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Abstract

Implicit methods based on the Newton’s rootfinding algorithm are receiving an increas-
ing attention for the solution of complex Computational Fluid Dynamics (CFD) applica-
tions due to their potential to converge in a very small number of iterations. This
approach requires fast convergence acceleration techniques in order to compete with
other conventional solvers, such as those based on artificial dissipation or upwind
schemes, in terms of CPU time. In this chapter, we describe a multilevel variable-block
Schur-complement-based preconditioning for the implicit solution of the Reynolds-
averaged Navier-Stokes equations using unstructured grids on distributed-memory
parallel computers. The proposed solver detects automatically exact or approximate
dense structures in the linear system arising from the discretization, and exploits this
information to enhance the robustness and improve the scalability of the block factori-
zation. A complete study of the numerical and parallel performance of the solver is
presented for the analysis of turbulent Navier-Stokes equations on a suite of three-
dimensional test cases.

Keywords: computational fluid dynamics, Reynolds-averaged Navier-Stokes
equations, Newton-Krylov methods, linear systems, sparse matrices, algebraic
preconditioners, incomplete LU factorization, multilevel methods

1. Introduction

A considerable number of modern high-fidelity Computational Fluid Dynamics (CFD) solvers

and codes still adopt either one-dimensional physical models based on the Riemann problem

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



using higher order shape functions, such as higher order Finite Volume (FV) and Discontinu-

ous Galerkin Finite Element (FE) methods for the discrete data representation, or truly multi-

dimensional physical models using linear shape functions, like Fluctuation Splitting (FS)

schemes. Both of these approaches require fast convergence acceleration techniques in order

to compete with conventional solvers based on artificial dissipation or upwind schemes in

terms of CPU time. Implicit methods based on the Newton’s rootfinding algorithm are receiv-

ing an increasing attention in this context for the solution of complex real-world CFD applica-

tions, for example in the analyses of turbulent flows past three-dimensional wings, due to their

potential to converge in a very small number of iterations [1, 2]. In this chapter, we consider

convergence acceleration strategies for the implicit solution of the Reynolds-averaged Navier-

Stokes (RANS) equations based on the FS space discretization using a preconditioned Newton-

Krylov algorithm for the integration. The use of a Newton solver requires the inversion of a

large nonsymmetric system of equations at each step of the non-linear solution process. Choice

of linear solver and preconditioner is crucial for efficiency especially when the mean flow and

the turbulence transport equation are solved in fully coupled form. In this study, we use the

restarted Generalized Minimal Residuals (GMRES) [3] algorithm for the inner linear solver,

preconditioned by a block multilevel incomplete lower-upper (LU) factorization. We present

the development lines of the multilevel preconditioning strategy that is efficient to reduce the

number of iterations of Krylov subspace methods at moderate memory cost, and shows good

parallel performance on three-dimensional turbulent flow simulations.

The chapter is structured as follows. The governing conservation equations for both compress-

ible and incompressible flows are reviewed in Section 2. Section 3 briefly describes the fluctu-

ation splitting space discretization, the time discretization and the Newton-Krylov method

used to solve the space- and time-discretized set of governing partial differential equations

(PDEs). In Section 4, we present the development of the multilevel preconditioning strategies

for the inner linear solver. We illustrate the numerical and parallel performance of the

preconditioner for the analysis of turbulent incompressible flows past a three-dimensional

wing in Section 5. Some concluding remarks arising from the study are presented in Section 6.

2. Governing equations

In the case of inviscid and laminar flows, given a control volume Ci, fixed in space and

bounded by the control surface ∂Ci with inward normal n, the governing equations of fluid

dynamics are obtained by considering the conservation of mass, momentum and energy. In the

case of viscous turbulent flows, one approach to consider the effects of turbulence is to average

the unsteady Navier-Stokes (NS) equations on the turbulence time scale. Such averaging

procedure results in a new set of steady equations (the RANS equations) that differ from the

steady NS equations for the presence of the Reynolds’ stress tensor, representing the effects of

turbulence on the averaged flow field. The appearance of this tensor yields a closure problem,

which is often solved by adopting an algebraic or a differential turbulence model. In the

present work, we use the Spalart-Allmaras [4] one-equation model for the turbulent viscosity.

Thus the integral form of the conservation law of mass, momentum, energy and turbulence

transport equations has the form
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and for incompressible, constant density flows,
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Finally, the source term S has a non-zero entry only in the row corresponding to the turbulence

transport equation; its expression is not reported here for brevity, but can be found in [4]. Note

that the standard NS equations are retrieved from (1) by removing the source term S and the

differential equation associated with the turbulence variable, and setting the effective viscosity

and thermal conductivity to their laminar values. The Euler equations are instead recovered by

additionally removing the flux vector G.

