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Abstract

The workflow application is a common grid application. The objective of a workflow
application is to complete all the tasks within the shortest time, i.e., minimal makespan.
A job scheduler with a high-efficient scheduling algorithm is required to solve workflow
scheduling based on grid information. Scheduling problems are NP-complete problems,
which have been well solved by metaheuristic algorithms. To attain effective solutions to
workflow application, an algorithm named the stochastic greedy PSO (SGPSO) is pro-
posed to solve workflow scheduling; a new velocity update rule based on stochastic
greedy is suggested. Restated, a stochastic greedy-driven search guidance is provided to
particles. Meanwhile, a stochastic greedy probability (SGP) parameter is designed to help
control whether the search behavior of particles is exploitation or exploration to improve
search efficiency. The advantages of the proposed scheme are retaining exploration capa-
bility during a search, reducing complexity and computation time, and easy to implement.
Retaining exploration capability during a search prevents particles from getting trapped
on local optimums. Additionally, the diversity of the proposed SGPSO is verified and
analyzed. The experimental results demonstrate that the SGPSO proposed can effectively
solve workflow class problems encountered in the grid environment.

Keywords: scheduling, optimization, stochastic greedy, workflow, particle swarm
optimization

1. Introduction

Grid computing is applied mainly to utilize the heterogeneous computational resources to

execute various applications. The computing ability of the grid is comparable to that of a super

computer, and the grid computing environment consists of heterogeneous computing devices

throughout the world and connected by low-latency and high-bandwidth networks [1]. The
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distribution, and reproduction in any medium, provided the original work is properly cited.



main application of the grids is the sharing of computing resources. Scholars have already

used the grid in real cases when requiring vast computation and immense storage space [1–3].

The basic scenario of grid computing application is shown in Figure 1. The job scheduler uses

grid information supplied by information server which collects grid information from grid

sensors. When a workflow application comprising numerous tasks with partially ordered

constraint is uploaded to the grid, the job scheduler of the grid platform allocates the tasks to

be processed to the computing resources on the grid. If the tasks and the resources are well

scheduled, the time needed to complete all the tasks of the workflow application can then be

reduced. Otherwise, the time will be extended. Restated, the makespan of workflow applica-

tion on the grid is highly impacted by the quality of task-resource arrangement. Many

workflow application scheduling algorithms have been presented to boost efficiency and make

the resource manager more efficient when matching tasks and resources so that grid perfor-

mance can be upgraded effectively.

Many studies have developed scheduling optimization methods intended to reduce the

makespan of jobs (all tasks) on the grid [4, 5–9]. When restrictions regarding partially ordered

tasks exist between tasks (i.e., dependent tasks), the algorithm applied must meet the needs of

such sequential relationships when scheduling optimization is conducted. Besides solving the

task-resource matching problem, the sequence of execution of independent tasks allocated to

the same resource also has a rather significant effect on the reduction of the makespans of jobs

in workflow scheduling. In other words, workflow scheduling has to simultaneously solve two

subproblems in task-resource matching and those unrelated to tasks’ priorities. Most schedul-

ing problems are NP-complete, and many heuristic and metaheuristic algorithms have been

proposed to solve NP problems, such as the ant colony optimization (ACO) [3], genetic

algorithm (GA) [6], simulated annealing (SA) [5], and particle swarm optimization (PSO) [10].

Among them, PSO carries the advantages of easy implementation, requiring fewer parameters

and having a faster convergence speed; therefore, PSO is often used to solve scheduling

problems in fields aside from a grid or cloud computing, such as course timetabling problems

[11], flowshop problems [12], and vehicle routing problems (VRP) [13]. Also, PSO was applied

Figure 1. Grid application scenario.
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to solve grid scheduling problems; Tao et al. [14] and Chen andWang [15] have all adopted the

PSO to solve grid scheduling problems effectively.

