence  (18) based on 

 outperforms (18). 

Chen and Lai (2007, Table IV) also consider the case where the  do not belong to a 
stability region. They show that by weakening the extraneous perturbations (specifically 
choosing  = var(ωt) = 0.04, instead of 1/4 for which the system with inputs (20) becomes 
unstable), the adaptive rule (20) can stabilize the system and still performs well. 

3.5 Extensions to Hammerstein and Nonlinear ARX Systems 

The particle filter described in (14) - (16) can be applied to estimate the piecewise constant 
θt in the general stochastic regression model 

  (22) 

in which  is a vector-valued function of past lagged outputs and inputs and the change-
points of  form a discrete renewal process with parameter , with  taking a new value 
from the  distribution at each change-point. The ARX model (13) is only a special 

case of (22) with  given by (1). Another important special case is the Hammerstein 
system that has a static nonlinearity on the input side, replacing ut in (13) (and therefore (1) 
accordingly) by some nonlinear transformation f(ut). When f is unknown, it is usually 

approximated by a polynomial  (Ljung, 1987). To identify the 
Hammerstein system, we express it in the form of (22) with 

 

Instead of using a polynomial to approximate f, we can use other basis functions (e.g., 

splines), yielding the representation . Moreover, we can allow 

nonlinear interactions among the lagged outputs by making use of basis function 
approximations, and thereby express nonlinear ARX models with occasionally changing 
parameters in the form of (22) with 
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4. Particle Filters in Robotic Control and Planning 

The monograph by Thrun et al. (2005) gives a comprehensive treatment of the emerging 
field of probabilistic robotics. Here we summarize several basic concepts that are related to 
particle filters, referring to the monograph and other papers for details, and describe some 
ongoing work in this area. 

4.1 Robot Motion Models 

As in Thrun et al. (2005), we restrict to mobile robots in planar environments for which the 

pose xt of a robot at time t is represented by , where  represents the 

robot's position in the plane and  its angular orientation. If we drop the restriction of 
planar motion, then xt is a 6-dimensional vector in which the first three components are the 
Cartesian coordinates and  consists of the three Euler angles relative to the coordinate 
frame. The velocity motion model of a probabilistic robot is specified by the conditional 

density , in which us is a motion command that depends on all 

observations up to stage s and controls the robot through a translational velocity vs and a 
rotational velocity ws, i.e., us = (vs,ws); see Thrun et al. (2005, pp. 127-132) for concrete 
examples. An alternative to the use of the robot's velocities to evaluate its motion over time 

is to use its odometry measurements for ut in , leading to the odometry 

motion model; see Thrun et al. (2005, pp. 133-139). 
The preceding description of robot motion does not incorporate the nature of the 
environment. In practice, there is also a map m, which contains information pertaining to 
the places that the robot can navigate; for example, the robot's pose can only be in "free" 
space, which is the complement of space already occupied. A map-based motion model is 
specified by . A simple way to build such models is to combine 

 and  by 

 

see Thrun et al. (2005, pp. 140-143). Typical maps can be classified as feature-based or 
location-based. A feature-based map is a list of objects, called landmarks, in the 
environment along with the features. A prototypical location-based map is the occupancy 
grid map which assigns to any location a binary label that specifies whether the location is 
occupied by an object. 

4.2 Environment Measurement Models 

Mobile robots use their sensors to perceive their environment. Range finders, which are 
among the most popular sensors in robotics, measure the range to nearby objects along a 
beam (laser range finders) or within a cone (ultrasonic sensors). The sensor measurements 
yt are typically vectors since many sensors generate more than one numerical 
measurement; e.g., range finders usually give entire scans of ranges. Sections 6.3 and 6.4 of 
Thrun et al. (2005) describe the beam model and an alternative model, called likelihood field, to 
model  for range finders. Instead of using raw sensor measurements, an 

alternative approach is to extract features from the measurements and it is particularly 
suited to feature-based maps; see Section 6.6 of Thrun et al. (2005). 

www.intechopen.com



Fast Particle Filters and Their Applications to Adaptive Control  
in Change-Point ARX Models and Robotics 

 