3. Solution techniques

The model used in this study for the discrete data representation is based on the coupling of an

hybrid class of methods for the space discretization, called Fluctuation Splitting (or residual

distribution) schemes [5], and a fully coupled Newton algorithm. By “fully coupled” we mean

that the mass, momentum and energy conservation equations on one hand, and the turbulent

equation on the other, are solved simultaneously rather than in a decoupled or staggered fashion.

We discuss in the following subsections, separately, the space and time discretization, the numer-

ical integration of the set of equations resulting from the discretization, and the solution of the

large linear system at each Newton’s step.

3.1. Space discretisation

The Fluctuation Splitting approach has features common to both Finite Element (FE) and Finite

Volume (FV) methods. Like in standard FE methods, the dependent variables are stored at the

vertices of the computational mesh made up of triangles in the two-dimensional (2D) space,

and tetrahedra in three-dimensional (2D), and are assumed to vary linearly and continuously
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in space. Denoting Zi as the nodal value of the dependent variable at the grid point i and Ni as

the FE linear shape function, this dependence can be written as

Z x; tð Þ ¼
X

i

Zi tð ÞNi xð Þ: (4)

Note that, although the summation in Eq. (4) extends over all grid nodes, the computational

molecule of each node is actually limited only to the set of its nearest neighbors due to the

compact support of the linear shape functions. In the compressible case, Roe’s parameter

vector

Z ¼ ffiffiffi

r
p

;

ffiffiffi

r
p

h
0
;

ffiffiffi

r
p

u; ~ν
� �T

(5)

is chosen as the dependent variable to ensure discrete conservation [6]. In the incompressible

case, discrete conservation is obtained by simply setting the dependent variable Z equal to the

vector of conserved variables U. In our code, we group the dependent variables per gridpoint.

The first m entries of the array Z are filled with the m flow variables of gridpoint 1, and these

are followed by those of gridpoint 2, and so on. Blocking the flow variables in this way, also

referred to as “field interlacing” in the literature, is acknowledged [7–9] to result in better

performances than grouping variables per aerodynamic quantity.

The integral Eq. (1) is discretized over each control volume Ci using a FV-type approach. In

two dimensions, the control volumes Ci are drawn around each gridpoint by joining the

centroids of gravity of the surrounding cells with the midpoints of all the edges that connect

that gridpoint with its nearest neighbors. An example of polygonal-shaped control volumes

(so-called median dual cells) is shown by green lines in Figure 1(a). With FS schemes, rather

than calculating the inviscid fluxes by numerical quadrature along the boundary ∂Ci of the

median dual cell, as would be done with conventional FV schemes, the net inviscid flux Φe, inv

over each triangular/tetrahedral element

Figure 1. Residual distribution concept. (a) The flux balance of cell T is scattered among its vertices. (b) Gridpoint i gathers

the fractions of cell residuals from the surrounding cells.
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Φ
e, inv ¼

þ

∂Te

n � FdS (6)

is evaluated by means of a conservative linearization based on the parameter vector [6], and

scattered to the element vertices using elemental distribution matrices Be
i [5]. The inviscid

contribution to the nodal residual RΦð Þi is then assembled by collecting fractions Φe, inv
i

of the

net inviscid fluxes Φe, inv associated with all the elements by which the node i is surrounded.

This is schematically shown in Figure 1(b). Concerning the viscous terms, the corresponding

flux balance is evaluated by surface integration along the boundaries of the median dual cell:

node i receives a contribution Φ
e,vis
i

from cell e which accounts for the viscous flux through the

portion of ∂Ci that belongs to that cell. This approach can be shown to be equivalent to a

Galerkin FE discretization.

Summing up the inviscid and viscous contributions to the nodal residual of gridpoint i one

obtains

RΦð Þi ¼
X

e∍i

Φ
e, inv
i

þ Φ
e,vis
i

� �

¼
X

e∍i

Be
iΦ

e, inv þ Φ
e,vis
i

� �

: (7)

In Eq. (7), the summation ranges over all the elements e that meet in meshpoint i, as shown in

Figure 1(b). The construction of the distribution matrices Be
i involves the solution of dþ 1 small

(of order m) dense linear systems for each triangular/tetrahedral element of the mesh thus

making FS schemes somewhat more expensive than state-of-the-art FV schemes based upon

either central differencing with artificial dissipation or upwind discretizations. The relatively

high computational cost of FS discretizations has to be accounted for when deciding whether

the Jacobian matrix should be stored in memory or a Jacobian-free method be used instead.

