
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3

Genome-Based Vaccinology Applied to Bovine
Anaplasmosis

Itzel Amaro-Estrada and
Sergio D. Rodríguez-Camarillo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72637

Abstract

Bovine anaplasmosis is an infectious non-contagious disease transmitted mainly by ticks
or fomites contaminated with Anaplasma marginale. Once cattle have developed the dis-
ease it can be treated with antibiotics or chemotherapy, although with partial success. Still,
there is no effective and global prophylactic method available, mainly because of variabil-
ity and diversity showed by different A. marginale strains distributed worldwide. In this
regard, several proteins have been proposed as immunogens, MSPs, OMPs, Type IV
Secretion System Proteins and some other hypothetical proteins, which have been chosen
either by experimental evidence or more recently by genome-based analysis. So far, the
results suggest that a single molecule will not be enough to trigger a protective immune
response in the host, so it is necessary to identify other proteins or epitopes with adequate
immunological properties, a process in which omics tools have potential. In order to
develop a vaccine against bovine anaplasmosis, it has been proposed by the use of
combinations of molecules, exposure formats and application protocols to provide an
effective control of the disease.
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1. Introduction

Tick-borne diseases are considered a major obstacle and the cause of great economic impact for

livestock production [1]. Control measures currently available for tick-borne diseases include

the use of acaricides for reduction or tick populations, specific chemotherapy, chemoprophy-

laxis, controlled exposure and vaccination. These measures limit losses caused by ticks and the
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diseases they transmit [2]. Globally, the most important rickettsial disease in cattle is bovine

anaplasmosis caused by Anaplasma marginale [3].

Vaccination is the method of choice for preventing infectious diseases. In the case of bovine

anaplasmosis, while there are live vaccines, these pose many risks, including: (i) spread of

other blood-borne pathogens, such as Babesia spp. and virus-like bovine leukemia virus to

mention a few [4]; (ii) standardization of vaccine dose; (iii) maintenance of carrier animals;

(iv) quality control and production; (v) maintenance and transportation of vaccines to the end

user, including the need of a cold chain [5, 6].

Inactivated vaccines based on the use of the extracted bacteria while effective, are restricted

due to: (i) potential contamination with erythrocyte membrane antigens; (ii) wide antigenic

variation between Anaplasma strains [7]; (iii) possible short-term immunity; and (iv) ameliora-

tion of clinical signs while not preventing infection, so the animals remain carriers for the rest

of their lives [8].

Vaccine design is compounded by the large antigenic and genetic diversity found in strains

from a region to another, within the same herd and even within the same animal [9, 10].

Current investigations focus on the search for new alternatives for designing vaccines and

diagnostic assays [11–13]. In this review, besides discussing some fundamental aspects of

anaplasmosis, we focus on the molecular characteristics that make A. marginale capable to

persist in nature including: (i) the mechanisms of evasion of the host’s immune response; (ii)

diversity; (iii) hypervariability of some of its components; or (iv) replication.

2. The causal agent

Anaplasma marginale is a tick-borne pathogen and the causative agent of bovine anaplasmosis

[14]. A. marginale is classified in the Rickettsial order, reorganized into two families such as

Anaplasmataceae and Rickettsiaceae [15]. Anaplasma organisms are obligate intracellular

Gram-negative rickettsia, found exclusively within vacuoles derived from the erythrocyte

membrane, and are membrane-bound within the cytoplasm of the host cell. A. marginale

persist in nature in mammalian and ticks hosts, which serve as reservoirs of infection [16]. In

the bovine, A. marginale infect erythrocytes and endothelial cells [17]. The infection process in

endothelial cell has not been described and it is considered as of no relevance within the

persistence mechanisms for the rickettsia [18]. Ticks transmit rickettsia from the salivary

glands during feeding (Figure 1), and within the erythrocyte, the rickettsia replicates by binary

fission to form 8–12 initial bodies and exit from the erythrocyte does not involve destruction of

the host’s cell [19]. Once out of the host cell, the initial bodies invade new erythrocytes in

endless cycles. Ticks acquires the rickettsia while feeding on carrier hosts. In the tick, the

rickettsia infects midgut cells, where there is a first cycle of replication and from here dense

forms move to other tissues. After several rounds of replication, dense forms travel to the

salivary glands where the rickettsia is transmitted to a new mammalian host [16, 20].

Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment48



Many species of ticks have been implicated in the transmission of A. marginale, although

Dermacentor andersoni is the most studied of all [16]. Recent studies have focused on the role

of ticks Rhipicephalus (Boophilus) microplus as vectors of bovine anaplasmosis, an issue

discussed below [21, 22].

The first A. marginale sequenced genome published [23] present a very complete description of

the known features to that date. Up to now, there are at least 2 full genome sequences

published (St. Maries and Florida), other 2 almost complete sequences, and 10 more partially

annotated sequences (NCBI/Genome). Comparative studies with the available genome

sequences have been carried out with very interesting results as far as the study of hypervar-

iable genes/antigens [24], while other genome/transcriptome analysis have focused on the

transmission phenotype genes involved [25].

In this chapter, we will review the information available, since the publication of the St. Maries

genome to the specific genes that have been studied as vaccine candidates. Vaccination against

bovine Anaplasmosis traditionally relied on attenuated [5, 26] and inactivated organisms [6, 27].

Both of these types of vaccines will, in most cases, induce a degree of immunity, which do not

prevent infection. There are a number of examples of experimental vaccines, but in this review

only those cases where there has been modification of the organism or recombinant antigens are

included as vaccine candidates will be discussed.

2.1. Major surface proteins as vaccine candidates

Over the last 30 years, six neutralization-sensitive membrane-exposed proteins were originally

reported in 1984 [28, 29] and later named Major Surface Proteins [30]. This group of proteins

has been the subject of a great number of studies aimed at developing a vaccine.

Figure 1. Proposed life cycle of A. marginale in bovine. Modified from [20].
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Msp1 is a heterodimer composed by Msp1a (100 kDa) and Msp1b (105 kDa) joined in a non-

covalent manner and are exposed on the surface of A. marginale [31]. Details of the genetics,

structure, and composition of these two peptides have been described elsewhere [24]. Msp1a is

coded by a single gene and its product is composed of a variable number of tandem-repeat

units of 28–32 aa in length at the amino terminus. The carboxyl end is conserved and extends

mostly as an intracellular domain [32]. Msp1b is coded by a multigene family that expresses

several variants during the acute and chronic phases of the infection [33]. Msp1 is an adhesin

toward erythrocytes and tick-gut cells whereas Msp1b only toward bovine erythrocytes

[34, 35]. It is now known that the adhesion function in Msp1a is located in the variable region

which is composed of several short amino acid sequences (repeats). Analysis of Msp1a repeats

from different isolates has shown no association between tick-transmission capabilities and the

type or number of repeats present within this variable region [36]. Repeat sequences though

have been used for defining genotypes associated to other markers such as the pseudogenes

present in Msp2 [37] or distinguishing genotypes in cattle superinfected with two or more

different Anaplasma strains [10, 38, 39].

Bioinformatic analysis carried out with Msp1a amino acid sequence have shown that Msp1a

variable region is rich in highly immunogenic B cell epitopes, yet these sequences are consid-

ered distracters to the immune system of the host, despite the fact specific monoclonal anti-

bodies neutralize infection to both the erythrocytes and tick cells [40]. Msp1a also contains Th1

cell epitopes in the carboxyl conserved region, which may be involved in immunoprotection

[41]. Initial immunization experiments with recombinant Msp1a showed that autologous

immunity was afforded; yet heterologous immunity was poor [42]. In a semi-controlled exper-

iment where Msp1a was used as marker for matching the vaccine strain and the local strain in

an inactivated vaccine trial in the field, which resulted in partial immunity except when the

challenge was carried with the autologous strain but not when challenge was carried with

heterologous Msp1a-matched strains [7].