Two subproblems have to be dealt with in workflow scheduling: the task-resource mapping

and the execution priorities of tasks without precedence constraint in the same computing

resource. To these two subproblems, two PSO algorithms were designed to find the

corresponding solutions: a discrete-type PSO algorithm to solve the task-resource mapping

subproblem and a constriction-type PSO algorithm to solve the task priority subproblem. In

PSO, the location of each particle represents a solution to the problem to be solved, and each

particle moves with reference to global experience and individual experience, resulting in a

new solution. In this study, a new velocity update rule developed from state transformation

rules used in ant colony optimization (ACO) [16] was proposed rather than the velocity update

rule in the contraction-type PSO, where movement is based on both experiences. This new PSO

is named the stochastic greedy PSO (SGPSO) herein. In ACO, the ant moves by referencing the

highest pheromone. Besides movement guided by the highest pheromone trail, the ant also

references the other trail, determined using the roulette wheel rule to move. In this study, the

global experience of the particle swarm is regarded as the path of ants with the highest

pheromone. Thus, a new velocity update rule was introduced to allow the particles with the

probability to explore on their own in the solution search process and prevent them from

getting trapped on local optimums. Restated, the particle moves in accordance with either the

global experience or individual experience in this work. Moreover, different problem cases

with small-scale and large-scale problems are designed and tested to verify the performance of

the proposed SGPSO. In the end, the workflow scheduling problems in [15] were tested, and

comparative analysis was conducted. Furthermore, the diversity of the proposed SGPSO is

also defined and verified. The remaining parts of this paper are arranged as follows: Section 2

presents the workflow scheduling problems, Section 3 describes the new velocity update rule

applied in the particle swarm optimization algorithm and the concept behind its adoption

from ACO, in Section 4 the experimental results and comparative analysis are provided, and

the conclusions are presented in Section 5.

2. Description of workflow scheduling problems

In the grid environment, distributed computing is conducted with the resources that are

scattered among different places around the world and connected together through networks.

The composition of the grid environment is shown in Figure 2(a). The scattered computational

resources are linked through the Internet. Each resource has its own computing ability and

external bandwidth represented by ABu and BWu, respectively. Moreover, the resources in the

grid environment are heterogeneous resources, meaning that the computing ability and exter-

nal bandwidth of each resource are dissimilar. Generally, the grid environment can be

represented with a schematic G(R, C) composed of nodes and edges. Each node stands for a

resource (R = {Ri}). i = 1 ~N represents the set of all resources.N is the total amount of resources

in the grid environment. The connections between resources are represented by an edge.

C = {Cuv} stands for the set of resource-resource connections. Cuv is the connection between
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resource u and resource v. The grid computing environmental schematic is shown in Figure 2

(b). The workflow application can be represented with a directed acyclic graph (DAG) G(V, T),

as shown in Figure 3, in which V = {Vi}, where i = 1 ~ M is the set of all tasks and M is the total

number of tasks. Precedence exists between certain tasks, and each task has a workload; wi

represents the workload of task i. Figure 3 also indicates the precedence relationship between

tasks such as the following: task 1 is the predecessor of tasks 3 and 4, and tasks 3 and 4 are the

successors of task 1. Meanwhile, task 5 cannot be executed until task 2 is done, and task 6 has

to wait till tasks 3, 4, and 5 are accomplished. Certain required data for execution on successors

have to be transmitted to the successors when the predecessor is completed, i.e., transmission

costs exist. TCij represents the amount of data transmitted between tasks i and j. If the

predecessor and the successors are arranged to be executed with different resources, a trans-

mission cost exists. On the contrary, if the predecessor and the successors are arranged to be

executed with the same resource, there will be no transmission cost. Meanwhile, task 0 and

task 8 in the figure are virtual tasks representing the start and the end, respectively. They have

no workload and involve no data transmission costs.

The goals of workflow scheduling optimization are to appropriately match tasks to resources

and to suitably assign execution priorities to tasks without precedence restriction in the same

computing resource to reduce the makespan of the application execution. The cost includes the

resource processing time of the path and the data transmission time. In Figure 3, for example,

Figure 2. Grid computing environment. (a) The composition of the grid environment. (b) The grid computing environ-

mental schematic.

Figure 3. Directed acyclic graph (DAG) of a workflow application on the grid.
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there are four execution sequence paths: (p1) task 0!task 1!task 4!task 7!task 8, (p2) task

0!task 1!task 5!task 7!task 8, (p3) task 0!task 2!task 6!task 7!task 8, and (p4) task

0!task 3!task 6!task 7!task 8. All the tasks in the four execution sequences must be

executed to complete the job on the grid. The makespan is subject to the time of the longest

execution sequence path. That is, the max(cost(pi)). cost(pi) is the cost of an execution sequence

path (pi) in DAG in the grid environment.