3.2. Time discretisation

One route to achieve second-order time accuracy with FS schemes is to use mass matrices that

couple the time derivatives of neighboring grid points. This leads to implicit schemes, even if the

spatial residual were treated explicitly. Although a more general framework for the derivation of

the mass matrices can be devised [10], the approach adopted in our study consists of formulating

the FS scheme as a Petrov-Galerkin FE method with elemental weighting function given by

Ω
e
i ¼ Ni �

1

dþ 1

� �

Im�m � Be
i : (8)

The contribution of element e to the weighted residual equation for grid point i reads

ð

Te

Ω
e
i

∂U

∂t

� �

dV ¼

ð

Te

Ω
e
i

∂U

∂Z

∂Z

∂t

� �

dV, (9)

where the chain rule is used to make the dependent variable Z appear. Since the conservative

variables U are quadratic functions of the parameter vector Z, the transformation matrix
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∂U=∂Z is linear in Z and can thus be expanded using the linear shape functions Nj, just as in

Eq. (4). A similar expansion applies to the time-derivative ∂Z=∂t. Replacing both expansions in

the RHS of Eq. (9), the discrete counterpart of the time derivative of Eq. (9) is given by the

contribution of all elements sharing the node i:

ð

Ci

∂Ui

∂t
dV ¼

X

e

ð

Te

Ω
e
i

∂U

∂t

� �

dV ¼
X

e∍i

X

j∈ e

Me
ij

∂Z

∂t

� �

j

: (10)

In Eq. (10) the index j spans the vertices of the element e and the nodal values ∂Z=∂tð Þj are

approximated by the three-level Finite Difference (FD) formula

∂Z

∂t

� �

j

¼
3Znþ1

j � 4Zn
j þ Zn�1

j

2Δt
: (11)

The matrix Me
ij in Eq. (10) is the contribution of element e to the entry in the ith row and jth

column of the global mass matrix M½ �. Similarly to what is done in the assembly of the inviscid

and viscous flux balance, Eq. (7), the discretization of the unsteady term, Eq. (10), is obtained

by collecting elemental contributions from all the elements that surround the node i. Second-

order space and time accuracy of the scheme described above has been demonstrated for inviscid

flow problems by Campobasso et al. [11] using an exact solution of the Euler equations.

3.3. Numerical integration

Writing down the space- and time-discretized form of Eq. (1) for all gridpoints of the mesh, one

obtains the following large, sparse system of non-linear algebraic equations

Rg U Zð Þð Þ ¼ RΦ U Zð Þð Þ � M½ �
1

Δt

3

2
Znþ1 � 2Zn þ

1

2
Zn�1

� �

¼ 0 (12)

to be solved at time level nþ 1 to obtain the unknown solution vector Unþ1. The solution of

Eq. (12) is obtained by means of an implicit approach based on the use of a fictitious time-

derivative (Jameson’s dual time-stepping [12]) that amounts to solve the following evolution-

ary problem

dU

dτ
VM½ � ¼ Rg Uð Þ (13)

in pseudo-time τ until steady state is reached. Since accuracy in pseudo-time is obviously

irrelevant, the mass matrix has been lumped into the diagonal matrix VM½ � and a first-order

accurate, two-time levels FD formula

dU

dτ
≈
Unþ1,kþ1 �Unþ1,k

Δτ
(14)

is used to approximate the pseudo-time derivative in the LHS of Eq. (13). The outer iterations

counter k has been introduced in Eq. (14) to label the pseudo-time levels.

Computational Fluid Dynamics - Basic Instruments and Applications in Science48



Upon replacing Eq. (14) in Eq. (13), an implicit scheme is obtained if the residual Rg is

evaluated at the unknown pseudo-time level kþ 1. Taylor expanding Rg about time level k,
one obtains the following sparse system of linear equations

1

Δτk
VM½ � � J½ �

� �

ΔU ¼ Rg Unþ1,k
� �

J½ � ¼
∂Rg

∂U
(15)

to be solved at each outer iteration until the required convergence of Rg is obtained. Steady

RANS simulations are accommodated within the presented integration scheme by dropping

the physical time-derivative term in Eq. (12). In the limit Δτk ! ∞, Eq. (15) recovers Newton’s

rootfinding algorithm, which is known to yield quadratic convergence when the initial guess

Unþ1,0 ¼ Un is sufficiently close to the sought solution Unþ1. This is likely to occur when

dealing with unsteady flow problems because the solution of the flow field at a given physical

time starts from the converged solution at the preceding time, and this latter constitutes a very

convenient initial state. In fact, it is sufficiently close to the sought new solution to allow the

use of the exact Newton’s method (i.e. Δτk ¼ ∞ in Eq. (15)) since the first solution step.

