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Abstract

This chapter presents graph construction for hyperspectral data and associated unmixing
methods based on graph regularization. Graph is a ubiquitous mathematical tool for
modeling relations between objects under study. In the context of hyperspectral image
analysis, constructing graphs can be useful to relate pixels in order to perform corporative
analysis instead of analyzing each pixel individually. In this chapter, we review funda-
mental elements of graphs and present different ways to construct graphs in both spatial
and spectral senses for hyperspectral images. By incorporating a graph regularization, we
then formulate a general hyperspectral unmixing problem that can be important for
applications such as remote sensing and environment monitoring. Alternating direction
method of multipliers (ADMM) is also presented as a generic tool for solving the formu-
lated unmixing problems. Experiments validate the proposed scheme with both synthetic
data and real remote sensing data.

Keywords: hyperspectral imaging, graph construction, spectral unmixing, graph
regularization, spectral-spatial correlation

1. Introduction

Hyperspectral imaging analysis has found a wide range of applications including agricultural

monitoring, environment detection, meteorological information forecast, medical examination,

and camouflage tests [1]. In a hyperspectral image, pixels are typically mixtures of several pure

material components due to the limitation of spatial resolution and intimate interactions among

materials. Spectral unmixing is thus one of the most important tasks in hyperspectral data

analysis, aiming to separate the observed pixel spectra into a collection of constituent spectra, or

spectral signatures, called endmembers and to estimate fractions associated with each compo-

nent called abundances. Spectral unmixing provides a comprehensive and quantitative mapping

of the elementary materials that are present in the acquired data, and it is widely used for many

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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applications, such as determining the constitutions of geological mixtures and performing a

classification of crops and vegetation.

Most spectral unmixing approaches are designed based on pre-assumed mixture models that

describe in an analytical way how the endmembers are combined to mixed spectra measured

by the sensor [2]. The linear mixing model (LMM) is the most widely used one, and it assumes

that the mixing occurs at a macroscopic scale [3]. A measured spectrum is the linear combina-

tions of the endmembers, weighted by the fractional abundances. To be physically interpret-

able, LMM is usually performed with two physical constraints, abundance nonnegative

constraint (ANC) and abundance sum-to-one constraint (ASC). Multiple scattering effects and

intimate interactions in real environment require using nonlinear mixture models. Such

models include intimate mixture model [4], bilinear model [5], linear-quadratic mixing model

(LQM) [6], polynomial post-nonlinear mixing model (PPNM) [7], to cite a few. However, due

to the simplicity and interpretability of the analysis results, LMM-based unmixing strategies

are mostly used in practice [2]. A number of unmixing algorithms are proposed, including

long-standing geometrical and statistical approaches and the recently introduced sparse

regression-based unmixing algorithms [8–11].

Considering inherent spatial-spectral duality exists in hyperspectral data, regularized

unmixing algorithms have been proposed in recent years to make use of spectral information

and spatial contextual information to enhance the unmixing performance. For instance, in

[8], authors introduce a total variation (TV) regularizer to promote spatial consistency of

estimated abundances. In [12], the quadratic Laplacian regularization is introduced based on

graph representation. In [13], authors present a spatial spectral coherence regularization that

relates abundance estimation of a pixel to that of its neighboring pixels with spectral simi-

larities. In [14], authors perform the unmixing with low-rank spatial regularization within

fixed-size square windows.

However, it is necessary to establish a frame for these various ways of regularization via a

proper mathematical tool. A graph is a ubiquitous structure that describes the connection

relationship of a set of vertices. Graph theory is actively used in fields such as biochemistry

(genomics), electrical engineering (communication networks and coding theory), computer

science (algorithms and computation), and operations research (scheduling) [15]. In addi-

tion, several works apply graph theoretical techniques to hyperspectral images, including

methods for dimensionality reduction [16], anomaly detection [17], and classification [18]. In

the context of hyperspectral data unmixing, a graph can be used to model relations of spatial

and spectral information of hyperspectral pixels. In this chapter, we will present a variety of

ways to construct a graph for hyperspectral unmixing and formulate the associated

unmixing problem with solutions given by the alternating direction method of multipliers

(ADMM) strategy.

