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1. Introduction 

On-orbit servicing space robots are one of the challenging fields in the robotics and space 
technology. The space robots are expected to perform various tasks including capturing a 
target, constructing a large structure and autonomous maintenance of on-orbit systems. In 
these space missions, one of the main tasks with the robotic system would be the tracking, 
the grasping and the positioning of a target in operational space. In this chapter, we address 
the task of following a desired trajectory in operational space while the space robot grasps a 
target with unknown dynamic properties. The dynamic uncertainty leads to a tracking 
problem, where a given nominal trajectory has to be tracked, while accounting for the 
parameter uncertainty. 
In ground-based manipulator systems, the dynamic parameter uncertainty affects only 
dynamic equations. In free-floating space robots, however, the parameter uncertainty 
appears not only in the dynamic equations but also in kinematic mapping from the joint 
space to the Cartesian space due to the absence of a fixed base. Therefore, the model 
inaccuracies lead to the deviation of operational space trajectory provided by the kinematic 
mapping. 
One method to deal with this issue can be found in an adaptive control. Xu and Gu 
proposed an adaptive control scheme for space robots in both joint space and operational 
space [Xu et al., 1992, Gu & Xu, 1993]. However, the adaptive control proposed in [Xu et al., 
1992] requires perfect attitude control and the adaptive control in [Gu & Xu, 1993] is 
developed based on an under-actuated system on the assumption that the acceleration of the 
base-satellite is measurable. 
In this chapter, we propose an adaptive control for a fully free-floating space robot in 
operational space. This chapter particularly focuses on the uncertainty of kinematic 
mapping, which includes the dynamic parameters of the system. To achieve the desired 
input torque, it is assumed here that the velocity-based closed-loop servo controller is used 
as noted in [Konno et al., 1997]. 
In the modeling of the space robot, we consider the system switched around since a free-
floating space robot does not have any fixed base, and then the robotic system is modeled 
from the end-effector to the base-satellite. This approach was termed the inverted chain 
approach in [Abiko et al., 2006]. The inverted chain approach explicitly explains coupled 
dynamics between the end-effector and the robot arm. A proposed adaptive control for 
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operational space trajectory tracking is developed based on the inverted chain approach. 
The control method is verified in simulation for a realistic three-dimensional scenario (See 
Fig. 1). 
The chapter is organized as follows. Section 2 describes the dynamic model of a space robot 
by the inverted chain approach. Section 3 discusses the operational space motion control for 
the space robot based on the passivity theorem. Section 4 proposes an adaptive control for 
trajectory tracking in operational space against parameter uncertainties. Section 5 derives an 
alternative adaptive control for performance improvement. Section 6 illustrates the 
simulation results with a three-dimensional realistic model. The conclusions are 
summarized in Section 7. 

 

Figure 1. Chaser-robot and target scenario 

2. Modeling and Equations of Motion 

This section introduces the model of a space robot. Since the focus of this research is on 
following a desired trajectory in operational space, it is convenient to refer to operational 
space formulation. 
Due to the lack of a fixed base, one can model a free-floating space robot with two 
approaches. The general dynamic expressions of the free-floating robot use linear and 
angular velocities of the base-satellite and the motion rate of each joint as the generalized 
coordinates [Xu & Kanade, 1993]. However, by considering the system switched around, 
modeled from the end-effector to the base, it can be represented by the motion of the end 
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effector and that of the joints in the same structure as in the conventional expression. This 
scheme is termed the inverted chain approach. 
The following subsections explain the dynamic equations of the system in the inverted chain 
approach, for a serial rigid-link manipulator attached to a floating base, as shown in Fig. 2. 
The main notations used in this section are listed in Table 1. 

2.1 Equations of motion - Inverted chain approach 

Let us consider the linear and angular velocities of the end-effector, 

, and the motion rate of the joints,  as the generalized 

coordinates. The equations of motion are expressed in the following form: 

  
(1)

 

In the case that  is generated actively (e.g. jet thrusters or reaction wheels etc.), the system 

is called a free-flying robot. On the other hand, if no active actuators are applied on the base, 
the system is termed a free-floating robot. In this chapter, we consider the free-floating robot. 
The dynamic equation (1) possesses following important properties. 