The situation is different when dealing with steady flow problems. Newton’s method is only

locally convergent, meaning that it is guaranteed to converge to a solution when the initial

approximation is already close enough to the sought solution. This is generally not the case

when dealing with steady flows, and a “globalization strategy” needs to be used in order to

avoid stall or divergence of the outer iterations. The choice commonly adopted by various

authors [13, 14], and in this study as well, is a pseudo-transient continuation, which amounts

to retain the pseudo-transient term in Eq. (15). At the early stages of the iterative process, the

pseudo-time step length Δτk in Eq. (15) is kept small. The advantage is twofold: on one hand, it

helps preventing stall or divergence of the outer iterations; on the other hand, it makes the

linear system (15) easier to solve by means of an iterative solver since for moderate values of

Δτk the term Vm½ �=Δτk increases the diagonal dominance of the matrix. Once the solution has

come close to the steady state, which can be monitored by looking at the norm of the nodal

residual RΦ, we let Δτk grow unboundedly so that Newton’s method is eventually recovered

during the last steps of the iterative process. The time step length Δτk is selected according to

the Switched Evolution Relaxation (SER) strategy proposed by Mulder and van Leer [15], as

follows:

Δτk ¼ Δτmin Cmax;C0

Rg Unþ1,0� �	

	

	

	

2

Rg Unþ1,k
� �	

	

	

	

	

	

2

0

B

@

1

C

A
, (16)

where Δτ is the pseudo-time step based upon the stability criterion of the explicit time integra-

tion scheme, and C0 and Cmax are user-defined constants controlling the initial and maximum

pseudo-time steps used in the actual calculations.

In the early stages of the iterative process, the turbulent transport equation and the mean flow

equations are solved in tandem (or in a loosely coupled manner, following the nomenclature

used by Zingg et al. [16]): the mean flow solution is advanced over a single pseudo-time step

using an analytically computed, but approximate Jacobian while keeping turbulent viscosity
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frozen, then the turbulent variable is advanced over one or more pseudo-time steps using a FD

Jacobian with frozen mean flow variables. Due to the uncoupling between the mean flow and

turbulent transport equations, this procedure will eventually converge to steady state, but

never yields quadratic convergence. Close to steady state, when a true Newton strategy

preceded by a “short” pseudo-transient continuation phase can be adopted, the mean flow

and the turbulence transport equation are solved in fully coupled form, and the Jacobian is

computed by FD. For the sake of completeness, we give further details of each of these two

steps in the following two paragraphs.

3.3.1. Tandem solution strategy with (approximate) Picard linearization

Consider re-writing the steady nodal residual RΦ, see [17] for full details, as

RΦ Uð Þ ¼ C½ � � D½ �ð ÞU, (17)

where C½ � and D½ � are (sparse) matrices that account for the convective and diffusive contribu-

tions to the nodal residual vector RΦ. Matrix D½ � is constant for isothermal, incompressible

flows whereas it depends upon the flow variables through molecular viscosity in the case of

compressible flows. Matrix C½ � depends upon U for both compressible and incompressible

flows. Both matrices can be computed analytically as described in [17]. What we refer to as a

Picard linearization consists in the following approximation

J ≈ C½ � � D½ �, (18)

which amounts to neglect the dependence of matrices C½ � and D½ � upon U when differentiating

the residual, written as in Eq. (17).

Once the mean flow solution has been advanced over a single pseudo-time step using the

approximate Picard linearization, keeping the turbulent viscosity frozen, the turbulent variable

is advanced over one or more (typically ten) pseudo-time steps using a FD Jacobian approxi-

mation (described in Section 3.3.2) with frozen mean flow variables. Blanco and Zingg [18]

adopt a similar strategy, but keep iterating the turbulence transport equation until its residual

has become lower than that of the mean flow equations. The loosely coupled solution strategy

is a choice often made as it “allows for the easy interchange of new turbulence models” [19]

and also reduces the storage [18], compared to a fully coupled approach. However, due to the

uncoupling between the mean flow and the turbulent transport equations, the tandem solution

strategy never yields quadratic convergence nor it is always able to drive the nodal residual to

machine zero. The last statement cannot be generalized, since Blanco and Zingg [16, 20] report

convergence to machine zero for their loosely coupled approach on two-dimensional unstruc-

tured grids. However, even if convergence to machine zero is difficult to achieve, the nodal

residual is always sufficiently converged for any practical “engineering” purpose and close

enough to “true” steady-state solution to be a good initial guess for Newton’s method.

