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Abstract

A hierarchical progressive optimization approach is proposed for multidisciplinary opti-
mal design by integrating with generalized parametric modeling and sensitivity analysis.
The framework includes the following: (1) to set up a generalized parametric model for
the geometric parameters of flight vehicles with different levels, (2) to reduce the number
of design parameters using sensitivity analysis method and (3) to use the gradual optimi-
zation design method to solve the problem of integrated aerodynamic-stealth optimiza-
tion design. The results from the application on the configuration optimization of an
aircraft demonstrate that the hierarchical progressive optimization increases the fitness of
the optimization design by 51.1% and improves the conceptual design efficiency.

Keywords: aircraft design, hierarchical progressive optimization, generalized parameters,
sensitivity analysis, multidisciplinary optimization

1. Introduction

Stealth is a significant development trend of weaponry in the future. Because the requirements

of aerodynamics/stealth conceptual design are often contradictory, in order to obtain aircraft

configuration with good aerodynamic/stealth performance, it is necessary to conduct the

studies on multidisciplinary optimization of aerodynamics and stealth.

With the development of computing technology, the integration of high fidelity numerical

simulation and multidisciplinary optimization (MDO) has become common for the conceptual
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design of aircraft configuration [1]. However, the researches mostly rely on the empirical

approach to realize the multidisciplinary concept design.

In view of practical engineering application, there is an inevitable trend to integrate CAD

modeling into multidisciplinary optimization design framework. This parametric modeling nec-

essarily involves more parameters for the optimization of aerodynamics and stealth than those

only for aerodynamics design. The resultant extra-optimization design due to the additional

parameters would reduce the optimization efficiency. Sensitivity analysis is, therefore, necessary

to classify the generalized parameters. Moreover, in comparison to the conventional optimization

method, MDO requires available treatment to the coupling of aerodynamics and stealth.

The present study aims to conduct rapid conceptual design for aerodynamics/stealth optimi-

zation of a four-tailed aircraft configuration. Firstly, parametric modeling method is proposed

to describe aerodynamic/stealth multidisciplinary characteristics. Secondly, hierarchical pro-

gressive optimization process integrated with sensitivity analysis is proposed to achieve rapid

conceptual design. Finally, the methods are applied to rapid optimization for conceptual

design of aerodynamic/stealth of an aircraft. Therefore, this hierarchical progressive optimiza-

tion approach integrated generalized parametric modeling and sensitivity analysis is expected

to simplify the optimization and improve the design efficiency, which has the following

advantages:

(1) Combined with the progressive process of CAD modeling, it can extract the parameters to

describe both aerodynamics and stealth and then provide generalized parameters for hierar-

chical progressive design.

(2) By classifying the generalized parameters with sensitivity analysis, it can not only reduce

the complexity and workload of the optimization but also guide the optimization based on the

parametric sensitivity information.

2. Hierarchical progressive optimization

The main idea of MDO is to integrate the knowledge of different disciplines in complex design

systems, to fully consider the interaction and coupling between the disciplines, to organize the

design of the whole system with effective design and optimization strategies, to reduce the

design cycle by realizing modular parallel design of different disciplines, to exploit design

potential by considering interdisciplinary coupling and to select and evaluate the optimization

design by systematic integrated analysis.

As shown in Figure 1, traditional optimization design is the case, where N = 1. This approach

features simple process and relatively low optimization efficiency. In order to improve the

efficiency of MDO design, hierarchical progressive optimization (shown in Figure 1) is pro-

posed for engineering practice.

The hierarchical progressive optimization is capable of dividing the enormous design space

into several subspaces; each dramatically reduces the number of optimization parameters and
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constraint conditions, which significantly reduce the complexity of optimization. The optimal

solution of the design can be obtained by iteration among the subspace. In order to exert this

design superiority, it is crucial to construct a suitable optimization design system to adapt to

the hierarchical progressive optimization design framework.