More recently, two epitopes, STSSQL (Am1), located within the consensus sequence of the

repeat and SEASTSSQLGA (Am2), which is located in C-terminal end of the 28-aa repetitive

motif of the MSP1a protein, were identified using phage display technology for identification

of immunodominant epitopes recognized by a neutralizing monoclonal antibody against

MSP1a; these peptides were recognized by many but not all healthy infected animals tested

by ELISA assay [43]. These synthetic peptides were conjugated to bovine serum albumin and

used for immunization of mice, which the authors claim were infected with A. marginale was

achieved. Details of the challenge strain used in this experiment are absent [44] and there have

been no follow-up articles using the same peptides in cattle.

The inclusion of Msp1a or its “conserved epitopes” should be carried with caution as the

diversity of this marker is wider in regions where the tick vector is R. microplus than in its

absence [10, 45]. Vaccination based on Msp1a epitopes is further confounded by the fact that

the Msp1a variable region may contain one or several repeats which may include the same or

different repeats and that there are more than 300 repeats reported [45, 46] and this number is

bound to increase as the number of epidemiology studies is published. Furthermore, the
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number of Msp1a-distinct strains (up to nine) within the same herd or even within the same

animal [10, 47, 48] complicates even more the design of an effective vaccine.

While the adhesion function of Msp1a protein is located on the variable region, number or type

of different Msp1a repeat sequences has not been associated with tick-transmission phenotype

[49, 50]. Repeat sequences though have been used for defining genotypes associated to other

markers such as the pseudogenes present in Msp2 [37] or distinguishing genotypes in cattle

superinfected with two or more different Anaplasma strains [10, 38, 39].

As for Msp1b, initial experiments indicated that it was a poor immunogen [51, 52]. Further

evidence indicates that immunization of naive calves with a recombinant fraction containing

the Msp1a-T cell epitopes linked to recombinant Msp1b1, induced a much greater antibody

titer to Msp1b than what was previously observed [52, 53].

DNA vaccines based on either one of Msp1a or Msp1b have given disappointing results. In an

early effort using a construction pVCL/MSP1a for the immunization of mice and cattle [54], a

predominant IgG1 antibody pattern was observed in the two immunized calves. No challenge

was performed, however, as it has been proven, an IgG2 response is necessary in order to

achieve protection [11, 55]. In a similar study with an Msp1b DNA construct, immunization

not only did not induce immunity but immunized animals developed more severe clinical

disease than controls [56]. These latter authors did not test for the type of immunoglobulin

induced by vaccination.

Further studies with DNA vaccines constructs which included bovine herpes virus 1 tegument

protein, BVP22 domain and an invariant-chain major histocompatibility complex class II-

targeting motif capable of enhancing dendritic cell antigen uptake and presentation were fused

to a sequence encoding a B and T cell antigen from the A. marginale Msp1a [57, 58]. This

approach included the intradermal inoculation with a mixture of 2 mg of DNA encoding the

molecular adjuvants bovine FLT3L and GM-CSF to recruit DCs to the intradermal immuniza-

tion site, the results of this experiment were very encouraging as they stimulated the desired

type of immune response with rapid recall of antibody production over a reasonable period

after a single immunization. This study, however, suffers of several flaws (i) the inoculation in

different points of the dendritic cells stimulant and the vaccine itself, (ii) while the responses as

measured, were in all senses the appropriate ones for resistance, there was no challenge of

vaccinated animals and second, the age of the vaccines would not allow for distinction

between a solid immune response induced by vaccination or natural resistance commonly

observed in animals under 1 year of age [3].