3.3.2. Fully coupled solution strategy with FD Newton linearization

Once the tandem solution strategy has provided a good approximation to the steady flow, or

when dealing with unsteady flows, in which case the solution at a given time level is generally
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a good approximation to the one sought at the next time level, it becomes very attractive to

take advantage of the quadratic convergence of Newton’s method. In order to do so, however,

the mean flow and the turbulence transport equations must be solved fully coupled and the

Jacobian matrix J½ � must be accurate. We take advantage of the compactness of the computa-

tional stencil required by FS schemes to compute a close approximation to the true Jacobian

matrix even for second-order accurate discretizations. The analytical evaluation of the Jacobian

matrix, though not impossible [5, 21], is rather cumbersome and thus this approach is not

pursued here.

When the equations are fully coupled, the structure of the Jacobian matrix J½ � is naturally

organized into small dense blocks of order m. This has implications both in terms of storage,

since it is possible to reduce the length of the integer pointers that define the Compressed

Sparse Row (CSR) data structure of the sparse matrix, and also in the design of the

preconditioner for solving the large linear system at each Newton step, where division opera-

tions can be efficiently replaced by block matrix factorizations. We will address these issues in

detail in the next section. Two neighboring gridpoints, i and j, in the mesh will contribute two

block entries, Jij and Jji, to the global Jacobian matrix J½ �. Each of these two block entries (say Jij,

for instance) will be computed by assembling elemental contributions coming from all the cells

that share vertex i, as follows

Jij ¼
X

e∍i

Jeij: (19)

Eq. (19) follows by applying the sum rule of differentiation and by observing that the nodal

residual itself is a sum of contributions from the elements that share vertex i, see Figure 1(b).

Specifically, element Jeij accounts for the contribution of cell e to the residual change at gridpoint

i, due to a change in the state vector of a neighboring gridpoint j that belongs to the same

element e. The contribution of cell e to the element p; qð Þ of the block Jij is computed from the

following one-sided FD formula

Jei, j

� �

p,q
¼

Re
g

� �p

i
Ui;

bU
q

j ;…

� �
� Re

g

� �
Ui;Uj;…
� �

ε

1 ≤ p, q ≤m; i, j∈ e, (20)

where Re
g

� �p

i
is the pth component of the contribution of cell e to the nodal residual of gridpoint i.

In Eq. (20) we have emphasized that Re
g

� �

i
only depends upon the flow state of the dþ 1 vertices

of cell e, which include both i and j. The first partial derivative, Re
g

� �p

i
Ui;

bU
q

j ;…

� �
is computed

by perturbing the qth component of the conserved variables vector at gridpoint j as follows

bUq
j ¼ u1j ; u

2
j ;…; u

q
j þ ε u

q
j

� �
;…; umj

� �
, (21)

where ε is a “small” quantity. Due to the use of a one-sided FD formula, the FD approximation

(20) of the Jacobian entry is affected by a truncation error which is proportional to the first

Multilevel Variable-Block Schur-Complement-Based Preconditioning for the Implicit Solution of the Reynolds…
http://dx.doi.org/10.5772/intechopen.72043

51



power of ε. Small values of ε keep the truncation error small, but too small values may lead to

round-off errors. Following [21], ε is computed as

ε xð Þ ¼ ffiffiffiffiffiffiffi

εmc
p

max jxj; 1ð Þ sgn xð Þ: (22)

From a coding viewpoint, the same loop over all cells used to build the nodal residual Rg is

also used to assemble matrix J½ �. The operations to be performed within each cell are the

following: i) perturb each of the m components of the conserved variables vector of the dþ 1

vertices of cell e; ii) evaluate the residual contribution to each of the vertices; iii) calculate the

Jacobian entries according to Eq. (20). While looping over cell e, this contributes dþ 1ð Þ2 block
entries to the global matrix J½ �. Moreover, it follows that the cost of a Jacobian evaluation is

equal to m� dþ 1ð Þ residual evaluations, which can be quite a large number. For instance, for

a 3D compressible RANS calculation using a one-equation turbulence model,m� dþ 1ð Þ ¼ 24.

In this study, it was decided to store the Jacobian matrix in memory rather than using a

Jacobian-free (JFNK), as the Jacobian matrix is relatively sparse even for a second-order accu-

rate discretization due to the compactness of the stencil. The JFNK approach avoids assembling

and, more important, storing the Jacobian matrix. However, the matrix-vector product is

replaced with the Jacobian matrix by FD formulae which requires extra costly FS residual

evaluations. Note that the JFNK method still requires the construction of a preconditioner to

be used by the iterative linear solver, often an Incomplete Lower Upper factorization, which is

typically constructed using a lower order approximation of the residual vector. Matrix-free

preconditioners might also be used [22], saving a huge storage at the expense of extra CPU

cost. These latter are referred to as MFNK methods. Although JFNK or MFNK approaches

should certainly be favored from the viewpoint of memory occupation, it cannot always be

“assumed that the Jacobian-free matrix-vector products are inherently advantageous in terms

of computing time” [13].