2.1. Differential evolution (DE) method

A differential evolution (DE) algorithm is a stochastic heuristic search algorithm to simulate

the biological population evolution in nature of “survival of the fittest” principle. It was

proposed by Storn and Price [2] to improve the genetic algorithm. Due to its simplicity, ease

of use, robustness and powerful global search capability, differential evolution has been suc-

cessfully applied in many fields.

The basic idea is to generate a random initial population in the beginning, to sum up with

vector weighted of any two and third individuals according to specific rules to generate new

individuals. By comparing this new individual fitness and a predetermined individual, the

better individual will be survived. Through the continuous iteration of retaining the excellent

individuals and eliminating the inferior individuals, the search process is directed to approx-

imate the optimal solution.

The differential evolution algorithm has the characteristics of memorizing optimal solution of

individual and sharing information within the population, and its essence is a greedy genetic

algorithm with real coding based on the idea of preserving optimality. Compared with the

traditional optimization method, it has the following main features:

Figure 1. The schematic diagram of hierarchical progressive optimization.
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1. It starts to search from a group, i.e., multiple points rather than a point, which can avoid

the defects of retention at local optimum and thus has high probability to find the global

optimal solutions.

2. The evolutionary rule is based on adaptive information and without any other additional

auxiliary information (such as requiring the function to be derivable or continuous), which

greatly extends its application range and inherits the advantages of genetic algorithm.

3. It has inherent parallelism, which makes it very suitable for massively parallel distributed

processing and therefore reducing the time cost.

4. Using probability transfer rules to search, this is the improvement of the genetic algorithm,

to ensure that it quickly finds the optimal solutions.

Differential evolution algorithm is an evolutionary algorithm based on real coding, which is

similar to other evolutionary algorithms in structure. It consists of three basic operations:

mutation, crossover and selection.

Let suppose that Xi tð Þ is the ith individual in the population t, then

Xt
i ¼ Xt

i1;X
t
i2;⋯;Xt

in

� �

, i ¼ 1, 2,⋯,M; t ¼ 1, 2,⋯, tmax (1)

where n is the chromosome number of the individual (i.e., the number of variables in the

vector), M is the population number and tmax is the maximum number of evolution.

The detailed description of the basic strategies [2] is as follows:

1. Initial population:

In an n-dimensional space, M individuals that satisfy constraint conditions are randomly

generated:

X0
ij ¼ randij ð0, 1Þ XU

ij � XL
ij

� �

þ XL
ij, i ¼ 1, 2,…,M; j ¼ 1, 2,…, n (2)

where XU
j and XL

j are the upper and lower bounds of j chromosome, respectively;

randij 0; 1ð Þ is a random decimal between [0, 1].

2. Mutation:

The most basic variant of differential evolution algorithm is the parent difference vector;

each vector pair includes two different individuals in the parent (generation t) population.

The difference vector is defined as

Dr1,2 ¼ Xt
r1 � Xt

r2 (3)

r1 and r2 represent the index numbers of two different individuals in a population. The

differential vectors are added to another randomly selected vector to generate the varia-

tion vectors. For each objective vector Xt
i, mutation manipulation is used as

vtþ1
i ¼ Xt

r3 þ F∗ Xt
r1 � Xt

r2

� �

(4)
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r1, r2, r3∈ 1; 2;…;NPf g is an integer different from each other, and r1, r2, r3 is different

from the current objective vector index i, so the number of population NP ≥ 4. F is a scaling

factor with a range of [0, 2] to control the differential vector scaling.

3. Crossover:

The crossover operation is used to crossover the objective vector individuals Xt
i in the

population with the mutation vector νtþ1
i to generate the test individuals utþ1

i . In order to

ensure the evolution of the individuals, at least one of νtþ1
i is contributed to utþ1

i by random

selection, while for others, a crossover probability factor CR can be used to decide which

one of νtþ1
i or Xt

i is contributed to utþ1
i . The equation of crossover operation is

ð5Þ

where randlij ∈ 0; 1½ � is the random number in uniform distribution, j represents the jth

variable (gene), and CR is the crossover probability constant with the range of [0, 1], and

the length is predetermined. rand ið Þ∈ 1; 2;…; n½ � is the index of dimension variables for

random selection to ensure that at least one-dimension variable is contributed by the

variation vector. Otherwise, the test vector may be the same as the objective vector and

cannot generate new individuals.