63 

4.3 Pose Estimation, Mapping and SLAM 

The problem of estimating the pose of a robot relative to a given map of the environment is 
often called localization. It is a fundamental problem in robotics since nearly all tasks of a 
robot require knowledge of its location in the environment. In view of the hidden Markov 
model defined by  and  in Sections 4.1 and 4.2, estimation of 

the pose xt from the measurements y1,..., yt for a given map representation is a filtering 
problem. Extended Kalman filters are often used because of their simplicity and fast 
updating capability; see Thrun et al. (2005, Section 7.4) for details. The most popular 
localization filters to date are particle filters, and Section 8.3 of Thrun et al. (2005) describes 
these filters and their computational issues. 
The preceding paragraph assumes that the robot has a map that is given in advance. 
Acquiring such an a priori map is often a difficult problem in practice. Mapping, which is 
the task of a robot to learn the map from scratch, not only circumvents this difficulty but 
also enables the robot to adapt to changes in the environment. To see how the robot can 
learn a map, first consider occupancy grid mapping in the case where the poses are known 
exactly. An occupancy grid map m partitions the space into finitely many grid cells m1, . . . , 
mI, where mi = 1 (if occupied) or 0 (if free) for the ith cell. Putting a prior distribution on 
(m1, . . . , mI), Chapter 9 of Thrun et al. (2005) considers the posterior density  

since the poses are assumed known, and describes how the MAP (maximum a posteriori) 
estimate of m can be evaluated. 
The ideas in the preceding two paragraphs can be combined and modified to address the 
actual problem of simultaneous localization and mappling (SLAM), which involves the 
posterior density . A convenient way to learn the map is to use a 
feature-based approach involving landmarks. Typically, the robot has some uncertainty in 
identifying landmarks, especially those it has not observed previously. To incorporate this 

uncertainty in the data association decision, a correspondence variable  can be introduced to 

give the true identity of the jth observed feature (i.e.,  = i if the jth feature corresponds to 

the ith landmark). In this case, SLAM involves the posterior density . 

This is sometimes called the "on-line SLAM posterior" to be distinguished from the "full 
SLAM posterior" . Chapter 10 of Thrun et al. (2005) uses 

extended Kalman filters to approximate the on-line SLAM posteriors, while Chapter 11 
describes an alternative linearization technique that builds a sparse graph of soft 
constraints to approximate the full SLAM posteriors. Chapter 12 modifies the off-line full 
SLAM approximation of Chapter 11 into an on-line approximation to 

. 

4.4  The FastSLAM Algorithm 

FastSLAM uses particle filters to estimate the robot path and extended Kalman filters to 
estimate the map features. A key insight of FastSLAM is the factorization 

  

(23)

 

where m consists of I features m1, . . . , mI whose mapping errors are conditionally 
independent; see Section 13.2.1 of Thrun et al. (2005) for the derivation. As noted on p. 
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438 of Thrun et al. (2005), an important advantage of FastSLAM "stems from the fact that 
data association decisions can be made on a per-particle basis," and consequently, "the 
filter maintains posteriors over multiple data associations, not just the most likely one." 
Moreover, "FastSLAM is formulated to calculate the full path posterior — only the full 
path renders feature locations conditionally independent." While it solves the full SLAM 
problem, it is also an on-line algorithm "because particle filters estimate one pose at-a-
time." Details of the development and implementation of FastSLAM are given in Sections 
13.3-13.10 of Thrun et al. (2005). An important idea underlying FastSLAM is to use Rao-
Blackwellized particle filters for certain state variables and Gaussian posteriors to 
represent all other state variables. Recent papers by Grisetti et al. (2005, 2007) use 
adaptive proposal distributions and selective resampling to improve the Rao-
Blackwellized particle filters for learning grid maps, and provide a compact map model 
in which individual particles can share large parts of the model for the environment. 

4.5 Path Planning for Robot Movement 

Given an environment, the path planning problem for a robot is to choose the best path to 
reach a target location, starting from its initial pose. The traditional approach to robot 
motion planning is deterministic in nature, assuming that there is no uncertainty in the 
robot's pose over time and focusing on the complexities of the state space in the 
optimization problem. Chapter 14 of Thrun et al. (2005) incorporates uncertainty in the 
controls on the robot's motion by using methods from Markov decision processes (MDP) to 
solve the stochastic optimization problem, assuming that the robot's poses are fully 
observable or well approximated with negligible error. In MDP, xt+1 does not evolve 
deterministically from xt and ut, but is governed by a transition probability density 
function  with respect to some measure . A Markov policy uses control ut 

that is a function of xt at every stage t. More generally, a policy can choose ut based on 
. However, because of Markovian transitions, it suffices to restrict to Markov 

policies in maximizing the total discounted reward 

  

(24)

 

over all policies, where  is the discount factor,  is the payoff function and T 
is the planning horizon (which may be infinite). 
For the case T = 1, the myopic policy that chooses ut to maximize 

 is optimal. With longer planning horizons, one has to 
strike an optimal balance between the next-stage reward and the evolution of future 
rewards. The optimal policy can be determined by dynamic programming as follows. The 
value VT (x) of (24) for the optimal policy is called the value function, and it satisfies the 
Bellman equation 

  

(25)

 