The remainder of the chapter is organized as follows: Section 2 introduces graph theory and

graph construction methods in the context of hyperspectral unmixing. Section 3 formulates the

sparse linear unmixing problem based on graph regularization. In Section 4, the solution to the

formulated problem is derived via the ADMM algorithm. Section 5 reports the experiment’s

results. Finally, Section 6 concludes this chapter.
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2. Graph construction

2.1. Introduction to graphs

We firstly review some fundamental elements of a graph. A graph is a general data structure

described by G ¼ V;Eð Þ , where a finite set of vertices, also called nodes, is denoted by V and a

finite set of pairs of the form vivj
� �

is referred to as edges. Edges indicate the relation between

vertices, and they can be directed or undirected. Directed edges utilize ordered pairs of points

that indicate the source and sink of each connection, that is, vivj
� �

represents an edge from vi

to vj. Undirected edges only indicate the relationship between vertices and do not consider the

ordering, that is, vivj
� �

is the same as vjvi
� �

: We may associate each edge with a weight to

describe the importance or the cost of this connection (Figure 1).

In a simple setting, if two vertices are connected by an edge, the weight is set to 1, otherwise

the weight is 0. The following part introduces some other ways to measure the similarity

among vertices, in other words, to define the weights. We can use either adjacency matrices

or incidence matrices to describe graphs depending on the type of operations to be performed.

Elements of the matrix A indicate whether pairs of vertices are connected or not in a graph.

Element Aij is 1 when there is an edge from vertex i to vertex j and zero when there is no edge.

If the graph is undirected, the adjacency matrix is symmetric. Incidence matrices show the

relationship between vertices and edges. An undirected graph can have two kinds of incidence

matrices: unoriented and oriented matrices. An oriented incidence matrix in the undirected

graph can be denoted by B∈ℝ
n�m , where n is the number of vertices and m is the number of

edges. That is, in the column of edge ek , the positive undirected graph can be denoted by

B∈ℝ
n�m , where n is the number of vertices and m is the number of edges. That is, in the

column of edge ek , there is positive weight Aij in the row corresponding to one vertex vi of ek
and negative weight -Aij in the row corresponding to the other vertex vj of ek , and all other

rows are set to 0.

In addition, a degree matrix for a graph is a diagonal matrix D ¼ diag d1;⋯di;⋯dnð Þ , where n

is the number of vertices and di is the degree of the vertex vi in G. The degree matrix is

indicating every vertex’s degree which is the number of edges connecting to one vertex. It is

Figure 1. Example of a graph.
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normally used together with the adjacency matrix to construct the Laplacian matrix L of a

graph, which is L ¼ D�A.

2.2. Graph construction for hyperspectral images

In this part, we elaborate the ways to construct graphs in the context of hyperspectral image

analysis. The performance of spectral unmixing is closely tied to the graph construction of

images, and in the hyperspectral remote sensing literature, there are a number of techniques.

In [19], authors summarize a survey of spectral graph construction techniques and discuss

advantages and disadvantages of these techniques. Generally, each pixel can be viewed as a

vertex (or node), and each vertex is associated with a continuous spectrum. A set of edges can

be set and assigned with weights in different senses as presented here below.

2.2.1. Four-neighbor graph

A common and straightforward construction is to consider the four-neighbor graph, where

every vertex (i.e., every pixel) is connected to four nearest spatially adjacent neighboring

pixels, as illustrated in Figure 2.

2.2.2. Threshold-compared graph

Another alternative to construct a graph is to calculate all pairwise distances and an edge is

placed if the distance between two vertices is less than a user-predefined threshold. The

distance in the hyperspectral image can be measured using the spectral distance or spatial

distance. For instance, vi and vj are two vertices that are associated with spectral vectors with L

bands, then their Euclidean distance is vi � vj

�

�

�

�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PL
k¼1 vik � vjk

� �2
q

.

Figure 2. Spatial four-neighbor method.
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2.2.3. K-nearest neighbor graph

Constructing a graph with k-nearest neighbors (k-NN) is a popular method. In this case, an edge

is set between two vertices if vertex vj is in k-NN of vertex vi. Each vertex has its own k-nearest

neighbors. Consequently, the graph is a directed graph. It is worth noting that constructing such

a graph requires calculating all pairwise distances and ordering these values on each vertex, and

these operations lead to high computational costs.