Calculation of cost(pi) is shown in Eq. (1). cost(pi) is the aggregate of the total resource

processing time on execution sequence path pi and the total data transmission time on that

path. In Eq. (1), u(wt) represents the workload of the tasks allocated to resource u, and cost(tf) is

the data transmission cost or time on that execution sequence path, as shown in Eq. (2):

cost pi
� �

¼

P

u∈ pi
u wtð Þ

ABu
þ

X

tf ∈T

cost tfð Þ (1)

cost tfð Þ ¼
TCij

min BWu;BWvf g
(2)

If task i and task j are, respectively, allocated to be executed with the resources u and v,

between the two tasks exists the amount of data transmission (TCij). Since resource u and

resource v have different bandwidths, the data transmission time is subject to the smaller

bandwidth (BWuv = min{BWu, BWv}). Hence, the data transmission time or cost is the amount

of data transmitted divided by the smaller resource bandwidth.

Therefore, the makespan is defined as the fitness function to denote the quality of workflow

scheduling. The definition of fitness function (FIT) is shown in Eq. (3). The objective of

workflow scheduling is then to find the shortest makespan (min(FIT)):

FIT ¼ max cos t pi
� �

jpi ∈DAG
� �

; (3)

3. The proposed method

Many nature-inspired optimization algorithms have been proposed to find optimal solutions to

workflow scheduling problems and metaheuristic algorithms that imitate the behaviors of bio-

logical creatures. Some that are extensively applied include ACO, GA, bee colony optimization

(BCO), and the PSO adopted in this study. Among them, PSO requires fewer parameters and is

easier to implement. Therefore, it has been well applied to solve diverse NP-complete problems,

and the results have been rather remarkable. Meanwhile, PSO has also been employed to solve

workflow scheduling problems with effectiveness.

As shown in Figure 3, if task 2 and task 6 are allocated to be computed by different resources,

there will be a transmission time, and the makespan will be extended. On the contrary, if they

are arranged to be executed by the same resource, there will be no transmission time, and the

makespan will be shortened. Furthermore, if task 1 and task 2 are arranged to be executed by

the same resource, executing task 1 before task 2 or vice versa will have an effect on the
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makespan of the workflow application on the grid. Hence, the study of minimization of the

makespan in workflow scheduling involves two issues: task-resource matching and task exe-

cution priority determination. Figure 4 illustrates an example with two heterogeneous

resources (R1 and R2) with different abilities in the grid environment; these two subproblems

need to be solved for the studied workflow application scheduling problem. Figure 4(a)

displays the task-resource matching subproblem, and Figure 4(b) indicates some possible

execution priorities of the tasks (tasks 1, 3, 4, and 5) assigned to resource 1 (R1).

To deal with these issues, the constriction PSO is used to solve the task execution priority issue

and the discrete PSO to cope with the task-resource matching issue.

3.1. Used PSOs

PSO was first introduced by Kennedy and Ebrhart in 1995 [17]. After observing birds flying,

fish seeking food, and other social behaviors of animals, they discovered that each particle

would move to their next position according to information (experience) shared among the

members of the swarm. Restated, when particles move, they refer to individual experience

(pbest) and global experience (gbest). At each moving step, a particle will refer to both kinds of

experience to make the next move. The particle represents the solution of the problem to be

solved. Hence, the movement of particles is regarded as a solution search in a solution space.

The position update equation of PSO is as shown in Eq. (4):

Vnew
ij ¼ ωV ij þ c1r1 pbestij � Xij

� �

þ c2r2 gbestj � Xij

� �

Xnew
ij ¼ Xij þ Vnew

ij

8

<

:

(4)

Each particle of a swarm has its own velocity V. The Vij represents the jth velocity component of

the particle i. X is the position of the particle and Xij the jth position component of particle i.

pbestij is the jth component of the best individual experience of the particle i. The gbestj is the jth

component of the best global experience. w is the inertia weight adopted mainly for controlling

the level of influence of the previous velocity on the velocity of the current iteration. c1 and c2
are the learning factors for controlling the influence of individual best experience and global

Figure 4. Two subproblems of a workflow application in grid. (a) The task-resource matching subproblem and (b) the

task execution priority subproblem.
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best experience on the velocity of iteration. r1 and r2 are the random numbers between 0 and 1,

adopted to increase the diversity of particle movement and prevent particles from moving

only toward the individual best experience or the global best experience.