The optimal policy chooses the control u = uT (x) that maximizes the right-hand side of (25). 
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Unless the state space is finite or of dimension 1 or 2, direct computation of (25) via 
discretization of the state space is prohibitively difficult. One approach is to use a low-
dimensional state approximation that assumes the value function to be relatively constant 
in the complementary state variables; see Thrun et al. (2005, pp. 505-507) who also note 
that "in higher dimensional situations it is common to introduce learning algorithms to 
represent the value function." Instead of working directly with the value function, it is 
more convenient to use the functions Qn defined by backward induction via QT (x) = maxu 

R(x,u) and 

   
(26)

 

noting that VT = Q1. Since conditional expectation is a regression function, one can 
approximate Qn+1 in (26) by using ideas from nonparametric regression, which basically 
uses certain basis functions to approximate Qn+1 and estimates the coefficients of the basis 
functions by the method of least squares from simulated samples drawn from the 
conditional distribution of xn+1 given xn and un = u; see Bertsekas and Tsitsiklis (1996) and 
Tsitsiklis and Van Roy (2001) for details. 

4.6 Robotic Control via Approximate Dynamic Programming 

Whereas path planning is usually carried out off-line before the robot is in motion, robotic 
control is concerned with on-line control of the motion of the robot to maximize a total 
discounted reward. It has to address the uncertainties in both the robot's poses and the 
control effects, which are incorporated in  and  in Sections 

4.1 and 4.2. Accordingly Thrun et al. (2005, Chapter 15) use methods from partially 
observable Markov decision processes (POMDP) to address the corresponding stochastic 
control problem of maximizing (24) over control policies that are functions of the posterior 
distribution  of xn given  and , instead of functions of xn as in MDP because 
the xn cannot be fully observed. Calling these posterior distributions beliefs, Thrun et al. 
(2005, p. 514) extend the Bellman equation (25) formally to 

  

(27)

 

where μ is a measure on the space  of beliefs and  is the one-step transition 
probability density function of the belief  to  when control u is taken. The optimal 

control chooses the maximizer u in (27) when one's current belief is . This is tantamount 

to working with the Markov chain  on the state space , where  is the state 
space of the poses xt.  Since  is a set of probability measures, μ is a measure on the space 
of probability measures and the existence of the transition density function in (27) is 
"problematic". Moreover, "given the complex nature of the belief, it is not at all obvious 
that the integration can be carried out exactly, or that effective approximation can be 
found" (Thrun et al., 2005, p. 514). 
Because of the inherent complexity of POMDP problems, the literature has focused almost 
exclusively on the infinite-horizon case  so that the value function in the Bellman 
equation (27) does not depend on T and is a function of the posterior distribution (belief) 
only. Thrun et al. (2005, Sections 15.3 and 15.4) consider the case where the state space , 
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the observation space and the control set are all finite. If  has k elements, then any 
probability distribution  on  can be represented by (p1,... ,pk) such that  and 

. In this case, the value function (27) can be expressed as a convex, piecewise 

linear function of (p1,... ,pk). 
For more general state spaces , Thrun (2000) has proposed a Monte Carlo procedure, 
called MC-POMDP, involving particle filters to perform approximate value iteration in . 
MC-POMDP uses a finite particle set to approximate a probability distribution . 
Specifically, this iterative procedure updates the value function V at  by simulating for 
each applicable control u a sample of possible subsequent beliefs  and then averaging 
over the simulated sample: 

  (28) 

so that V is updated by  in the iterative procedure. The basic idea is 

taken from model-based reinforcement learning (Gordon, 1995; Kaebling et al., 1996; 
Sutton & Barto, 1998), in which function approximations such as neural networks, 
decision trees and spline basis functions are used to represent the value function V in 
MDPs. To extend the idea to POMDPs, the challenge lies in how to represent V since it is a 
function of a probability distribution on the state space, instead of the state itself. Thrun 
(2000) uses a "nearest neighbor" approximation to represent V( ) in (28). His MC-
POMDP algorithm keeps a set (database) of reference beliefs , and associated values Vi. 
When a new belief state  (not in the database) is generated, its V value is obtained by 
finding the k nearest neighbors in the database and taking a weighted average of the 
corresponding Vi values. To measure the distance of  from , he convolves each 
particle with a normal N(0,v) distribution having a small variance v so that  and  can 
be represented by Gaussian mixtures, and then uses the Kullback-Leibler divergence to 
measure the distance (divergence) di of  from . Denoting the k nearest neighbors of  

by  in (28) is approximated by ; see Section 
16.4 of Thrun et al. (2005) for further details and refinements of the MC-POMDP 
algorithm. Because of the complexity of the actual value function, how well the above 
nearest neighbor method approximates V is formidable to explore. Although the value-
function approximation approach has been the "dominant approach" in reinforcement 
learning, Sutton et al. (2000) have pointed out various limitations of this approach and 
have proposed an alternative approach that uses function approximations for the optimal 
policy to carry out approximate policy iteration in MDPs. Instead of extending this 
approximate policy iteration approach to POMDPs whose optimal policies are 
prohibitively difficult to visualize, Lai and Wu (2008) propose to begin with a good (albeit 
sub-optimal) policy that captures the essence of the control objective and quantifies the 
uncertainties concerning the current state reflected by the particle filter, and to use it as 
the base policy in a rollout algorithm (Bayard, 1991; Bertsekas, 2000; Han et al., 2006) that 
successively improves the base policy into a new base policy, iterating till convergence to 
the optimal policy. 
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5. Concluding Remarks 

In this section we describe some issues that have not been addressed in the preceding 
sections and summarize the connections between the two control problems in Sections 3 
and 4. 

