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Abstract

Hyperspectral imaging has become increasingly popular in applications such as agricul-
ture, food, and environment. Rich spectral information of hyperspectral images leads to
new possibilities and new challenges in data processing. In this chapter, we consider the
hyperspectral classification problems in consideration of sequential data collection, which
is a frequent setting in industrial pushboom imaging systems. We present related tech-
niques including data normalization, dimension reduction, classification, and spatial
information integration and the way to accommodate these techniques to the context of
sequential data collecting and processing. The propose scheme is validated with real data
collected in our laboratory. The methodology of result assessment is also presented.

Keywords: hyperspectral sorting, sequential hyperspectral data processing,
spatial-spectral information, hyperspectral classification

1. Introduction

Hyperspectral imaging is a continuously growing area and has received considerable attention

in the last decade. Hyperspectral data provide a wide spectral range, coupled with a high-

spectral resolution. These characteristics are suitable for detection and classification of surfaces

and chemical elements in the observed images. Rich information in spectral dimension pro-

vides solutions to many problems that cannot be solved by traditional RGB imaging or

multispectral imaging.

Applications include land use analysis, pollution monitoring, wide-area reconnaissance, and

field surveillance, to cite a few. Typical cases related to food quality, agriculture, and environ-

ment include as follows:

1. Food safety plays an important role in our daily life. We often use a combination of

appearance, hand-feel, and smell of the product to make a judgment of the quality of fruits

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



or vegetables. But it is not enough to judge if there are abnormalities, deformations, or

even visible defects in the fruit or vegetable. Awareness about food safety has exemplified

the requirement for a rapid and accurate hyperspectral detection system [1].

2. Precision agriculture is a farming management concept based on observing, measuring,

and inter and intrafield variability in crops. Precision agriculture using hyperspectral

remote sensing is acquired and processed to derive maps of crop biophysical parameters,

to measure the amount of plant cover, and to distinguish between crops and weeds [2].

3. Due to the pressures of over consumption, population, and technology, the biophysical

environment is being degraded, sometimes permanently. Many of the earth’s resources are

on the verge of exhaustion because they are influenced by human impacts across many

countries [3]. Many attempts are made to prevent damage or manage the impacts of

human activity on natural resources. Hyperspectral classification used in resource recov-

ery can make it rapid and efficient.

One of the most important tasks of hyperspectral image processing is image classification. Rich

spectral information of hyperspectral image provides the possibility to classify materials that

are difficult to be distinguished by other imagery techniques. In the past decades, different

kinds of hyperspectral classification methods have been proposed [4–9]. However, the existed

methods may not be suitable for a real-time material sorting system. Pushboom imaging

systems are frequently used in industry sorting, such a system collects columns of an image

one after another in a sequential manner (see Figure 1). It is thus necessary to design a

framework for online classification tasks and accommodate convectional algorithms to the

sequential processing setting.

In this chapter, we present a scheme of sequential classification for hyperspectral sorting

systems. This scheme can be used in various fields, such as measuring food quality and

resource recovery. We present the main techniques in this sorting and processing, including

data normalization, dimension reduction, classification, and spatial information integration

and the way to accommodate these techniques to the context of sequential data collecting and

processing.

The rest of this chapter is organized as follows. In Section 2, we propose the main steps of

sequential hyperspectral classification processing system. In Section 3, detailed methods are

Figure 1. Sequential hyperspectral data collecting and processing by a pushboom system. Hyperspectral camera captures

data xk at time instant k, which is one of the sequential columns of the entire image, yk is the result after processing

(classification label in this case).
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presented for sequential hyperspectral image processing and sorting. Experiment results are

then discussed in Section 4. Section 5 concludes the chapter.

2. System overview

Before proceeding to elaborate the proposed sequential hyperspectral image classification

method, we first present the notation and the data model used in this work. We consider that

the hyperspectral image under study has h pixels in column and w pixels in row, where h is a

fixed size that is determined by the spatial resolution of the camera, and w actually increases

toward infinity with the moving of the pushboom system. Each pixel consists of a reflectance

vector consisting of p contiguous spectral bands. Then, let

• N ¼ h� w be the total number of pixels.

• X ¼ X1;X2;X3;⋯;Xp

� �T
be the p�Nð Þ hyperspectral images.

• Xk i; jð Þ represents a pixel, where the subscript k denotes the index of the spectral band, i

and j represent the location of pixel in the spatial domain.

The data collecting and processing of a real-time hyperspectral sorting system consist of the

following major steps.