Property 1: The inerta matrices  and  

are symmetric and uniformly positive-definite for all . 

 

n : number of the joints. 

 
3 1
R

×

∈ : linear velocity of the end-effector. 

 
3 1
R

×

∈ : angular velocity of the end-effector. 

 
6 1
R

×

∈ : spatial velocity of the end-effector. 

 
1n

R
×

∈ : vector for the joint angle of the arm. 

 
6 6
R

×

∈ : inertia matrix of the end-effector. 

 
n n
R

×

∈ : inertia matrix of the robot arm. 

 
6 n
R

×

∈ : coupling inertia matrix between the end-effector and the 
arm. 

 
6 6
R

×

∈ : non-linear velocity dependent term on the end-effector. 

 
n n
R

×

∈ : non-linear velocity dependent term of the arm. 

 
6 n
R

×

∈ : coupling non-linear velocity dependent term between the 
end-effector and the arm. 

 
6 1
R

×

∈ : force and moment exerted on the end-effector. 

 
6 1
R

×

∈ : force and moment exerted on the base. 
6 1
R

×

∈ : reaction force and moment due to the motion of the robot 
arm. 

 
1n

R
×

∈ : torque on the joints. 

 
6 1
R

×

∈ : total linear and angular momentum around the end-effector. 

 
6 6
R

×

∈ : Jacobian matrix related to the end-effector and the base. 

 
6 n
R

×

∈ : Jacobian matrix related to the arm and the base. 

Table 1. Main notations in dynamic equations 
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Figure 2. General model for a space robot 

Property 2: The following matrices are skew-symmetric : 

 

so that: 

 

for all  and  respectively.  

2.2 Equations of motion in operational space 

The upper part of (1) clearly describes the equation of motion in operational space: 

  (2) 

In the free-floating space robot, only the joint motion can be considered as the generalized 
coordinate. 

  (3) 

where   stands for a reaction force onto the end-effector due 

to the robot arm motion. 
Remark 1: Input command for the operational space dynamics 
The right-hand side in (3) apparently shows the reaction or coupling effect due to the 
motion of the robot arm with joint acceleration expression. The torque control input does 
not appear explicitly in (3). Joint acceleration, however, can be achieved by velocity-based 
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closed-loop servo controller straightforwardly as noted in [Konno et al., 1997]. Therefore, eq. 

(3) are convenient formulation for constructing a control strategy. Hereafter,  is considered 

as an input command to the system and the appropriate joint acceleration for proper control 

law is computed. Then, one can refer i =  as a reaction force due to the 

motion of the robot arm, which can be used to analyze the influence of the parameter errors 
in Section 4. 
Remark 2: Linearity in the Dynamic Parameters 
The linearity of eq. (2) is one of the significant features in the articulated-body system. This 
characteristic plays a key role in the derivation of an adaptive control. The integral of eq. (2) 
represents the total linear and angular momentum around the center of mass of the end-
effector. Then, on the assumption that no active force and torque are applied on the base 

(e.g.  = 0), eq. (2) can be described as the time-derivative of the momentum  as 
follows: 

  
(4)

 

  

(5)

 

where  and  stand for the inertia matrix, angular velocity and mass of the link i, 
respectively,  and  denote the vector from the inertial frame to the center of mass of the 
link i and that from the inertial frame to the center of mass of the end-effector, respectively 
(see Fig. 2). Once eq. (5) can be linearized with respect to a suitable set of dynamic 
parameters, eq. (4) can be linear in terms of the dynamic parameters since the dynamic 
parameters are independent on the motion of the system.  
Through some calculations, eq. (5) is linearized in terms of a set of arbitrary dynamic 
parameters . 

  (6) 

Then eq. (4) can be expressed as a function of . 