4. Selection:

DE uses the greedy search strategy to compete the test individuals utþ1
i generated by

mutation and crossover operations with Xt
i , and the fitness utþ1

i is chosen as the offspring

only when it is better; otherwise, Xt
i will be directly used as the offspring. For example, the

equation of operation for minimization optimization is chosen as

Xtþ1
i ¼

utþ1
i , f utþ1

i

� �

< f Xt
i

� �

Xt
i , f utþ1

i

� �

≥ f Xt
i

� �

(

(6)

Execute the above four operations repeatedly until the maximum number of evolution tmax is

reached.

2.2. Optimization strategy

The mathematical model of the multi-objective optimization problem (MOP) [3] widely used

and accepted in multi-objective optimization is defined as follows:

min y ¼ f xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯; f k xð Þ
� �

s:t: e xð Þ ¼ e1 xð Þ; e2 xð Þ;⋯; em xð Þð Þ ≤ 0

where x ¼ x1; x2;⋯; xnð Þ∈X

y ¼ y1; y2;⋯; yk
� �

∈Y

(7)
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The model consists of n parameters (decision variables), K objective functions and m con-

straints. The objective function and constraints are the functions of decision variables. Among

them, x represents the decision vector, y represents the objective vector, X represents the

decision space formed by the decision vector x, and Y represents the objective space formed

by the objective function y, and the constraint condition determines the feasible range of the

decision vector.

Modern aircraft not only has high aerodynamic performance but also requires good stealth

performance. At present, reducing radar cross section (RCS) is the most important part of

stealth technology. Aircraft design must take into account both the high aerodynamic effi-

ciency and low RCS requirements in the configuration design. However, the requirements of

the two are often contradictory.

Through an auto-adjusting weighted object (AWO) optimization method [3], the multi-

objective optimization problem is transformed into the optimization strategy of the single

objective problem, which can effectively solve the design requirements of such contradictions.

Its advantage is that in the process of optimization, certain adjustments can be done to

improve the objective function for each subject according to the rate of information. It can

avoid the suppression of the further optimization of other objective functions due to the

extremely quick changes of some objective function and therefore obtain an effective solution

with relatively synchronous optimization for all the subject object functions.

AWO is used as follows:

ΔObji ¼
Obji � ReObji

ReObji
�

�

�

�

i ¼ 1; 2…;nð Þ (8)

Globji ¼
X

n

i¼1

CiObji,
X

n

i¼1

Ci ¼ 1 (9)

where ReObji is the objective reference value, Obji is the single subject fitness, Globji is the

comprehensive performance (fitness), and Ci is the weighted coefficient. For any i, if

ΔObji ≤ δ0, then accept the optimal solution and change the objective reference, or if

ReObji ¼ Obji, then give up the optimal solution. δ0 is the control value of objective optimiza-

tion, which generally takes δ0 ≤ 0.1. If the optimal solution is accepted, the weighted coefficient

is adjusted:

Cbetter ¼ Cbetter � δc

Cworse ¼ Cworse þ δc

(10)

where δc is the adjustment step size of the weighted coefficient, which is set as δc = 0.1 � 0.9 L,

and L is the optimized step number. Cbetter is the weighted coefficient to optimize the better

objective, and Cworse is the weighted coefficient to optimize the worse objective.

Most optimization problems contain some constraints, which divide the decision space into

two parts: feasible and infeasible. The task of constrained multi-objective optimization is

transformed into finding the Pareto optimal solution in the feasible region of the decision
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space. The penalty function method [4] is used to deal with the fitness function with the

constrained problem, and the individuals beyond the constraint are discarded.