Msp2 is a highly immunodominant 36 kDa protein coded by a multigene family consisting of a

functional gene that codes for the amino and carboxyl ends and a variable number of

pseudogenes (5 in the St. Maries strain) [59] which recombine with the main gene, through

gene conversion, in a single expression site such that the protein is expressed as a new variant

in each cycle of rickettsemia, every 6–8 weeks [60]. msp2 pseudogenes code for hypervariable,

hydrophilic sequences containing highly immunogenic B cell epitopes which induce a new

immune response consequent to a new Msp2 variant [61]. The amino and carboxyl ends of the
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protein are hydrophobic conserved segments inserted into the membrane of the rickettsia [62]

(and contain Th1 cell type epitopes that are preserved along different geographic strains) [29, 55].

Just like Msp1 and Msp1b, Msp2 was discovered through the neutralization of infection by

specific monoclonal antibodies and it was considered a vaccine candidate [28], this has not been

the case. While the hypervariable region of the protein contains a number of highly immuno-

genic type B cell epitopes, it has been recognized that antibody directed to these epitopes are

distractors of the immune response during the periodical appearance of Msp2 variants [60, 63].

Msp3 is a very immunogenic 86 k Da protein located on the surface of the rickettsia [28]. msp3

is also composed by a central hypervariable region coded by several pseudogenes which

recombine with the conserved amino and carboxyl ends [64, 65]. Based on previous studies

[64] and analysis of the published genome sequence, it is speculated that MSP2 and MSP3

originated from a common ancestor [66], and have diverged since that event. Sequence identity

between msp3 and msp2 pseudogenes is reduced, an average of 38%, identity within msp3

pseudogenes 68% and, within msp2 pseudogenes 78% [66, 67]. Immunologically, Msp2 and

Msp3 share epitopes recognized in vitro by CD4+ cells clones from vaccinated cattle [55].

Recombination of pseudogenes in a mosaic pattern also adds to the presentation of polymor-

phic antigens that, when resolved through 2D electrophoresis, are observed as a series of

antigens with the same molecular weight and different but very close isoelectric points [68].

Appearance of Msp2 and Msp3 variants in the persistently infected bovine gives rise to a more

complex situation with negative implications for immune protection. Though Msp3 induces

production of large amounts of antibodies [69], protection afforded is very limited [70]. Msp3

is known to cross-react with other rickettsiae such as A. ovis, Ehrlichia risticii, E. wengii, E. equi

and E. ruminantium, which make it unsuitable for specific A. marginale sero-diagnosis [71].

Msp4 is a 31 kDa protein, encoded by single highly conserved gene, msp4 [72]. Msp4 is also

present in A. marginale subsp. centralewith 83% identity in the nucleotide sequences and 91.7%

in the amino acid level [73]. To date, there is no solid evidence that Msp4 may be involved in

protection as, initial studies showed lack of recognition by sera of animals immunized with an

initial body membrane fraction [42], however when animals are immunized with a recombi-

nant Msp4 adjuvated with Iscometrix as adjuvant, there seems to induce an antibody response.

msp4 has been used as a base for phylogenetic studies which have shown that there are

variations in 168 bp and, of these, 39 bp show utility in parsimony analysis such that isolates

from several countries in the Americas can be grouped according to their geographic location

[50]. Msp4 is highly conserved over several Mexican isolates [9].

Msp5 is a highly conserved 19 kDa MW protein in A. marginale, A. marginale subsp. centrale

and A. phagocytophilum [23, 73–75]. Immunization with Msp5 induces the production of large

quantities of non-protective antibodies [69] so it is no suitable for vaccination. Animals natu-

rally infected with the rickettsia produce specific antibodies that can be found in recent and old

infections so the protein has been used successfully in a diagnostic competitive-ELISA test [76].