In this work, a constriction PSO is applied to solve the task execution priority problem. Similar

to the inertia weight, a constriction factor χ was introduced into PSO to balance global and

local searches, i.e., the constriction factor used to limit the movement size, and is named

constriction PSO [18]. The velocity update rule used in constriction PSO is indicated in Eq. (5):

Vnew
ij ¼ χ V ij þ c1r1 gbest� Xij

� �

þ c2r2 pbestij � Xij

� �h i

Xnew
ij ¼ Xij þ Vnew

ij

8

<

:

(5)

The discrete PSO (DPSO) was proposed by Kennedy and Ebrhart in 1997 [19]. Unlike in

conventional PSO, the particle position components of the discrete PSO are binary. In other

words, Xij∈(0,1). The velocity update is similar to Eq. (5), but the constriction factor is set to 1.

The position vector Xij is calculated with the sigmoid function S(Vij) in conjunction with

velocity vector Vij, and the real valued velocity is converted into a probability. This probability

is then compared with a random number to update the position component value either 0 or 1.

The position update rule for discrete PSO is displayed in Eq. (6):

Xnew
ij ¼

0, S Vnew
ij

� �

< rand

1, S Vnew
ij

� �

≥ rand

8

>

<

>

:

(6)

The sigmoid function is applied to convert the velocity value into a probability between 0 and

1. However, to prevent the value of S(Vij) from becoming too close to 0 or 1, the value of Vij is

normally limited to between [-Vmax and Vmax]. In this study, DPSO is applied to solve the task-

resource matching problem. The particle positions are designed as a two-dimensional matrix

M�N.M represents the number of tasks, and N is the number of binary bits, which is the floor

function of log2(resource quantity) plus 1. If the number of resources is R, N ¼ log 2 Rð Þb c þ 1.

In other words, Xi = [Xipq], p = 1 ~ M, and q = 1 ~ N. The combination of number (N) of binary

numbers (after the binary values are converted to metric values) of the p row is the resource

allocated for the task p. Suppose that the number of resources is 3 (R = 3), then two bits

(N ¼ log 2 3ð Þb c þ 1 ¼ 2) are required.

3.2. Stochastic greedy in ant colony optimization (ACO)

Stochastic greedy is greedy by chance; it has been well applied in constructing the path of ants

in ant colony optimization. Ant colony optimization, which was initially introduced by Dorigo

et al. in 1996 [20], imitates the foraging behavior of ants. The ACOwas first applied to solve the

traveling salesman problem [16, 21]. In ACO, ants lay down pheromones on the foraging

paths. The deposited pheromone is the stigmergy used to communicate with ants. The amount

of pheromone deposited on a particular foraging path increases with the number of ants

traveling along the path. An ant foraging path corresponds to a feasible solution to the studied

Stochastic Greedy-Based Particle Swarm Optimization for Workflow Application in Grid
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scheduling problem; an ant establishes a path by using a transition rule to choose nodes to

visit, i.e., each movement is determined by stochastic greedy rule as displayed in Eq. (7):

j ¼
arg max

l∈ Jk ið Þ
τ i; lð Þ½ �α½ηði; lÞ�β

� �

, q ≤ q0

J, q > q0

8

<

:

(7)

where τ(i, l) denotes the pheromone left on edge (i, l) and η(i, l) is the heuristic value. α and β

are used to determine the relative importance between the pheromone and the heuristic

value. Jk(i) represents the set of neighborhood nodes, which can be visited at node Vi by ant

k. And, q0 is a predefined probability usually set to a higher value, and q is a random number

between 0 and 1. The next node j to be visited is chosen from Jk(i). When q ≤ q0, the node with

the highest pheromone times heuristic value is selected as the next node Vj (exploitation). If

q > q0, Vj is usually determined from Jk(i) by the roulette wheel selection rule. Restated, an ant

has a q0 probability to visit the node with the highest pheromone times the heuristic value

and has a (1 � q0) probability to visit a node other than the node with the highest pheromone

times the heuristic value (exploration).