1. Sequential image acquisition.

2. Data preprocessing.

3. Material classification.

The hyperspectral data used in this work set are collected by the system of GaiaField in our

laboratory. The parameters of the used system are provided in Table 1. Our online processing

is based on windowed columns. After collecting each column, we use this column with several

previous ones to form a window and perform data processing steps within this window.

Black-white normalization is used for basic data normalization. Techniques of PCA and

hyperspectral decorrelation of fuzzy sets are used for dimension reduction [10]. Typical tech-

niques such as GML and SVM are presented for material classification. Considering the

positive effect of spatial information on processing results [11], we also propose to integrate

Equipment type GaiaField and GaiaSorter

Moving speed of loading platform 4.1 cm/s

Spectral resolution 128

Spatial resolution 650� 348

Distance between lens and samples 24 cm

Exposure time 3 ms

Table 1. Equipment parameters.

Sequential Classification of Hyperspectral Images
http://dx.doi.org/10.5772/intechopen.73160

103



spatial dimension and spectral dimension to achieve an enhanced classification accuracy.

Finally, classification accuracy is characterized by metrics such as confusion matrix and κ

coefficient. Details of the used techniques and results will be provided later.

3. Processing methods

3.1. Data preprocessing

Data preprocessing steps include basic data normalization and spectral decorrelation. They are

performed one after another as described later.

3.1.1. Basic data normalization

An important preprocessing is the so-called black-white calibration. This calibration is carried

out by recording an image for black and another for white, as described below, to remove the

effect of dark current of the camera sensor and avoid the uneven light intensity of each band.

At an offline phase, the black image (B) is acquired by turning off the light source and covering

the camera lens with its cap. The white image (W) is acquired by adopting a standard white

ceramic tile under the same conditions as the raw image. Then, image correction is performed

by [12],

I ¼
I0 � B

W � B
(1)

where I is the hyperspectral image after normalization, I0 is the original hyperspectral image

that is captured in our laboratory, B is the black reference image, and W is the white reference

image.

3.1.2. Data dimension reduction

The high-spectral resolution of hyperspectral data enables us to classify materials that are

undistinguishable with conventional methods. However, a large number of spectral channels

result in difficulties in processing in terms of classifier training (Hughes phenomenon) and

computational burdens. Data dimension reduction can be performed due to the above facts

and existence of information redundancies across bands.

3.1.2.1. PCA

PCA is one of the most popular methods for data dimension reduction. PCA computes a linear

transformation for high-dimensional input vectors, and this transformation maps the data into

a low-dimensional orthogonal subspace. For simplicity, we assume that the data samples have

zero mean. Otherwise, we can centralize the data by subtracting the mean
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Y ¼ X� E Xð Þ (2)

The principle analysis is based on the eigenstructure of the data. We therefore calculate the

covariance matrix of Y and perform the eigendecomposition on this matrix. The ith eigenvector

of matrix Y is denoted by ai with associated eigenvalue denoted by λi.

To reduce the dimension of data, we select an appropriate number of eigenvectors ai
corresponding to the value of eigenvalues λi from large to small, to form the representation

coefficient matrix A [13].

Z ¼ ATX (3)

where Z is the hyperspectral image data after decorrelation.

3.1.2.2. Fuzzy sets

Using fuzzy sets to decorrelate the hyperspectral data is based on a priori knowledge that the

adjacent wavelengths of the spectrum are more correlated than the distant pairs, as the spectral

information varies smoothly and successively. We consider sampling spectral characteristics by

a group of adjacent spectral bands, which can be obtained by dividing the spectra in separate

groups to attain the desired spectral selectivity. We propose separating the hyperspectral data

into a number of M fuzzy groups where each group covers a range of wavelengths [14]. The

contribution of each wavelength is modeled by a membership function Mf i λð Þ. We use a

triangular function as the membership function, shown in Figure 2.

Mf i ¼
1�

λ� λi

D
, λi �D < λ < λi þD

0 otherwise

8

<

:

(4)

where λi is the central wavelength value of the fuzzy set i, and D is the distance of central

wavelengths of two adjacent fuzzy sets.

The spectral wavelengths of all points have different membership degrees in different fuzzy

sets. Each wavelength has different degree of membership in two adjacent fuzzy sets, while the

membership degree in the remaining fuzzy sets is 0 (Figure 3).

Figure 2. Triangular function.
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The energy of each fuzzy set is calculated by weighting the intensity of each spectrum element

using membership functions associated with each fuzzy set, i.e.,

Xi ¼

ð
λ¼K

λ¼0

Mf i � L λð Þdλ (5)

where Xi is the energy of each fuzzy set, and L λð Þ is the intensity of each spectrum element.