  (7) 

where  stands for the time-derivative of , which is a function of state values and is called 
the regressor. The choice of the regressor  and the dynamic parameter vector  is generally 
arbitrary. In this chapter, we assume that only a grasped target, attached on the end-effector, 
includes unknown dynamic parameters. The dynamic parameters of the rest of the system 
and the kinematic parameters are supposed to be well-identified in advance. Therefore, the 
unknown dynamic parameter vector  is defined as a p-dimensional vector containing the 
mass, center of mass, moment of inertia and product of inertia of the target. Note that  
defined here is constant. 
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3. Trajectory Control in Operational Space 

This section shows the trajectory controller in operational space for a free-floating space 
robot. The control law shown in this section is derived based on the passivity theorem [van 
der Schaf, 2000]. 

3.1 Passivity based trajectory tracking control 

Let us define a reference output velocity  and a reference output acceleration  as follows: 

 

where  is a strictly positive definite matrix.  

represents the desired velocity in operational space.  depicts the 

operational space error consisting of the position error  and the orientation error 

. The position error   is expressed as: 

 

The orientation error  is expressed by means of the quaternion expression  

where  and  are the scalar and vector part of the quaternion: 

 

where the operator  denotes the cross-product operator. 
The reference error  between the reference output  and the actual velocity  can be 
described by: 

  (8) 

In the case without any parameter errors, the trajectory tracking control law can be 
determined by using the feedback linearization as follows: 

  (9) 

where  denotes a positive definite symmetric constant matrix.  stands for the 

input command and + denotes the pseudo-inverse operator. Note that the control law (9) 

can be achieved under the condition when  is nonsingular. Since several researches 
have already been proposed the treatment of the singularity problem [Nenchev et al., 
2000,Tsumaki et al., 2001, Senft & Hirzinger, 1995, Nakamura & Hanafusa, 1986], it is out of 
focus in this chapter. 

3.2 Stability analysis 

The stability of the control law (9) can be analyzed by means of the Lyapunov direct 
method. The following reference error energy is considered as a Lyapunov function: 
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(10)

 

The time-derivative of  is given as: 

  (11) 

where Property 2 in Section 2 is used. Since the control command is expressed in eq. (9), 

(   noted in Remark 1 in Section 2), the time-derivative of  results in: 

  
(12)

 

 
Figure 3. Control diagram for trajectory tracking 

Consequently, the result of  holds always semi-negative and the closed-loop system (2) 
with (9) is guaranteed to be asymptotically stable. The inequality (12) implies that the 
steady-state reference error  converges asymptotically to zero, which leads to the 
convergence of the steady-state position. The control diagram for operational tracking 
control is shown in Fig. 3. 

4. Adaptive Control 

The previous section explained the trajectory control for a free-floating space robot based on 
the inverted chain approach on the assumption of no dynamic parameter errors. In practical 
situations, however, the robot arm handles various components whose dynamic properties 
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are not known in advance. Those model inaccuracies may lead to the degradation of the 
control performance and the deviation of the trajectory tracking from the desired one. 
This section proposes an adaptive control for a free-floating space robot against the 
parameter uncertainties. 

4.1 Influence of the dynamic parameter errors 

In the presence of dynamic parameter inaccuracies, the dynamic model in operational space 
can be described as follows: 

  (13) 

where  stands for the matrix including dynamic parameter errors. In analogy with (9), the 
control law derived from the dynamic model (13) becomes: 

  (14) 

In the implementation of the input command (14) to the dynamic system (2), the reaction 

force due to the motion of the robot arm  and the corresponding expected reaction force 

 has error . 

  (15) 

where  stands for the error matrix. With the input acceleration (14), the reaction force  

can be described by the corresponding expected force  and the error  as follows: 

  
(16)

 

Let us analyze here the stability of the system containing the dynamic parameter errors by 
using the Lyapunov function (10). In the closed-loop system (2) with the controller (14), the 
time-derivative of the Lyapunov function (10) is given by: 

  

(17)

 

where Remark 1 is used, namely .As mentioned in Remark 2, the dynamic system is 
linearized with the vector of dynamic parameters  and the regressor . Then, the above 
time-derivative can be rewritten as: 

  (18) 
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where  denotes the parameter estimation error vector,  is a p-dimensional 

vector including the unknown dynamic parameters and  is its estimate. The above equality 
indicates that each component  in the gain matrix  needs to meet the following condition 

in order to obtain the robust system against the model inaccuracies: 

  (19) 

where the constant  is strictly positive. As long as the above condition holds, the controller 
(14) is robust against the parameter inaccuracies and the tracking error converges to zero. 