Penalty function method is the most commonly used method for solving constrained optimi-

zation problems. By calculating the constraint offset of the solution, the objective function is

punished, and the constrained problem is transformed into an unconstrained optimization

problem. Before computing the constraint offset, the constraint function is normalized as

ej xð Þ ≤ 0, j ¼ 1, 2,⋯,M so that the offset of the constraint function j is defined as the form of

the following vector:

wj xð Þ ¼
ej xð Þ
�

�

�

�, if ej xð Þ > 0

0, otherwise

(

(11)

The sum of the offset of the vector x on each constraint function is called the total offset:

Ω xð Þ ¼
X

M

j¼1

wj xð Þ (12)

For the minimization problem, the objective function value of the solution vector x will be

modified as follows:

Fm xð Þ ¼ fm xð Þ þ RmΩ xð Þ, m ¼ 1, 2,⋯, K (13)

where fm xð Þ is the function value of the individual i under the unconstrained condition on the

m objective and Rm is the penalty function coefficient, which is used to balance the differences

caused by the different dimensions of each objective. From the above definition, we can see

that when Ω xð Þ= 0, x is a feasible solution. When x is an infeasible solution, the farther away

from the feasible domain, the greater the value of the objective function, the more penalties.

After obtaining the objective function value after penalty, the unconstrained multi-objective

optimization method can be used to solve the Pareto optimal solution. For example, for

m constraints:

φj xð Þ ≥Cj, j ¼ 1,…, m (14)

Pj ¼
0, φj < Cj

1, φj ≥Cj

(

(15)

The fitness is adjusted to be Yi ¼ Globji
Q

n

i¼1

Pj, where Globji is the global performance (fitness).

3. Generalized parametric modeling

Parameters are both the objects for multidisciplinary design and the manifestation of the

design results. Single disciplinary parametric modeling tends to ignore the requirements of
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multidisciplinary optimization as well as the requirements of other disciplines. However, the

multidisciplinary parametric modeling is expected to not only integrate with various disci-

plines but also meet the requirements of practical optimization. Therefore, aerodynamics/

stealth multidisciplinary optimization urges the construction of a parametric system that can

meet the requirements of both aerodynamics and stealth discipline as well as to adapt to

practical optimization design.

3.1. Generalize parameter

Generalized parameters are proposed to assist the increasingly complicated multidisciplinary

design process of aircraft. They are necessary to reflect the discipline characteristics such as

aerodynamics and stealth more than their appearance of the aspect of configuration. The

whole generalized parametric system is divided into four dimensions, namely, design phase,

component, discipline and design. It is constructed for aerodynamics/stealth optimization by

classifying the design phases based on the progressive features of CAD modeling and analyz-

ing the component characteristics of the major components (fuselage, wing, etc.).

3.2. Parametric modeling

Parametric modeling is the direct source of design parameters in multidisciplinary optimiza-

tion design and the prerequisite of analysis and optimization design. Based on the integrated

consideration of different requirements of aerodynamics and stealth on modeling parameters,

the following modeling parameters of three levels is extracted in accordance with the hierarchy

and progressive of CAD modeling:

(1) Twenty-seven general profile parameters: These parameters are used to describe the main

profile of the fuselage cross section, shape characteristics, as well as installation angle and

dihedral angle of wings and tails. The fuselage parameters include deviation angle of the head

longitudinal line, head length, length of the head transition section, length of the intermediate

section, tail length, the magnification ratio of fuselage cross section, and the magnification ratio

of the tail cross section. The wing parameters include aspect ratio, root chord length, sweepback

angle, taper, installation angle, and dihedral angle. Among them, some parameters of angle are

introduced in view of stealth, as is shown in Figure 2; the height of head cross section is

controlled by the upward deflection angle of head longitudinal line ∠AOE and the downward

Figure 2. Geometric parameters of fuselage sections.
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deflection angle of head longitudinal line ∠BOE and head length L1. The parametric relation is

indicated by Eq. 16:

CDj j ¼ L1j j � tg∠AOEþ tg∠BOEð Þ (16)

(2) Twenty major control parameters of cross sections: As shown in Figure 2, the fuselage is

controlled by four control cross sections along the axis. The major control parameters refer to

the line segment ratios, angles, etc. of the main edges of the control cross sections. As shown in

Figure 3, the position of the edge endpoint F is determined by the line segment ratio between

BF and BC, while that of G is determined by the endpoint F and ∠CFG.