3.3. Stochastic greedy PSO (SGPSO)

This section will introduce the proposed PSO using a new velocity update rule in this study and

the design philosophy behind it. In PSO, the particles always move and search for optimums in

the solution space in accordance with the best individual experience and the global best experi-

ence. In this work, the global best experience in PSO is similar to the path with the highest

pheromone level in ACO. Restated, gbestj in PSO is regarded as themax{[τ(i,j)]α [η(i,j)]β} in ACO.

Without other guidance, PSO can lead other particles to move toward the current global best

experience. As a result, the particles can achieve local optimums at an early iteration and become

trapped there (local optimum). This indicates that PSO may converge quickly (premature con-

vergence), but trapping on local optimums is likely to happen. The same situation occurs with

ACO, if the ants always choose the path with the highest pheromone times the heuristic value

(exploitation), it can also lead to the path of local optimum. Hence, ACO retains a certain

probability and uses the roulette wheel selection rule (Eq. (7)) to allow ants to explore paths

other than that with the highest pheromone so as to prevent from trapping on local optimum. In

ACO, a default parameter SGP is adopted to determine the relative importance of exploitation

and exploration. When the SGP value is large, exploitation of the global best path tends to occur,

whereas small SGP values are more likely to result in individual exploration. To be with the

adequate diversity during search, it is important for PSO to find the optimal solution. Hence, to

strengthen the exploration capacity of PSO in the solution search process to keep diversity and

avoid getting trapped on local optimums, the search mechanism of ACO based on the stochastic

greedy rule was implemented in PSO, and hence a new velocity update rule was designed to

replace the velocity update rule of referring to both experiences in Eq. (5). Thus, as a stochastic

greedy probability (SGP) for global search, SGP is designed. Meanwhile, the roulette wheel

selection rule used in ACO is modified, i.e., a particle references its own experience rather than

using roulette wheel selection rule to reference other particle’s experiences. The design of the

proposed velocity update rule is as shown in Eq. (8):

Particle Swarm Optimization with Applications48



Vnew
ij ¼ χ� V ij þ c1 � r1 � Guidanceij � Xij

� �� 	

Xnew
ij ¼ Xij þ Vnew

ij

Guidanceij ¼
gbestj, q ≤SGP exploitation

� �

pbestij, q > SGP exploration
� �

8

<

:

(8)

where q is a random number between 0 and 1. When q is larger than SGP, the particle velocity

is updated in accordance with the individual best experience (pbestij); when it is smaller than

SGP, the particle velocity is updated in accordance with the global best experience (gbestj).

Restated, a particle has an SGP probability to search following the global experience (exploita-

tion search) and a (1-SGP) probability to search according to individual experience distributed

in solution space (exploration search). Restated, the search behavior of particles is driven by

the stochastic greedy rule. The PSO using this new velocity update rule is named stochastic

greedy PSO (SGPSO) herein. This SGPSO is applied only in the constriction PSO (Eq. (8)) to

solve the task execution priority problem, not in the DPSO that deals with the task-resource

Figure 5. Operation procedures of the proposed scheme.
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matching problem. The operation procedures of the proposed scheme of applying SGPSO and

DPSO to solve the interested workflow application scheduling problem in the grid are listed in

Figure 5.

3.4. The diversity of SGPSO

The diversity of the swarm during moving in the solution space impacts the solution quality.

High diversity of the particles in the initial stage is desired for possible most solution space to

find a good seed of search. Conversely, in the latter stage, the particles ought to proceed fine

search for the better solution, i.e., low diversity of the population should be provided. To

analyze the diversity of the SGPSO, the diversity (DIV) of a particle swarm is defined by the

average absolute distance of whole particles as given in Eq. (9) [22]:

DIV ¼

X

N�1

i¼1

X

N

j¼iþ1

Dis Xi;Xj

� �

CN
2

Dis Xi;Xj

� �

¼

X

D

k¼1

∣Xik, Xjk∣

(9)

where Dis(Xi, Xj) is the absolute distance between particles Xi and Xj. D is the dimension of the

particle, and N is the number of particles.