The compactness of the FS stencil, which never extends beyond the set of distance-1 neighbors

even for a second-order-accurate space-time discretization, offers two advantages. On one

hand, apart from the truncation and round-off errors involved in the FD derivatives, the

numerical Jacobian matrix is a close approximation of the analytical Jacobian, even for a

second-order-accurate discretization. This feature is crucial for retaining the quadratic conver-

gence properties of Newton’s algorithm. On the other hand, it is considerably sparser than that

obtained using more traditional FV discretizations, which typically extend up to distance-2 [1]

or even distance-3 neighbors [8]. In these latter cases, contributions from the outermost

gridpoints in the stencil have to be neglected [1], or at least lumped [8], when constructing

the Jacobian approximation upon which the ILU(ℓ) preconditioner is built. These approxima-

tions are a potential source of performance degradation as reported in [8]. The memory

occupation required to store the Jacobian matrix still remains remarkable. Moreover, not only

the Jacobian matrix, but also its preconditioner needs to be stored in the computer memory. It

is therefore clear that a key ingredient that would help reducing memory occupation is an

effective preconditioner having a relatively small number of non-zero entries, as close as

possible to that of the Jacobian matrix. This demanding problem is addressed in the next

section.
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4. Linear solve and preconditioning

The previous discussions have pointed that the solution of the large nonsymmetric sparse

linear system (15) at each pseudo-time step is a major computational task of the whole flow

simulation, especially when the mean flow and the turbulence transport equations are solved

in fully coupled form, the Jacobian is computed exactly by means of FD, and the size of the

time-step is rapidly increased to recover Newton’s algorithm. For convenience, we write

system (15) in compact form as

Ax ¼ b, (23)

where A ¼ aij

 �

is the large and sparse coefficient matrix of, say, size n, and b is the right-hand

side vector. It is well established that, when A is highly nonsymmetric and/or indefinite,

iterative methods need the assistance of preconditioning to transform system (23) into an

equivalent one that is more amenable to an iterative solver. The transformed preconditioned

system writes in the form M�1Ax ¼ M�1b when preconditioning is applied from the left, or

AM�1y ¼ b with x ¼ M�1y when preconditioning is applied from the right. The matrix M is a

nonsingular approximation to A called the preconditioner matrix. In the coming sections, we

describe the development of an effective algebraic preconditioner for the RANS model.

4.1. Multi-elimination ILU factorization preconditioner

Incomplete LU factorization methods (ILUs) are an effective, yet simple, class of preconditioning

techniques for solving large linear systems. They write in the formM ¼ LU, where L and U are

approximations of the L and U factors of the standard triangular LU decomposition of A. The

incomplete factorization may be computed directly from the Gaussian Elimination (GE) algo-

rithm, by discarding some entries in the L and U factors according to various strategies, see [3].

A stable ILU factorization is proved to exist for arbitrary choices of the sparsity pattern of L and

U only for particular classes of matrices, such as M-matrices [23] and H-matrices with positive

diagonal entries [24]. However, many techniques can help improve the quality of the

preconditioner on more general problems, such as reordering, scaling, diagonal shifting,

pivoting and condition estimators [25–28]. As a result of this recent development, in the past

decade successful experience have been reported using ILU preconditioners in areas that were of

exclusive domain of direct solution methods like, in circuits simulation, power system networks,

chemical engineering plants modeling, graphs and other problems not governed by PDEs, or in

areas where direct methods have been traditionally preferred, such as structural analysis, semi-

conductor device modeling, computational fluid dynamics (see [29–33]).

Multi-elimination ILU factorization is a powerful class of ILU preconditioners, which com-

bines the simplicity of ILU techniques with the robustness and high degree of parallelism of

domain decomposition methods [34]. It is developed on the idea that, due to sparsity, many

unknowns of a linear system are not coupled by an equation (i.e. they are independent) and thus

they can be eliminated simultaneously at a given stage of GE. If the, say m, independent

Multilevel Variable-Block Schur-Complement-Based Preconditioning for the Implicit Solution of the Reynolds…
http://dx.doi.org/10.5772/intechopen.72043