2.2.4. Spatial-spectral graph

As pixels in a hyperspectral image possess spatial locations and spectral signatures, it can be

beneficial to construct a graph by incorporating both spatial and spectral information. For

instance, a graph can be constructed with local four neighborhood pixels and by considering

spectral similarity among pixels, as described in Figure 3.

2.2.5. Weighted graph

Above methods construct unweighted graphs with only connection indications among pixels.

Several other methods further impose weights on each edge. For instance, spectral similarity

measured by the Gaussian kernel can be used to define weights:

Aij ¼ exp �

vi � vj
�

�

�

�

2

2σ2

 !

(1)

where σ is the kernel bandwidth and defined by users. As a generalization, a radial basis

function (also called a diffusion kernel) in spectral distance with two parameters σi and σj is

introduced in [20], given by:

Figure 3. An example of four spatial neighbors and k-NN spectral neighbors.
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Aij ¼ exp �
vi � vj
�

�

�

�

2

σiσj

 !

: (2)

Weights can also be calculated by considering both spatial and spectral information. For

instance, [21] proposes to define weights by:

Aij ¼ exp �
vi � vj
�

�

�

�

2

cijσiσj

 !

∙exp �
xi � xj
�

�

�

�

2

σ2d

 !

(3)

where xi is the spatial coordinates of pixel vi , cij is an integer indicating the number of common

neighbors between vi and vj , σi and σj are defined in [20], and the parameter σd is defined by

users which limits the size of regions spatially. In [22], authors consider the similarity of the

spectral angle instead of the spectral Euclidean distance.

Aij ¼ exp �θij

� �

∙exp �
xi � xj
�

�

�

�

2

σ

 !

(4)

where θij denotes the spectral angle between vi and vj , xi is the spatial coordinates of pixel vi

and σ is the parameter defined by users. Note that some schemes of calculating weights can

make edges to be severed so as to change the structure of the graph [19].

There are also some other methods to construct graphs adapted to hyperspectral images, such

as adaptive nearest neighbor graphs, density-weighted k-NN graphs, and shared nearest-

neighbor graphs [19].

3. Graph-based regularization in unmixing

With a constructed graph at hand to model the relation of pixels, in this section, we present the

way to perform a sparse unmixing with the graph regularization.

3.1. Sparse unmixing

Consider the linear mixing model: y ¼ Sxþ n , where y∈ℝ
L is one observed pixel with L

spectral bands, S ¼ s1; s2;⋯; sR½ �∈ℝ
L�R is the library of spectral signatures including R pure

spectral signatures, and x∈ℝ
R is an abundance vector, n is the additive white noise vector.

Since it is often that an observed pixel is only composed of a small number of materials in the

library, the majority of entries of the abundance vector x are zero-valued, namely, x is sparse.

Assuming the library is available beforehand and the spare unmixing problem can be defined

as [23]:
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min
x

1

2
y� Sxk k22 þ λ xk k1

subject to : x ≥ 0
(5)

where λ is the regularized parameter.

In this chapter, we formulate the problem without ASC constraint because of using the l1 norm

regularization. Moreover, the validity of ASC is often questioned in the literature for practical

scenarios. Inwhat follows,we introduce the graph regularization to the above formulatedproblem.

3.2. Graph regularization for sparse unmixing

Since a graph relates the pixels of image via spatial and spectral relations, we can regularize the

unmixing problem with pixel relations defined by the graph. Let Y ¼ y1; y2;⋯yn
� �

∈ℝ
L�n be a

spectral matrix, where each column is one observed pixel including L spectral bands and n is the

number of pixels, and in a graph, n is also the number of vertices. Let X ¼ x1; x2;⋯xn½ �∈ℝ
R�n be

an abundance matrix in which each column is an abundance vector associated with one

observed pixel. With the graph representation of hyperspectral data, we achieve the sparse

unmixing by solving the following optimization problem:

min
x

1

2
Y� SXk k2F þ μ Xk k1,1 þ λgg1 Xð Þ

subject to : X ≥ 0
(6)

where

g1 Xð Þ ¼
X

n

i¼1

X

n

j¼1

Aij xi � xj
�

�

�

�

1
(7)