4. Experimental results and discussion

Since there is not any specific library providing grid task scheduling problems for workflow

applications, workflow scheduling problems involving larger numbers of tasks were also

designed for this study to test whether the proposed method can also perform well on large-

scale problems. Intrinsically, the workflow scheduling problem can be regarded as a derivative

of the multimode resource-constrained project scheduling problem (MRCPSP). Therefore, the

task precedence constraints of the designed workflow scheduling problems in this work are

generated based on the problem cases (J10, J12, J14, J16, J18, J20, and J30) of the MRCPSP in the

PSPLIB library; each problem case has 50 different instances generated. The workload of an

activity is a randomly produced number with 1000 as the base unit. The data transmission

between predecessors and successors is created by using random numbers with 10 as the base

unit. The processing ability and the external bandwidth of computing resources in the grid

were generated as those in the problem designed by [15] as listed in Table 1. Table 2 illustrates

the workflow application example of a J14 instance including workload, number of successors,

precedence (successor), and communication cost. In Table 2, the tasks 0 and 15 are pseudo

tasks representing the start and end. The corresponding DAG of the workflow application

instance is displayed in Figure 6. The settings of the parameters in constriction and discrete

PSOs are χ = 0.72984, χ = 1, and c1 = c2 = 2. The values of different SGP parameters SGP = {0, 0.1,

0.2,…, 0.9, 1} were tested on the all designed problems (J10, J12, J14, J16, J18, J20, and J30) to

understand their influence on the SGPSO performance. To evaluate the performance of the

workflow application scheduling on the grid, Avg.Dev(%) is used and defined as in Eq. (10):
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Dev %ð Þ ¼
X

i∈ instances

FITi � besti
besti

� 100%


 �

=∣instances∣

Avg:Dev %ð Þ ¼

X

t¼1�T

Dev %ð Þ

T

(10)

Resources MIPS Bandwidth

R1 450 8

R2 1000 2

R3 650 10

R4 1500 8

R5 800 10

R6 4000 2

R7 2000 15

R8 1250 6

R9 250 20

R10 750 5

Table 1. Grid environment example.

Task No. Workload No. of successors Successors Communication cost

0 0 3 1 2 3 0 0 0

1 35,000 2 4 5 14 12

2 7000 2 5 9 5 3

3 5000 2 9 13 7 2

4 28,000 3 6 7 11 11 17 6

5 20,000 3 8 11 14 13 11 13

6 18,000 3 9 10 14 11 16 13

7 4000 2 8 14 7 13

8 27,000 2 10 12 3 3

9 4000 1 12 17

10 19,000 1 13 3

11 32,000 2 12 13 4 4

12 31,000 1 15 13

13 16,000 1 15 11

14 22,000 1 15 3

15 0 0

Table 2. A workflow application example of J14.
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where FITi indicates the fitness of instance i and besti is the best known solution of instance i.

The |instances| denotes the number of instances of a problem case; it is 50 in this study. Hence,

the Dev(%) represents the average deviation from the best known solutions which is the best

solution found so far. The Avg.Dev(%) is the average of T trials; in this work, 10 trials (T = 10)

were conducted.

The performance evaluation on J10 to J30 associates with different SGP values is displayed in

Table 3. When the SGPs are 0 and 1, the averages of all problem cases’ Avg.Dev are 12.43 and

12.05%; they are higher than other Avg.Dev results via other SGPs. This is because only global

experience is referred to when SGP = 1 (exploitation only), and convergence of the algorithm in

the process of searching in the vast solution space is premature; it is easy to get trapped on

local optimums and impossible to obtain the global optimum. When SGP = 0 (exploration

Figure 6. DAG of J14 example in Table 2.

SGP J10 J12 J14 J16 J18 J20 J30 Avg.