53



unknowns are numbered first, and the other n�m unknowns last, the coefficient matrix of the

system is permuted in a 2�2 block structure of the form

PAPT ¼
D F

E C

� �

, (24)

where D is a diagonal matrix of dimension m and C is a square matrix of dimension n�m. In

multi-elimination methods, a reduced system is recursively constructed from (24) by comput-

ing a block LU factorization of PAPT of the form

D F

E C

� �

¼
L 0

G In�m

� �

�
U W

0 A1

� �

, (25)

where L and U are the triangular factors of the LU factorization of D, A1 ¼ C� ED�1F is the

Schur complement with respect to C, In�m is the identity matrix of dimension n�m, and we

denote G ¼ EU�1 and W ¼ L�1F. The reduction process can be applied another time to the

reduced system with A1, and recursively to each consecutively reduced system until the Schur

complement is small enough to be solved with a standard method such as a dense LAPACK

solver [35]. Multi-elimination ILU factorization preconditioners may be obtained from the

decomposition (25) by performing the reduction process inexactly, by dropping small entries

in the Schur complement matrix and/or factorizing D approximately at each reduction step.

These preconditioners exhibit better parallelism than conventional ILU algorithms, due to the

recursive factorization. Additionally, for comparable memory usage, they may be significantly

more robust especially for solving large problems as the reduced system is typically small and

better conditioned compared to the full system.

The factorization (25) defines a general framework which may accommodate for many differ-

ent methods. An important distinction between various methods is rooted in the choice of the

algorithm used to discover sets of independent unknowns. Many of these algorithms are

borrowed from graph theory, where such sets are referred to as independent sets. Denoting as

G ¼ V;Eð Þ the adjacency graph of A, where V ¼ v1; v2;…; vnf g is the set of vertices and E the

set of edges, a vertex independent set S is defined as a subset of V such that

∀vi ∈S, ∀vj ∈ S : vi; vj
� �

∉E: (26)

The set S is maximal if there is no other independent set containing S strictly [36]. Independent

sets in a graph may be computed by simple greedy algorithms which traverse the vertices in

the natural order 1, 2,…, n, mark each visited vertex v and all of its nearest neighbors

connected to v by an edge, and add v and each visited node that is not already marked to the

independent set [37]. As an alternative to the greedy algorithm, the nested dissection ordering

[38], mesh partitioning, or further information from the set of nested finite element grids of the

underlying problem can be used [39–41].

The multilevel preconditioner considered in our study is the Algebraic Recursive Multilevel

Solvers (ARMS) introduced in [25], which uses block independent sets computed by the simple
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greedy algorithm. Block independent sets are characterized by the property that unknowns of

two different sets have no coupling, while unknownswithin the same set may be coupled. In this

case, the matrix D appearing in (24) is block diagonal, and may typically consist of large-sized

diagonal blocks that are factorized by an ILU factorizationwith threshold (ILUT [42]) formemory

efficiency. In theARMS implementation described in [25], first the incomplete triangular factors L,

U ofD are computed by one sweep of ILUT, and an approximationW to L
�1
F is also computed.

In a second loop, an approximationG to EU
�1

and an approximate Schur complement matrixA1

are derived. This holds at each reduction level. At the last level, another sweep of ILUT is applied

to the (last) reduced system. The blocksW andG are stored temporarily, and then discarded from

the data structure after the Schur complementmatrix is computed. Only the incomplete factors of

D at each level, those of the last level Schur matrix, and the permutation arrays are needed for the

solving phase. By this implementation, dropping can be performed separately in the matrices L,

U, W , G, A1. This in turns allows to factor D accurately without incurring additional costs in G

andW , achieving high computational andmemory efficiency. Implementation details and careful

selection of the parameters are always critical aspects to consider in the design of sparse matrix

algorithms. Next, we show how to combine the ARMS method with matrix compression tech-

niques to exploit the block structure ofA for better efficiency.

4.2. The variable-block ARMS factorization

The discretization of the Navier-Stokes equations for turbulent compressible flows assigns five

distinct variables to each grid point (density, scaled energy, two components of the scaled

velocity, and turbulence transport variable); these reduce to four for incompressible, constant

density flows, and to three if additionally the flow is laminar. If the, say ℓ, distinct variables

associated with the same node are numbered consecutively, the permuted matrix has a sparse

block structure with non-zero blocks of size ℓ� ℓ. The blocks are usually fully dense, as vari-

ables at the same node are mutually coupled. Exploiting any available block structure in the

preconditioner design may bring several benefits [43], some of them are explained below:

1. Memory. A clear advantage is to store the matrix as a collection of blocks using the variable-

block compressed sparse row (VBCSR) format, saving column indices and pointers for the

block entries.

2. Stability. On indefinite problems, computing with blocks instead of single elements enables

a better control of pivot breakdowns, near singularities, and other possible sources of

numerical instabilities. Block ILU solvers may be used instead of pointwise ILU methods.