Despite the cross-reaction of antibody between A. marginale and A. marginale subsp. centrale at

the competitive-ELISA [74, 77], the test has been adopted as the standard for serologic diag-

nostic of bovine anaplasmosis.
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2.2. Type IV secretion system proteins

Secretion systems in bacteria are complex structures by which they communicate with its

environment. There are several secretion systems some which span both the inner membrane

(IM) and the outer membrane (OM), and those that span the OM [78]. Among several secretion

systems described in nature, type 4 secretion systems (T4SSs) have the unique ability to

mediate translocation of DNA (in addition to proteins) into bacterial or eukaryotic target cells.

T4SSs are found in both Gram-negative and Gram-positive bacteria and also in some archaea

[79]. Their most common role is to mediate the conjugation of plasmid DNA; thus, these

systems contribute to the spread of plasmid-borne antibiotic resistance genes. As the ability to

conjugate is a common bacterial trait, T4SSs are the most ubiquitous secretion systems in

nature. In addition, T4SSs are involved in bacterial pathogenesis in a few organisms, and they

mediate the secretion of transforming proteins inHelicobacter pylori, toxins in Bordetella pertussis

and other effector proteins required to support an intracellular lifestyle in bacteria such as

Legionella pneumophila [79].

Along with the publication of the first complete genome of A. marginale, and its annotation,

some real or putative homologous genes of T4SS were described in St. Maries genome [23].

Although many studies have been done about MSPs, so far, we still require other approaches

to find better vaccine candidates. An approach was shotgun sequencing of the proteins of a

membrane-enriched fraction of A. marginale, which induced an antibody response in naive

calves [80]. In this study, 25 immunoblot positive spots were sequenced and identified through

their annotation in the genome. Among the proteins identified VirB9, VirB10 and conjugal

transfer protein (CTP), were shown to stimulate an antibody response. Further studies using

the same membrane-enriched fractions for the immunization of young cattle showed that their

antibodies (IgG2) and Th cells reacted with the recombinant versions of CTP, VirB9 and VirB10

proteins [12]. In a more sophisticated study using far-Western blotting to identify protein

linkage between possible antigenic proteins, it was shown that VirB proteins, VirB9-1, VirB9-2

and Virb10 when physically linked, could stimulate a more specific and stronger immune

response than when used individually [81]. While presence of B cell epitopes is important in

any protein to be used as vaccine candidate, Th cell epitopes are also important as their

presence might determine the actual potential use of any antigen in a vaccine. An interesting

study, takes synthetic overlapping peptides from VirB9-1, VirB9-2 and VirB10 to test for the

presence of such epitopes [82]. T cells from six different MHC Class-II phenotypes outer

membrane fraction immunized animals were tested and as expected, it was observed that not

all animals reacted with peptides from all three TFSS proteins. While all six animals reacted to

the membrane fraction which contained all three VirB9-1, VirB9-2 and VirB10, some animals

did not react against rVirB9–1, others reacted poorly against rVirB9-2 or rVirB10 or against

only one or two of the overlapping synthetic peptides [82]. The differences in response of T

cells from these animals are explained in the context of the Class-II MHC molecules involved

in presentation of the epitopes. Interestingly, these authors restricted themselves to Holstein

cattle as the subjects to their studies yet, at least in Mexico and other Latin American countries,

Holstein cattle are used for milk production and most of them are reared under conditions

which preclude the contact with ticks.
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These studies clearly show that an immune response that fills the criteria for protection as

described is induced [11, 55], these authors though, fall short of proving that the induced

immunity is protective as there was no actual confrontation with the virulent live agent. In a

different study recombinant VirB9, Virb10 and Elongation Factor Tu (EF-Tu) were tested

against the sera of immunoprotected animals naturally infected with two A. marginale isolates

[83]. These works showed that while all experimentally infected cattle with the autologous

isolate had relevant antibodies (IgG2) against VirB9, VirB10 and EF-Tu, only 87% of the

animals naturally infected with a heterologous isolate reacted with the recombinant protein

by ELISA.

2.3. Outer membrane proteins

The outer membrane of bacteria delimits its structure and is the interface with the host cell.