Based on the energy values of each fuzzy set, we can obtain useful information about the

spectral characteristics. In this way, each hyperspectral image pixel can be defined by a vector

containing the energy values of the M fuzzy sets as

X ¼ X1;X2;⋯;XMf gT (6)

3.2. Material classification

In this section, we present the algorithm to classifier/sort the captured data using features (data

of reduced dimension) extracted by PCA or fuzzy set method. We first review these two

popular classification methods in a general manner. Then we introduce how to incorporate

spatial information into the classification. Finally, sequential processing with window-based

method will be discussed.

3.2.1. Gaussian maximum likelihood classification

Spectra of distinct material of hyperspectral data form data clusters in a space with the

dimension of the feature, and we assume that the data features of each material approximately

follow a multivariate normal distribution. To be specific, data features of a material i and the p

dimension probability density function in form of:

Figure 3. Triangular function weighted process.
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p ðX ωij Þ ¼
1

2π

� �

p
2

Σij j�
1
2exp �

1

2
X� μi

� �T
Σ
�1
i X� μi

� �

� 	

(7)

where μ and Σ are the mean vector and the covariance matrix, respectively. i denotes the label

of class [15]. Each pixel in the hyperspectral image is labeled as the class that achieves maxi-

mum probability.

3.2.2. Support vector machine

SVM is one of the most effectively and widely used methods in statistical learning. SVM aims

to find the best tradeoff of model complexity and learning ability with limited sample infor-

mation. SVM can effectively solve the Hughes phenomenon caused by insufficient samples in

hyperspectral classification.

The goal of training algorithm is to design an optimal hyperplane. The training principle of

SVM is to find a linear optimal separating hyperplane [16]. Let x be the input pixel vectors

satisfying

g xð Þ ¼ ω
Txþ ω0 ¼ 0 (8)

This method constructs a hyperplane that maximizes the margins between classes, specified by

a (usually small) subset of the data that define the position of the separator. These points are

referred to as the support vectors [17]. The decision function is as follow:

f xð Þ ¼ sgn ω
Txþ b


 �

¼ sgn
X

l

i¼1

αiyixi
Txþ b

 !

(9)

where αi is the ith Lagrange coefficient, yi is the corresponding classification label, xi is the ith

support vector, x is the input pixel vector, N is the number of support vector, and b is the

decision offset coefficient. For two-class hyperspectral classification, f xð Þ takes value of either 1

or 0, suggesting the class that the current pixel belongs. For multiclass classification, we can

use one versus one, one versus rest, hierarchical support vector machine or other strategy to

obtain the multiclass label.

Sometimes, data cannot be separated by a linear classifier. Therefore, kernel methods are used

to map data from the original input space to a higher dimension space. Thanks to the kernel

trick, we only need to know the form of the inner product in that space instead of using the

explicit map [16]. Popular kernel functions include as follows:

Linear kernel:

K x; xj
� �

¼ x � xj: (10)

Polynomial kernel:
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K x; xið Þ ¼ xTxi
� �

þ 1

 �q

, q > 0 (11)

where q is the polynomial order.

Radial basis function kernel:

K x; xið Þ ¼ exp �
� x� xik k2

σ
2

 !

(12)

where σ2 is kernel bandwidth.

Sigmoid kernel:

K x; xið Þ ¼ tan h v xTxi
� �

þ c

 �

(13)

for appropriate values of v and c, so that Mercer’s conditions are satisfied [16].

3.2.3. Incorporating spatial information

Conventionally, hyperspectral data classification algorithms are proposed based on spectro-

scopic viewpoint, and they ignore the spatial information that embeds in neighboring pixels

[18]. Integration of spatial and spectral information may improve the processing performance.

We propose to combine spatial dimension and spectral dimension information to improve the

classification accuracy. The proposed method investigates the spatial information based on the

connection component labeling in the following. We generate the mean image by averaging

data after dimension reduction over spectra bands. A component labeling algorithms then

applied to the binarized mean image. In our system, if an object is marked by connected

component labeling and over 60% pixels are labeled as a class, we consider that all pixels

within this connected region actually belong to the associated material. The classification

accuracy will be improved using this strategy.