This graph regularization term Eq. (7) is based on the assumption that if two vertices are

connected by an edge, then the abundances of the two vertices are similar. This term measures

the differences between all pairs of abundances weighted by their degrees of similarity in the

graph. The graph regularization then promotes piecewise constant transitions of estimates

among the related pixels. Parameter λg controls the regularization strength. Note that we can

rewrite Eq. (7) with the incidence matrix B as:

X

n

i¼1

X

n

j¼1

Aij xi � xj
�

�

�

�

1
¼ XBk k1,1 (8)

Problem Eq. (6) is equivalently expressed as:

min
x

1

2
Y� SXk k2F þ μ Xk k1,1 þ λg XBk k1,1

subject to : X ≥ 0
(9)
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If we use a spatial four-neighborhood graph in this unmixing problem with the weights being

simply set to 1 and 0, it can generally be identical with the SUnSAL-TV algorithm [8]. The right

term can promote piecewise constant transitions in the fractional abundance among neighbor-

hood pixels and achieve spatial consistency of estimated abundances.

Instead of considering promoting the similarities among estimated abundances, an alternative

way is to promote the similarities of reconstructed spectra among the connected pixels. In [24],

authors propose a nonlocal TV regularization, with the regularization term given as:

g2 Xð Þ ¼
X

n

i¼1

X

n

j¼1

Aij Sxi � Sxj
�

�

�

�

1
(10)

This can also be written with incidence matrix B as:

g3 Xð Þ ¼ SXð ÞBk k1 (11)

4. Solution to the formulated problem

We propose to solve the formulated unmixing problem Eq. (9) via the ADMM algorithm. In this

section, we first briefly review the ADMM algorithm and then apply it to our unmixing problem.

4.1. Introduction of ADMM

ADMM is an algorithm that is intended to blend the decomposability of dual ascent with the

superior convergence properties of the method of multipliers. The algorithm solves problems

in the form [25]:

min f xð Þ þ g zð Þ

s:t: Axþ Bz ¼ c
(12)

with variables x∈Rn and z∈Rm
, where A∈R

p�n
, B∈R

p�m , and c∈Rp
.

The first step is to write the augmented Lagrangian of problem Eq. (12):

Lρ x; z; yð Þ ¼ f xð Þ þ g zð Þ þ yT Axþ Bz� cð Þ þ
ρ

2
Axþ Bz� ck k22 (13)

ADMM suggests achieving the optimum via the following iterations:

xkþ1 ¼ argmin
x

Lρ x; zk; yk
� �

(14)

zkþ1 ¼ argmin
z

Lρ xkþ1
; z; yk

� �

(15)

ykþ1 ¼ yk þ ρ Axkþ1 þ Bzkþ1 � c
� 	

(16)
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where ρ > 0. The algorithm is very similar to dual ascent and the method of multipliers: it

consists of an x-minimization step Eq. (14), a z-minimization step Eq. (15), and a dual variable

update Eq. (16). As in the method of multipliers, the dual variable update uses a step size equal

to the augmented Lagrangian parameter ρ.

4.2. Solutions via ADMM

In order to apply the canonical ADMM algorithm to the problem (9), we introduce the auxiliary

variables and transform the problem as follows:

minimize
X,V1,V2,Z

1

2
Y� SXk k2F þ μ V2k k1,1 þ λg V4k k1,1 þ l

ℝ
R�n
þ

V2ð Þ

subject to V1 ¼ SX

V2 ¼ X

V3 ¼ X

V4 ¼ V3B

(17)

where lS is the indicator function of the set S , such as lS xð Þ ¼ 0 if x∈S and lS xð Þ ¼ þ∞ if x∉S.

Thus the augmented Lagrangian for Eq. (17) is as follows:

L X;V1!4;D1!4ð Þ ¼
1

2
Y�V1k k2F þ μ V2k k1,1 þ λg V4k k1,1 þ l

ℝ
R�n
þ

V2ð Þ

þ
ρ

2
SX�V1 �D1k k2F þ

ρ

2
X�V2 �D2k k2F

þ
ρ

2
X�V3 �D3k k2F þ

ρ

2
V3B�V4 �D4k k2F

(18)

where D1,D2,D3,D4 are Lagrange multipliers and ρ is the penalty parameter.