(3) Eighty-four profile modifying parameters of cross sections: Based on the specific edge

positions of the cross sections that have been obtained, the conics are applied to modify the

cross section edges. The conic control endpoints are obtained by distributing the line segment

ratios on each edge; then the conics are constructed between the endpoints to obtain the

specific profile of the cross sections. For example, points ①�⑥ in Figure 3 are controlled by

line segment ratios. By altering the position of control points and shape parameters of the

conics, the cross sections can be expressed as various shapes, such as a circle, polygon and so

on, which can meet the requirements of stealth on cross section shapes as the CAD examples

shown in Figure 4.

Figure 3. Geometric parameters of cross sections.
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In general, the width and height of each cross section can be altered through general profile

parameters. Then, the edge position of the cross sections can be changed by adjusting the

major control parameters of the cross section. Finally, extra padding is done at the head,

fuselage transition section, fuselage and tail through interpolation. This parametric modeling

method features clear with progressive modeling and hierarchical parameter, which is highly

applicable for hierarchical progressive optimization.

3.3. Generalized parameter system

Based on the characteristics of the design phase, components and disciplines, the generalized

parameter system with a total number of 131 including 3-level modeling parameters is listed in

Table 1. In order to adapt to hierarchical progressive optimization, the sensitivity analysis is

applied to classify the design parameters.

Figure 4. Several shapes of body sections.

Design phase Parameters Numbers Components Disciplines

Layout Layout parameters 6 Fuselage and wing Aerodynamics/stealth

Component Profile parameters 27 Fuselage and wing Aerodynamics/stealth

Component Control parameters 20 Fuselage Aerodynamics/stealth

Component Modification parameters 84 Fuselage Stealth

Table 1. Design parameters.
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4. Sensitivity analysis

Sensitivity is the derivative information of system parameters versus design parameters, and it

reflects the variation trend and degree. The sensitivity analysis [5] can determine the affecting

magnitude of system design parameters on the objective function and guide the process of

optimization design. N points in the design range are uniformly distributed, and then the

sensitivity is analyzed by central difference scheme, as shown in Eq. 17:

dF

dX
¼

1

N

X

N

i¼1

F Xi þ ΔXið Þ � F Xi � ΔXið Þ

2ΔXi

þO ΔXið Þ2
� �

�

�

�

�

�

�

�

�

≈

1

N

X

N

i¼1

F Xi þ ΔXið Þ � F Xi � ΔXið Þ

2ΔXi

�

�

�

�

�

�

�

�

(17)

In consistent with the hierarchy features of generalized parameters, the two-round sensitivity

analysis method is proposed in Figure 5. In the first round, the individual sensitivity analysis

for aerodynamics and stealth is first carried out, respectively, by finite difference method for

hierarchical parameters in order to classify the generalized parameters. Then, in the second

round, sensitivity analysis is carried out based on the optimal fitness to obtain three levels of

design parameters. According to the sensitivity analysis results in practical operation, the

criterion for sensitivity analysis of individual disciplinary and optimal fitness is set as the

sensitivity of the parameters is larger than 1. The relatively independent sensitive analysis of

hierarchical parameters can reserve the progressive of parametric modeling, and the resultant

three-level parameters will be more suitable for hierarchical progressive optimization and get

better optimization efficiency.