3.2.4. Sequential processing

We use a sliding window to assemble the acquired hyperspectral data, whose columns are

collected sequentially one after another. The use of a sliding window facilitates to incorporate

the spatial information in processing. The width of the sliding window should be determined

by considering the data acquisition rate, data processing speed, and spatial correlation of the

observed scenario. In our system, the width of the sliding window (L) is set to 15. Our

hyperspectral images are captured by a pushboom system where columns of images are

collected sequentially one after another. After collecting each column, we use this column with

several previous ones to form a sliding window and perform data processing steps within this

window. Let L be the width of the sliding window, and we set L ¼ 15 in our experimental

(Figure 4).
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4. Experimental results

We collect the hyperspectral data with our pushboom system of Gaia. The images are acquired

in the 400–1000 nm wavelength range, with a spectral resolution of 7 nm, for a total of 128

wavelengths (p ¼ 128). Their image resolutions h and w are 650 and 348 (650� 348), respec-

tively. The hyperspectral data include four kinds of fruits: tomato, jujube, lemon, and orange.

In this study, we use a sliding window of size 15 for online processing of data. Twenty-three

sequential hyperspectral images are extracted for classification. The datasets captured are

divided into training and testing sets, where 300 pixels of each material are used for training

and 30,603 pixels are used for testing.

After data preprocessing, we select 300 pixels of each material from the training set as sample

points to form a hyperspectral image. The pixels of the image are converted into row vectors

by row or column to form a two-dimensional matrix, which is used for data reduction. The

operation of the test set is the same as that of the training set.

After the PCA transformation, the eigenvalue distribution is shown in Figure 5. This scree plot

shows that the first eight factors explain most of the variability. The remaining factors explain a

very small proportion of the variability and are likely unimportant. We select the principal

component, which takes 99% of the eigenvalues, as the data after dimensionality reduction.

For fuzzy-set data reduction, we fold 128 bands with a triangular window of length 32, and

then we sample the data using at each 16 points, so that the data dimension also reduces to 8.

We use eight-connected component labeling method to remove the background of data after

dimension reduction.

We then study the classification results of GML principle and SVM.We classify the data obtained

from dimension reduction and background material removal (see Figures 6 and 7). The result of

classification with spatial information (connected region labeling) is shown in Figure 8.

Figure 4. Sliding window.
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4.1. Performance evaluation of results

4.1.1. Confusion matrix

A confusion matrix is a table that is often used to describe the performance of a classifier on a

set of test data for which the true values are known. It compares the classification result with

the reference image, and we need to determine the labels of each point in the reference image

in the classified image. The confusion matrixes of our experiment are shown in Table 2.

Figure 5. Eigenvalue distribution.

Figure 6. (a) GML classification with PCA and (b) GML classification with fuzzy sets.
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A ¼

m11 m12 ⋯ m1k

m21 m22 ⋯ m2k

⋮ ⋮ ⋮

mk1 mk2 ⋯ mkk

2

6

6

6

4

3

7

7

7

5

(14)

where mij shows pixels should belong to class i, which is wrongly assigned to class j, and k is

the class number of the classification results (Figures 9 and 10).

Figure 7. (a) SVM classification with PCA and (b) SVM classification with fuzzy sets.

Figure 8. Classification with spatial information (connected region labeling) achieves almost 100% accuracy.
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4.1.2. κ coefficient

κ can reflect the classification error of the whole image and solve the problem that the

classification accuracy depends too much on the number of classes and the number of samples.

κ is performed by adopting the following equation:

κ ¼

N
Pk

i¼0

mi, i �
Pk

i¼0

miþ �mþi

N2
�
Pk

i¼0

miþ �mþi

(15)

Class Actual class

Chinese date Lemon Orange Tomato Row sum

(1) GML classification with PCA

Predict class Chinese date 1745 0 0 0 1745

Lemon 4 9618 0 0 9622

Orange 0 183 11,654 0 11,837

Tomato 26 14 0 7359 7399

Column sum 1775 9815 11,654 7359 30,603

(2) GML classification with fuzzy sets

Predict class Chinese date 1745 0 0 0 1745

Lemon 3 9619 0 0 9622

Orange 258 2 11,577 0 11,837

Tomato 36 7 0 7356 7399

Column sum 2042 9628 11,577 7356 30,603

(3) SVM classification with PCA

Predict class Chinese date 1744 1 0 0 1745

Lemon 6 9616 0 0 9622

Orange 466 1089 10,282 0 11,837

Tomato 29 0 0 7370 7399

Column sum 2245 10,706 10,282 7370 30,603

(4) SVM classification with fuzzy sets

Predict class Chinese date 1738 0 0 7 1745

Lemon 5 9617 0 0 9622

Orange 1489 2826 7522 0 11,837

Tomato 28 1144 0 6227 7399

Column sum 3260 13,587 7522 6234 30,603

Table 2. Confusion matrix of classification results: (1) GML classification with PCA, (2) GML classification with fuzzy

sets, (3) SVM classification with PCA, and (4) SVM classification with fuzzy sets.
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where miþ is the sum of the line i in the confusion matrix, and mþi is the sum of the column i in

the confusion matrix.