0 3.86 6.61 7.87 15.55 13.11 16.28 23.70 12.43

0.1 3.88 6.58 7.32 15.43 12.14 14.31 17.27 10.99

0.2 4.44 6.87 7.67 15.95 12.39 14.03 15.93 11.04

0.3 4.18 6.74 8.11 15.93 12.46 14.62 15.13 11.02

0.4 4.27 7.27 8.63 16.49 12.54 15.25 14.92 11.34

0.5 4.55 7.26 8.36 16.52 12.49 14.73 15.22 11.30

0.6 4.69 7.82 8.68 16.74 12.72 14.88 15.62 11.59

0.7 4.60 7.39 8.55 17.35 13.21 14.92 15.41 11.63

0.8 4.93 7.50 8.68 17.40 13.13 15.40 14.61 11.66

0.9 4.97 7.77 8.94 16.78 13.38 15.63 15.53 11.86

1 4.79 7.66 9.06 17.36 13.63 16.13 15.72 12.05

Table 3. Performance evaluation on J10 to J30.
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only), only local experience is referred to, and slow convergence exhibits while searching in a

vast solution space, i.e., obtained optimal solution demands much more iterations.

Meanwhile, the obtained minimum Avg.Dev corresponding to the SGP for each problem case

is shown in Table 4. The SGP of minimum Avg.Dev for J10 is zero, which is because the best

solution in small solution space can be found by exploration search only. The SGPs of mini-

mum Avg.Dev for J12 to J18 and J20 are 0.1 and 0.2, respectively. That is, more exploration

search is adequate for small- and medium-scale problems. Since J30 is much more complex

than J20, the solution space is vast. Thus, the SGP of the minimum Avg.Dev for J30 is 0.8

indicating that more exploitation search for large-scale problems is desired. Restated, the

small-scale problem requires smaller SGP, and the large-scale problem needs larger SGP to

obtain optimal solution.

Moreover, the comparisons between conventional PSO (ω = 0.8) and the proposed SGPSO

(χ = 0.72984, SGP = 0.1) are provided in Table 5. Table 5 indicates that SGPSO outperforms

conventional PSO; SGPSO obtains the minimum Avg.Dev for most problem cases except the

largest-scale problem (J30). The particle of conventional PSO swarm refers both global and

individual experiences to move, i.e., involving both exploitation and exploration during solu-

tion search. However, the particle of the SGPSO swarm with SGP = 0.1 mostly refers to

individual experience to be the moving guidance, i.e., exploration is carried out during solu-

tion search. As concluded above, larger SGP is required to obtain the optimal solution for

large-scale problems; hence, SGP = 0.1 conducting more exploration would cause slow conver-

gence. Therefore, when SGP = 0.8 is applied for solving J30, the resulting Avg.Dev (14.61%) is

lower than that (15.92%) by using the conventional PSO as shown in Table 5.

A resulting schedule of the corresponding DAG of the workflow application scheduling

instance with 14 tasks (Figure 6) is displayed in Figure 7. The fitness evolution of the J14

instance with different SGPs is displayed in Figure 8.

Additionally, to further realize the search behavior of the proposed scheme, the diversity

evolution of the proposed SGPSO is checked. Figure 9 displays the diversity evolution of a

J14 instance with SGP = 0, SGP = 0.1, SGP = 0.8, and SGP = 1. The diversity to be checked in this

study is defined as in Eq. (9).

J10 J12 J14 J16 J18 J20 J30

SGP 0.0 0.1 0.1 0.1 0.1 0.2 0.8

Avg.Dev 3.86 6.58 7.32 15.43 12.14 14.03 14.61

Table 4. Minimum Avg.Dev corresponds to the SGP.

J10 J12 J14 J16 J18 J20 J30 Avg.

SGPSO 3.88 6.58 7.32 15.43 12.14 14.31 17.27 10.99

PSO 4.52 7.42 8.72 20.55 13.12 15.12 15.92 12.20

Table 5. Comparisons between conventional PSO and SGPSO (SGP = 0.1).
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In Figure 9, the diversity remains high until the end of the operation when SGP = 0 without

referencing global experience. Restated, particle search behavior keeps exploration until the

end and hence suffers slow convergence. Conversely, the diversity quickly drops to none for

SGP = 1, i.e., the particles go to exploitation search and therefore lead to premature conver-

gence and trap on local optima. When SGP = 0.8, the behavior is similar to that of SGP = 1 but

provides some exploration ability. Hence, SGP = 0.8 has the higher diversity than that of

SGP = 1. With the setting of SGP = 0.1, high diversity in the early stage and diversity gradually

lowered after the middle stage to the end are provided. Therefore, giving global search in the

early stage gradually shrinks the search area in the later stage, hence providing an ideal search

process from exploration to exploitation for finding the optimal schedule.