Figure 5. Hierarchical progressive optimization based on sensitivity analysis.
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5. Analysis and discussion

5.1. Optimization descriptions

The aerodynamic/stealth optimization design is conducted for four-tailed layout aircraft,

which can be described as follows:

1. Calculation conditions: flight height of 5 km, Mach number of 0.7, radar microwave

frequency of 6.0 GHz and threat angle of 0~120�.

2. Constraint conditions: radar cross section (RCS) in the opposite direction no more than

0.01 and the cross section area of fuselage no more than 0.5 m2.

3. Objective function: the maximum lift-to-drag ratio with the weight of 0.5, minimum RCS

in the forward direction with the weight of 0.5 and minimum RCS in side direction with

the weight of 0.5.

4. Original design parameters: 131 modeling parameters.

As shown in Figure 1, the optimization process is started with parametric modeling for several

disciplines and the corresponding computational grid. The two-round sensitivity analysis is

then conducted to classify the hierarchical generalized parameters. The MDO is implemented

by differential evolution method [6] and hierarchical progressive optimization. According to

the preliminary test of multimodal function with the same number of design parameters, the

control parameters are set for differential evolution method as the initial population is double

of the number of design parameters, the number of optimization generations of each stage is

30, the scaling factor is 0.6, and crossover factor is 0.5.

5.2. Optimization results

The sensitivity analysis results are shown in Table 2. After two rounds of sensitivity analysis,

the number of first-level design parameters is reduced by 39.9%, the number of second-level

design parameters is reduced by 30%, the number of third-level design parameters is reduced

by 80.9%, and the number of all design parameters is reduced by 64.4%.

The normalized optimization process is shown in Figure 6. It indicates that the hierarchical

progressive approach with two-round sensitivity analysis has great advantages with better

optimization efficiency according to the variations of fitness versus the evolution generations.

Parameter level Numbers First round Second round Variation

Level I 28 21 17 39.90%

Level II 20 16 14 30%

Level III 84 36 16 80.90%

Table 2. The variations in the number of design parameters.
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Table 3 is the statistical table of optimization adaptive value. As for the initial fitness of 59.818,

the optimization results show that hierarchical progressive optimization with two-round sen-

sitivity analysis increases the adaptive value by 51.1%. The objective function in two-round

sensitivity analysis is shown in Table 4. It can be seen that the lift-to-drag ratio is increased by

38.5%, RCS in the forward direction is reduced by 52.03%, and RCS in side direction is reduced

by 62.8%. Figure 7 shows the aircraft configuration before and after the optimization. The

Figure 6. The variation of optimal fitness versus evolution generations.

Optimization process Optimal fitness Variation

Second round hierarchical optimization 90.385 51.1%

Second round individual optimization 83.41 39.44%

First round hierarchical optimization 79.91 33.59%

First round individual optimization 76.186 27.36%

Table 3. The variation of optimal fitness.

Optimal objects Initial

value

First round

optimization

Second round

optimization

Second round

optimization

Variation

Lift-to-drag ratio 4.21 4.98 5.32 5.83 +38.5%

RCS in forward

direction

0.0123 0.0086 0.0072 0.0059 �52.03%

RCS in side direction 1.6786 1.2658 0.8963 0.6237 �62.8%

Table 4. The variation of optimal objects.
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cross section of fuselage is significantly altered from quasi-quadrangle to quasi-triangle, which

meets the requirements of stealth, while the aspect ratio and area of the wing are both

increased. RCS in the opposite direction is 0.0055, and the fuselage cross section is 0.396 m2.

Figure 8 shows the comparison between RCS before and after optimization. The RCS value is

significantly reduced, which means the stealth performance is better after optimization.

6. Conclusions

The optimization results indicate that hierarchical progressive optimization based on general-

ized parametric modeling and sensitivity analysis demonstrates high optimization efficiency

and excellent optimization results. Within the prerequisite of optimization constraints, the lift-

to-drag ratio is increased by 38.5% and RCS decreases by more than 50%, which achieve the

goal of multidisciplinary optimization design.

Figure 7. The variation of aircraft shape.

Figure 8. The variation of RCS value.
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