Outer membrane proteins (OMPs) are key components of Gram-negative bacteria and because

are involved in adhesion and infection processes they are targeted on vaccine development.

Some effective attempts have been achieved using whole membrane fractions as immunogens

against bacterial diseases and due to their relevance OMPs from several pathogens have been

extensively studied and proposed as vaccine component. It is known that in addition to com-

position, OMPs show diversity in function too, but they share structural patterns. Usually,

regions with antigenic properties are located on the extracellular loops and show variable

composition, meanwhile residues in the transmembrane β-barrel show the highest conservation

[61, 84–86]. However, the use of individual components has only been partially successful

[86–92], although, it appears that the most relevant OMP antigens have not yet been identified.

High-throughput sequencing technologies are currently available and allow the identification of

several genes with potential important functions in the metabolism of the pathogen or in the

interaction with its surroundings. For example, from the complete genome of Anaplasma

marginale [23], the existence of additional outer membrane protein has been elucidated. Addi-

tionally, to Msp2 and Msp3, new members of pfam01617 family have been identified, and

designated as Omp 1-14. omp2, omp3 and omp6 genes are not transcribed in A. marginale-infected

erythrocytes, tick midgut and salivary glands, and the IDE8 tick cell line, while OMPs 1, 4, 7, 8, 9

and 11 were confirmed to be differentially expressed as proteins in those cell types [93]. Unlike

Msp2 and Msp3, these OMPs exhibit high conservation at sequence level as seen in the follow-

up of the infection and in comparative analyses with the St. Maries and Florida strain genomes,

which increases the possibility of choosing molecules capable of inducing a protective immune

response against bovine Anaplasmosis. Omp7 to Omp9 appear as tandem repeats with almost

75% amino acid identity, Omp10 is related to Omp7 to Omp9 with ~ 30% residues identity and

Omp6 is a truncated and it is not expressed version of Omp10. Omp7 to Omp9 are part of

protective outer membrane fraction and are highly expressed than Omp10 [23, 25, 93, 94].

In spite of the fact that none of these molecules has induced protection when is applied as an

individual protein, the importance of OMPs in protective immune response induction has been

revealed above all as complexes or associated with a membrane environment.

For example, protection against Leptospira was reached using OmpL1 and LipL41 expressed

simultaneously in the context of the E. colimembrane but, immunization with either membrane-
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associated protein or as part of a mixture of non-membrane-associated proteins was not pro-

tective [53, 95].

These results confirm the importance of OMPs in the infection process and the generation of a

protective immune response against pathogens and also reveal the interactions between OMPs

and other proteins as well as with their environment. However, production, solubilization and

purification of membrane-associated recombinant proteins is not easily achieved [96].

2.4. Hypothetical proteins

Genomic analyses of A. marginale have allowed identification of novel annotated proteins

whose function has not yet been determined, however, in silico analysis and predictions may

provide unrevealed information about immunogenic potential.

Some hypothetical proteins have been identified by structure prediction of β-barrel outer

membrane and orthology and bioinformatic analysis, such as Am1108, Am127, Am216,

Am202, Am936, Am854, Am368, Am854, Am1041, Am109 and Am1096. Some of these pro-

teins have been evaluated as recombinant molecules and recognized by IgG from immunized

animals with outer membranes protein, in this case, Am1108 and Am216 elicited specific T cell

response proliferation [13, 97]. On the other hand, cattle immunized with recombinant Am854

or Am936 developed higher bacteremia as compared to adjuvant-only controls and outer

membrane vaccinates after challenge [13].

The absence of a protective immune response after application of recombinant proteins pre-

sumably exposed to A. marginale, and therefore, with antigenic characteristics still seems to be

insufficient to develop prophylactic methods against bovine anaplasmosis.

Although genomic analyses have revealed valuable information about the composition of A.

marginale, it will be necessary to complement this knowledge with experimental evidence

based in other methods, such as proteomic and transcriptomic tools.
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