The algorithm steps are as follows:

Step 1. Input the observed pixels Ymatrix, the library S , and the regularization parameters μ,λg;

Step 2. Initialization: X 0ð Þ,V
0ð Þ
1 ,⋯,V

0ð Þ
4 ,D

0ð Þ
1 ,⋯,D

0ð Þ
4 ,ρ, set k ¼ 0

Step 3. Repeat:

Step 4. X kþ1ð Þ  argminX Lρ X;V
kð Þ
1 ;V

kð Þ
2 ;V

kð Þ
3 ;V

kð Þ
4 ;D

kð Þ
1 ;D

kð Þ
2 ;D

kð Þ
3 ;D

kð Þ
4

� 	

Step 5. V
kþ1ð Þ
1  argminV1

Lρ X kþ1ð Þ
;V1;V

kð Þ
2 ;V

kð Þ
3 ;V

kð Þ
4 ;D

kð Þ
1 ;D

kð Þ
2 ;D

kð Þ
3 ;D

kð Þ
4

� 	

Step 6. V
kþ1ð Þ
2  argminV2

Lρ X kþ1ð Þ
;V

kþ1ð Þ
1 ;V2;V

kð Þ
3 ;V

kð Þ
4 ;D

kð Þ
1 ;D

kð Þ
2 ;D

kð Þ
3 ;D

kð Þ
4

� 	

Step 7. V
kþ1ð Þ
3  argminV3

Lρ X kþ1ð Þ
;V

kþ1ð Þ
1 ;V

kþ1ð Þ
2 ;V3;V

kð Þ
4 ;D

kð Þ
1 ;D

kð Þ
2 ;D

kð Þ
3 ;D

kð Þ
4

� 	

Step 8. V
kþ1ð Þ
4  argminV4

Lρ X kþ1ð Þ
;V

kþ1ð Þ
1 ;V

kþ1ð Þ
2 ;V

kþ1ð Þ
3 ;V4;D

kð Þ
1 ;D

kð Þ
2 ;D

kð Þ
3 ;D

kð Þ
4

� 	
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Step 9. Update the Lagrangian multipliers:

D
kþ1ð Þ
1  D

kð Þ
1 � SX kþ1ð Þ �V

kþ1ð Þ
1

� 	

D
kþ1ð Þ
2  D

kð Þ
2 � X kþ1ð Þ �V

kþ1ð Þ
2

� 	

D
kþ1ð Þ
3  D

kð Þ
3 � X kþ1ð Þ �V

kþ1ð Þ
3

� 	

D
kþ1ð Þ
4  D

kð Þ
4 � V

kþ1ð Þ
3 B�V

kþ1ð Þ
4

� 	

Step 10. Until stopping criterion is satisfied.

In step 4 of minimizing the augmented Lagrangian with respect to X, the solution is:

X STSþ 2I
� ��1

ST V1 þD1ð Þ þV2 þD2 þV3 þD3

� �

(19)

Similarly, the solution of V1 minimization step 5 is:

V1  
1

1þ ρ
Yþ ρ SX�D1ð Þ
� �

(20)

To compute V2 in step 6, the solution is the well-known soft threshold [17]:

v2  max soft x� d2;
μ

ρ


 �

; 0


 �

(21)

where v2, x,d2 is the row of V2,X,D2 , respectively.

The solution of V3 minimization step 7 is:

V3  X�D3 þ V4 þD4ð ÞBT
� �

Iþ BBT
� ��1

(22)

The solution of V4 minimization step 8 is:

v4  soft f� d4;
λ

ρ


 �

(23)

where v4, f,d4 is the row of V4, F ¼ V3 � B,D4 , respectively.

5. Experiments

In this section, we illustrate the experimental results via a synthetic hyperspectral data set

(denoted by Data 1) and a real hyperspectral data set (denoted by Data 2) with various ways of

graph construction.