4.2 Adaptive controller design 

Equation (17) suggests two solutions to compensate the parameter uncertainty in the system. 
One is the improvement of the robustness in the control law (14) with proper design of the 
gain matrix as shown in (19). The other is to adjust the dynamic parameter itself during the 
operation, which is called an adaptive control [Slotine & Li, 1987] [Slotine & Li, 1988]. 
This section proposes an adaptive control in the case without any knowledge of the dynamic 
parameters in advance, such that the space robot grasps a target whose dynamic parameters 
are unknown. 
Let us consider the following Lyapunov function described with the sum of the reference 
error energy of the system (10) and the potential energy due to the model uncertainties: 

  
(20)

 

where  is a positive definite matrix. The time-derivative of (20) becomes: 

  (21) 

This suggests the following condition should be met to guarantee the system stability, 

  (22) 

Then, the following adaptive control law is derived as: 

  (23) 

where  and the parameter vector  is constant. 
Consequently, the time-derivative of the Lyapunov function results in: 

  (24) 

The inequality (24) indicates the reference error  converges asymptotically to zero if and 

only if  and . Accordingly, the control law for the trajectory tracking in 
operational space (14) and the adaptation law (23) yield a stable adaptive controller. Fig. 4 
shows the control diagram for the proposed adaptive control. 
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Figure 4. Control diagram for an adaptive trajectory tracking control in operational space 

5. Composite Adaptive Control 

The adaptive controller developed in the previous section exploits the tracking error to 
extract the parameter information. To obtain the parameter information, however, one can 
find various candidates [Slotine & Li, 1991]. One possible candidate is the prediction error, 
which is generally used for parameter estimation. In this section, an alternative adaptive 
control law is developed with the combination of the tracking error and the reaction force 
error. The reaction forces due to the motion of the robot-arm are assumed to be measured by 
the force/torque sensor attached on the end-effector, to which the target is attached. The 
measurement values are used for parameter adaptation together with the nominal adaptive 
control law (23). 

5.1 Composite adaptive controller design 

In analogy with Section 2, the reaction forces on the end-effector are able to be linearized 

with a proper set of the dynamic parameters  as  and its prediction error can 

be described as , where  stands for the regressor. The detail derivation is 
omitted in this chapter. 
The adaptive control law (23) is extended to the following expression combined with the 
tracking error and the predicted reaction force error: 

  (25) 

where  is a uniformly weighting matrix. Eq. (25) can be rewritten as: 
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  (26) 

which indicates a time-varying low-pass filter and that parameter and tracking error 
convergence in composite adaptive control can be smoother and faster than in the nominal 
adaptive control only. 
To analyze the stability of the system applied the above composite adaptive control law and 
the trajectory tracking control, the Lyapunov function (20) is considered again. The time-
derivative of (20) is derived as (21). Since the adaptive control law is determined by (25), 
substitution of (25) into (21) leads to the following inequality: 

  (27) 

which describes that the reference error  and the prediction error  globally converge 
to zero if the desired trajectories are bounded. If the trajectories are persistently exciting 
and uniformly continuous, the estimated parameters converge asymptotically to the real 
ones. Fig. 5 shows the control diagram for the proposed composite adaptive control. 

 

Figure 5. Control diagram for a composite adaptive trajectory tracking control in operational 
space 

6. Simulation Study 

This section presents the numerical simulation results of a realistic three-dimensional 
model as shown in Fig. 1. In this simulation, the chaser-robot is assumed to track a given 
trajectory while it grasps firmly a target including unknown dynamic properties. The 
dynamic parameters of the rest of the system and the kinematic parameters are supposed 
to be well-identified in advance. The initial total linear and angular momentum for whole 
system are zero in the simulation. During the tracking phase, no external force is applied. 
The chaser robot has a 7DOF manipulator mounted on the base satellite, whose dynamic 
parameters are shown in Table 2. The robot arm has one redundancy with respect to the 
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end-effector motion, then the null-space can be used for an additional task. In the 
simulation examples, the target parameters of the planned motion are supposed to be 
zero, while those of the controlled motion are in Table 3, giving the extent of uncertainty 
introduced in the system. As mentioned in Section 2, the vector of the unknown dynamic 
parameters  is defined as follows: 