Figure 7. Workflow schedule of the J14 instance.

Figure 8. Fitness evolutions on J14 with different SGPs.
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Finally, this work tested the workflow application problems examined in [15] to verify the

proposed method. The comparison is made mainly with the largest-scale case in [15] which

involves 15 tasks (represented here as J15).

The settings of the parameters in constriction and discrete PSOs are χ = 0.72984, ω = 1, and

c1 = c2 = 2. The values of different SGP parameters SGP = {0, 0.1, 0.2,…, 0.9, 1} were tested. The

minimum average fitness of the simulation results of iteration = 300 is shown in Figure 10.

Figure 9. The diversity evolutions of the swarm of a J14 instance with different SGPs.

Figure 10. The minimum average fitness of J15.
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Figure 10 shows that the minimal fitness (44.5) can be obtained when SGP = 0.1 and SGP = 0.8.

However, the minimum average fitness (45.88) is obtained when SGP = 0.1. The results coin-

cide with the above experiment consequences. The comparison between this work and [15] is

listed in Table 6.

According to Table 6, with a small SGP value, the task scheduling outcomes of J15 will become

better as the number of iterations increases (100 iterations ! 300 iterations). This is because

small SGP values tend to lead to the use of individual experience. In other words, the particles

perform exploration search in solution space. In consequence, to obtain the optimums in the

vast solution space will consume much time, and the convergence is delayed.

5. Conclusions

Workflow application is the most common application in the grid. However, the workflow

scheduling heavily affects the performance of workflow execution application. Two PSOs were

used to solve task-resource matching and task execution priority subproblems of the workflow

scheduling. A new and simplified velocity update rule extended from the ACO state transition

rule is designed in constriction PSO for solving the task execution priority subproblem.

Restated, the search control is based on a suggested SGP inspired by the ACO’s transition rule.

This constriction PSO-based algorithm is named stochastic greedy PSO (SGPSO), which pro-

vides both exploration and exploitation abilities during search. The main purpose is to

strengthen the exploration capacity of the PSO in the solution search process while providing

certain exploitation capability to avoid getting trapped in local optimums.

According to experimental results as indicated in Table 3, high SGP provides global experi-

ence guidance and causes premature convergence, hence easy to trap on local optimal such as

only exploitation applied in SGP = 1.0 and Avg.Dev = 12.05% yielded. When SGP = 0, the

algorithm would conduct self-search such that only exploration is enabled that causes slow

convergence and Avg.Dev = 12.43% obtained. Better solutions can be found while providing

enough exploration and certain exploitation capabilities such as SGP = 0.1; the lowest Avg.

Dev = 10.99% can be obtained.

Chen [15] Chen [15] This work

χ = 0.75 χ = 0.5 χ = 0.72984, SGP = 0.1

100 iter. Min. 45.50 44.50 46.75

Avg. 60.15 54.26 47.71

300 iter. Min. 44.50 44.50 44.50

Avg. 55.45 50.36 45.88

Table 6. Performance comparison on J15 in [15].
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By using the SGP to control the search behavior, either exploitation or exploration would make

the algorithm simplified and also reduce the execution time.

Meanwhile, high diversity in the early stage and low diversity in the later stage are preferred for

searching in the solution space provided as indicated in Figure 9. Therefore, the proposed

SGPSO with lower SGP is suggested for solving workflow class scheduling problem in the grid.

Unlike in [15], using heuristics to find initial solutions is not adopted in this work. Therefore,

there is no need to consider which heuristic should be designed to increase performance, and

hence the algorithm is thus easier to implement. In [15], the best result comes with the

constriction factor χ = 0.5 which was obtained after thorough testing. However, the best result

can be yielded with the commonly suggested value χ = 0.72984. Hence, the laborious work of

finding the best constriction factor value is eliminated.

The experimental results show that the proposed method can effectively solve grid task sched-

uling problems and boost grid performance. In reality, there are many problems similar to grid

task scheduling problems, such as the multimode resource-constrained project scheduling prob-

lems (MRCPSPs). In the future, the method proposed in this study will be applied to find

solutions to MRCPSP-type problems.
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