κ of GML based on PCA dimensionality reduction is 98.93%, and κ of SVM is 92.55%. κ of

GML based on fuzzy-set reduction technique is 98.56%, and κ of SVM is 74.69%. From the

results of κ, we can see that the classification based on PCA is better than fuzzy sets, GML is

better than SVM, and GML based on PCA is the best method for sequential classification of

hyperspectral images.

4.1.3. Other metrics

Other metrics include classification accuracy, product’s accuracy (PA), and omission errors (OEs).

Figure 9. (a) Confusion matrix of GML classification with PCA and (b) confusion matrix of GML classification with fuzzy

sets.

Figure 10. (a) Confusion matrix of SVM classification with fuzzy sets and (b) confusion matrix of SVM classification with

fuzzy sets.

Sequential Classification of Hyperspectral Images
http://dx.doi.org/10.5772/intechopen.73160

113



Classification accuracy indicates the correct rate of the classifier, as illustrated in Eq. (16).

Ai ¼

Pk

i¼0

mi, i

Pk

i¼0

mþi

(16)

PA is used to indicate the rate of the classification result that is correctly classified, as illus-

trated in Eq. (17). User’s accuracy is used to indicate the rate of the pixels that are correctly

divided into class I to the total number of pixels that are divided into I classes, as shown in

Eq. (18).

PAi ¼
mi, i

mþi

(17)

Other metrics Chinese date Lemon Orange Tomato

(1) GML classification with PCA

PAi 0.9831 0.9799 1 1

OEi 0.0169 0.0201 0 0

UAi 1 0.9996 0.9845 0.9946

CEi 0 0.0004 0.0155 0.054

(2) GML classification with fuzzy sets

PAi 0.8546 0.9991 1 1

OEi 0.1454 0.0009 0 0

UAi 1 0.9997 0.9780 0.9941

CEi 0 0.0003 0.0220 0.0059

(3) SVM classification with PCA

PAi 0.7768 0.8982 1 1

OEi 0.2232 0.1018 0 0

UAi 1 0.9994 0.8686 0.9961

CEi 0 0.0006 0.1314 0.0039

(4) SVM classification with fuzzy sets

PAi 0.5331 0.7078 1 0.9989

OEi 0.4669 0.2922 0 0.0011

UAi 0.9960 0.9995 0.6355 0.8416

CEi 0.0040 0.0005 0.3645 0.1584

Table 3. Other metrics: (1) GML classification with PCA, (2) GML classification with fuzzy sets, (3) SVM classification

with PCA, and (4) SVM classification with fuzzy sets.
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UAi ¼
mi, i

miþ

(18)

OEs represent the number of pixels in class I that is incorrectly assigned to other class, as

shown in Eq. (19). Commission errors (CEs) indicate the percentage of other class pixels that

are incorrectly divided into class I, as illustrated in Eq. (20).

OEi ¼ 1�
mi, i

mþi

(19)

CEi ¼ 1�
mi, i

miþ

(20)

Classification accuracy of GML based on PCA dimensionality reduction is 99.26%, and classi-

fication accuracy of SVM is 94.80%. Classification accuracy of GML based on fuzzy-set reduc-

tion technique is 99.00%, and classification accuracy of SVM is 82.03%. From this evaluation

and Table 3, GML based on PCA dimensionality reduction is the proposed solution for

sequential classification of hyperspectral images.

5. Conclusion

The major objective of this chapter is to build a sequential hyperspectral classification method

for an industrial material sorting system. We propose hyperspectral images captured by a

pushboom system where columns of images are collected sequentially one after another to

get sequential hyperspectral images. PCA and fuzzy sets are used for data decorrelation. We

study the GML and SVM classification with the data obtained from dimension reduction and

background material removal and carry out the performance analysis. The results show that

the accuracy rate of GML based on PCA dimensionality reduction is 99.26%, and the accuracy

rate of SVM is 94.80%. The accuracy of GML based on fuzzy-set reduction technique is 99.00%,

and the accuracy rate of SVM is 82.03%. After combing the spatial and spectral information,

the accuracy of classification of hyperspectral images can be 100%.

The designed framework shows several advantages in terms of processing speed, efficiency,

and accuracy. It may play an important role in industrial material sorting for agricultural

products, food, and industrial waste sorting.
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