5.1 Adaptive Particle Filters 

In the previous sections, we have assumed that the hidden Markov model has specified 
parameters. However, in practice, the HMM usually has unknown parameters that need to 
be estimated besides the unobservable states. We consider here a Bayesian formulation in 
which the unknown parameter vector  has a prior distribution, so that  can be 
incorporated into the state vector at the expense of increasing the dimension. Such 
augmentation of the state vector does not pose additional difficulties if it can still be 
conveniently simulated. Here we show that it is sometimes even possible to integrate out 
the unknown parameter vector , with respect to a posterior distribution, in the SISR filter. 
Whenever this is possible, integrating out  can improve substantially the performance of 
the Monte Carlo method; this principle is called marginalization (Kong et al., 1994). 
As an illustration, suppose that in the normal mean shift model, the probability  of 
change is unknown and is specified by a prior  distribution with mean 

, where  and  are positive integers. It turns out that when  in (10) is 

unknown but has a Beta prior distribution, we can follow the same arguments to come up 
with an analogous proposal distribution Q from which I1,..., It are sampled sequentially. 
Using the closed-form expression for , it can be shown that under Q, 

 is Bernoulli assuming the values 1 and 0 with probabilities in the proportion 

  

 (29)

 

where  is the number of 1's in {I1, I2,..., It-1} and 

 is the number of 0's in {I1, I2,..., It-1}. Note how closely (29) 

resembles (10). Accordingly, letting at and bt denote the two terms in (29), the importance 
weights wt are given recursively by wt = wt-1(at + bt), t  1, with w0 = 1. 
Parallel to Table 1 that studies the performance of the SISR filter (with M = 50 and various 
cv2 bounds) when  = 0.001 is known, Table 3 considers the performance of the adaptive 
filter when  is assumed to have the Beta(l,999) distribution (with mean 0.001). 
Performance is measured by the SSE( ) =  at  = 0.001, and also by 

the Bayes SSE, which is the expected value of SSE( ) when  is regarded as a Beta(l,999) 
random variable. Each result is based on 100 sequences of n = 10000 observations. As in 
Table 1,  is assumed to be 1. Comparison of SSE( ) with the SSE values in Table 1 shows 
that the performance of the adaptive filter is comparable to that of the optimal filter that 
assumes  to be known. Table 3 shows a minimal value of SSE( ) and the best Bayes 
performance when the cv2 bound is 2. 
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Table 3. Effect of cv2 bound on performance of SISR for mean shift model with unknown  
Note: SSE( ) = Expected sum of squared errors at  = 0.001; Bayes SSE = Expected sum of 
squared errors when  ~ Beta(l,999); Resampling # = Average number of resamplings 
when  = 0.001; Resampling #B= Expected number of resamplings when  ~ Beta(l,999) 

5.2 Control Law Heuristics, Approximate Policy Iteration and On-Line Implementation 

In Section 3.4 we have addressed the adaptive control problem by using simple heuristics 
like certainty equivalence and uncertainty adjustment. The treatment of robotic control 
reviewed in Section 4.6 uses more general and formal tools like approximate value 
iteration, reinforcement learning and MC-POMDP. Although these tools are powerful, they 
may be difficult to implement, as noted in Section 4.6. A major difficulty is that since the 
form of the value function is hard to guess, it is not clear what basis functions should be 
chosen to approximate the value function in carrying out approximate value iteration. This 
difficulty is compounded for POMDPs because the value function is a function of a 
probability distribution on the state space, as we have explained in Section 4.6. An 
alternative approach is to use control law heuristics to come up with a good practical 
policy as in Section 3.4, and to study its performance by Monte Carlo simulations and 
refine it by using the rollout method as in Lai and Wu (2008). Another challenge is the real-
time computational requirement for on-line control, under which one can only afford to 
perform few iterations, especially when there is a Monte Carlo inner loop involving 
particle filters. This is why fast particle filters, which use efficient proposal distributions 
and resampling schemes like those in Section 3, or which use conditional independence of 
feature locations to perform data association on a per-particle basis as in FastSLAM in 
Section 4.4, are of particular importance for applications of particle filters to control of 
HMMs. 
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