5.1. Experiments with simulated data sets

In this part, the synthetic data consists of 75� 75 pixels and is generated by 9 endmembers. The

endmembers are randomly selected from the spectral library advanced spaceborne thermal
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emission and reflection radiometer (ASTER). Each signature of endmembers has reflectance

values measured over 420 spectral bands. The pure regions and mixed regions involved between

two and five endmembers, spatially distributed in the form of square regions. The background is

a mixture of the five endmembers with the abundance values 0; 0; 0; 0; 0:1149; 0:0741; 0:2003;½

0:2055; 0:4051�.

The quality of unmixing results for the simulated data can be measured by comparing the

estimated and actual abundances using the root mean square error (RMSE),

15 dB 20 dB 30 dB

Four-neighbor graph 0.0246

μ = 0.005,λ = 0.05

0.0184

μ = 0.005,λ = 0.05

0.0051

μ = 5 � 10^(�4),λ = 0.01

Spectral-spatial combined graph 0.0085

k = 25;

μ = 5 � 10^(�4),λ = 0.01

0.0052

k = 25

μ = 0.005,λ = 0.01

0.0021

k = 25

μ = 5 � 10^(�4),λ = 0.005

Threshold-compared graph 0.0025

threshold = 9

μ = 5 � 10^(�4),λ = 0.1

0.0015

threshold = 3

μ = 5 � 10^(�4),λ = 0.5

0.0009

threshold = 0.25

μ = 5 � 10^(�4),λ = 0.1

Table 1. RMSE evaluating performances with different values of SNR, with three constructed graphs and optimal

regularized parameters. The values of threshold and k are also shown.

Figure 4. From top to bottom: The abundance maps of first, fifth, sixth, and eighth . From left to right: Real abundance

maps, estimated abundance maps with four-neighbor graph, spectral-spatial graph and threshold-compared graph,

respectively.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nR

Xn

i¼1

xi � bxik k
2

s

(24)

where xi and bxi are the actual and estimated abundance vectors of the ith pixel, n is the number

of pixels, and R is the number of endmembers.

We define the graph based on the simulated data using three methods: the four-neighbor

graph, the threshold-compared graph and the spectral-spatial graph respectively.

In the experiment, the threshold-compared undirected graph is constructed as follows:

Aij ¼
1 if yi � yj

���
���
2

2
< threshold

0 otherwise

8
<

: (25)

Figure 5. From top to bottom: The abundance maps of first and fifth. From left to right: FCLS, SUnSAL-TV, and the

proposed algorithm with the threshold-compared graph.
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where all pairs of spectral distance are compared with a user-defined threshold. Meanwhile,

the spectral-spatial graph is constructed by considering four neighbors of spatial location and

k-nearest neighbors of spectral distance.

From this table, we can see that the performance of the proposed algorithm with a threshold-

compared graph is better than the others. Although the second graph in Table 1 combines the

spectral and spatial information, using spatial relation is not always a good way to connect pixels

because it is possible that two adjacent pixels may have significantly different spectral features.

Figure 4 shows the true abundance maps and the abundances estimated by the proposed algo-

rithm associated with the three constructed graphs. We observe that the second row of the square

regions is better conserved with the proposed algorithm using the threshold-compared graph.

5.2. Experiments with AVIRIS data

We also tested algorithms with a real hyperspectral image. The image is captured on the Cuprite

mining district by AVIRIS. A sub-image of 250� 191 pixels was chosen, and it contains 188

spectral bands. The number of endmembers was estimated and set to 12 [26]. VCA algorithm

was then used to extract the endmembers. Here, we compare the FCLS [9], SUnSAL-TV, and the

proposed algorithm with a threshold-compared graph. Figure 5 shows the first and fifth abun-

dance maps of three algorithms respectively. We can see that the proposed algorithm highlights

localized targets without oversmoothing the image like in SUnSAL-TV and with less impurity

than in FCLS.

6. Conclusion

In this chapter, we propose to use graph as a mathematical tool to relate pixels in hyperspectral

data. We the present a variety of methods of constructing a graph according to spatial infor-

mation and spectral information embedded in an image. A sparse unmixing problem is then

formulated with the graph regularization to enhance the estimation performance. An ADMM-

based algorithm is then presented to solve the formulated problem. In the experiments, we

compare the unmixing performance of the presented unmixing algorithm with different

graphs, using a synthetic hyperspectral data and a real data. Future works include evaluating

the unmixing performance with weighted graphs.
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