 

The adaptation gain  in eq. (23) is determined as: 

 

The control gains  and  in eq. (14) are set to be: 

 

The weighing matrix  in the composite adaptive control (25) is determined as: 

 

 

 mass [kg] Ixx [kgm2] Iyy [kgm2] Izz [kgm2] 

Base 140 18.0 20.0 22.0 

 

 mass [kg] Ixx [kgm2] Iyy [kgm2] Izz [kgm2] 

Each Link 3.3 0.0056 0.0056 0.0056 

Table 2. Dynamic parameters for a chaser-robot 

mass [kg] Ixx [kgm2] Iyy [kgm2] Izz [kgm2] 

87.5 11.25 12.5 12.5 

Table 3. Dynamic parameters for a target 

 w/oAC with AC with CAC 

RMS error 0.0141 0.0048 0.0032 

Table 4. Root Mean Square error for tracking error 

Figs. 6 and 7 illustrate the desired and actual trajectories in Cartesian space. Fig. 6 shows 
the case with parameter deviations but without adaptive control. Fig. 7 shows the case 
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with adaptive control (23). The left graphs depict the trajectory in xy plane and the right 
graphs show the trajectory in xz plane in Cartesian space. In the graphs, the solid line 
depicts the desired trajectory and the dashed line depicts the actual trajectory, 
respectively. It is clearly observed that the end effector follows the trajectory when the 
adaptive control is activated, even though the parameter deviations exist, while in the 
case without adaptive control law, the end effector deviates the desired trajectory due to 
the model errors. Fig. 8 depicts the typical examples for the parameter adaptation process 
when the adaptive control law is applied. In the figure, the adaptation processes of the 
mass, moment of inertia of each axis are shown. Note here that the adjusted dynamic 
parameters do not have to converge to the real ones since the demanded task is to follow a 
given trajectory. If one would like to identify real values, the persistent excitation of the 
input command is required. 

 

Figure 6. Trajectory without adaptive control 

 

 

Figure 7. Trajectory with adaptive control 
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Figure 8. Adaptation process of the parameters 

Furthermore, the composite adaptive control (25) is verified in the same condition. The 
actual trajectory follows the desired one with less tracking error than the normal adaptive 
control (23) since not only the tracking reference error but also the reaction force error are 
utilized to extract more information for the unknown dynamic parameters. Table 4 shows 
the root mean square error(RMSE) of the tracking error for each case. The root mean square 
error is calculated as follows: 

  

(28)

 

where m denotes the number of data points in the simulation. The vector  depicts the 
position error of the end-effector described in Section 3. In Table 4, "w/o AC", "with AC" 
and "with CAC" stand for the case without adaptive control, with adaptive control and the 
case with composite adaptive control, respectively. 
The simulations verify that the proposed adaptive controls are effective to achieve the 
trajectory tracking against the parameter uncertainties. 

www.intechopen.com



An Adaptive Control for a Free-Floating Space Robot by Using Inverted Chain Approach 

 

15 

7. Conclusions 

In this chapter, we proposed an adaptive control for a free-floating space robot by using 
the inverted chain approach, which is a unique formulation for a space robot compared 
with that for a ground-based manipulator system. This gives the explicit description of 
the coupled dynamics between the end-effector and the robot arm, and provides the 
advantage of linearity with respect to the inertial parameters for the operational space 
formulation. 
In a free-floating space robot, the dynamic parameters affect not only its dynamics but 
also its kinematics. By paying attention to the internal dynamics between the end-effector 
motion and the joint motion, we developed an adaptive control for operational space 
trajectory tracking in the presence of model uncertainties. To improve the adaptive 
control performance, a composite adaptive control by using the information of the 
tracking error and the reaction force is further discussed. The proposed control methods 
are verified by realistic numerical simulations. The simulation results clearly show that 
the proposed adaptive controls are effective against the dynamic parameter errors. 
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