3. Complexity. Grouping variables in clusters, the Schur complement is smaller and hopefully

the last reduced system is better conditioned and easier to solve.

4. Efficiency. A full block implementation, based on higher level optimized BLAS as compu-

tational kernels, may be designed leading to better flops to memory ratios on modern

cache-based computer architectures.

5. Cache effects. Better cache reuse is possible for block algorithms.
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It has been demonstrated that block iterative methods often exhibit faster convergence rate than

their pointwise analogues for the solution of many classes of two- and three-dimensional partial

differential equations (PDEs) [44–46]. For this reason, in the case of the simple Poisson’s equation

with Dirichlet boundary conditions on a rectangle 0; ℓ1ð Þ � 0; ℓ2ð Þ discretized uniformly by using

n1 þ 2 points in the interval 0; ℓ1ð Þ and n2 þ 2 points in 0; ℓ2ð Þ, it is often convenient to number

the interior points by lines from the bottom up in the natural ordering, so that one obtains a

n2 � n2 block tridiagonal matrix with square blocks of size n1 � n1; the diagonal blocks are

tridiagonal matrices and the off-diagonal blocks are diagonal matrices. For large finite element

discretizations, it is common to use substructuring, where each substructure of the physical mesh

corresponds to one sparse block of the system. If the domain is highly irregular or the matrix

does not correspond to a differential equation, finding the best block partitioning is much less

obvious. In this case, graph reordering techniques are worth considering.

The PArameterized BLock Ordering (PABLO) method proposed by O’Neil and Szyld is one of

the first block reordering algorithms for sparse matrices [47]. The algorithm selects groups of

nodes in the adjacency graph of the coefficient matrix such that the corresponding diagonal

blocks are either full or very dense. It has been shown that classical block stationary iterative

methods such as block Gauss-Seidel and SOR methods combined with the PABLO ordering

require fewer operations than their point analogues for the finite element discretization of a

Dirichlet problem on a graded L-shaped region, as well as on the 9-point discretization of the

Laplacian operator on a square grid. The complexity of the PABLO algorithm is proportional

to the number of nodes and edges in both time and space.

Another useful approach to compute dense blocks in the sparsity pattern of a matrix A is the

method proposed by Ashcraft in [48]. The algorithm searches for sets of rows or columns

having the exact same pattern. From a graph viewpoint, it looks for vertices of the adjacency

graph V;Eð Þ of A having the same adjacency list. These are also called indistinguishable nodes or

cliques. The algorithm assigns a checksum quantity to each vertex, using the function

chk uð Þ ¼
X

u;wð Þ∈E

w, (27)

and then sorts the vertices by their checksums. This operation takes ∣E∣þ ∣V∣ log ∣V∣ time. If u

and v are indistinguishable, then chk uð Þ ¼ chk vð Þ. Therefore, the algorithm examines nodes

having the same checksum to see if they are indistinguishable. The ideal checksum function

would assign a different value for each different row pattern that occurs but it is not practical

because it may quickly lead to huge numbers that may not even be machine-representable.

Since the time cost required by Ashcraft’s method is generally negligible relative to the time it

takes to solve the system, simple checksum functions such as (27) are used in practice [48].

On the other hand, sparse unstructured matrices may sometimes exhibit approximate dense

blocks consisting mostly of non-zero entries, except for a few zeros inside the blocks. By treating

these few zeros as non-zero elements, with a little sacrifice of memory, a block ordering may be

generated for an iterative solver. Approximate dense blocks in a matrix may be computed by

numbering consecutively rows and columns having a similar non-zero structure. However,

this would require a new checksum function that preserves the proximity of patterns, in the
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sense that close patterns would result in close checksum values. Unfortunately, this property

does not hold true for Ashcraft’s algorithm in its original form. In [49], Saad proposed to

compare angles of rows (or columns) to compute approximate dense structures in a matrix A.

Let C be the pattern matrix of A, which by definition has the same pattern as A and the non-

zero values are equal to 1. The method proposed by Saad computes the upper triangular part

of CCT . Entry i; jð Þ is the inner product (the cosine value) between row i and row j of C for j > i.

A parameter τ is used to gauge the proximity of row patterns. If the cosine of the angle

between rows i and j is smaller than τ, row j is added to the group of row i. For τ ¼ 1 the

method will compute perfectly dense blocks, while for τ < 1 it may compute larger blocks

where some zero entries are padded in the pattern. To speed up the search, it may be conve-

nient to run a first pass with the checksum algorithm to detect rows having an identical

pattern, and group them together; then, in a second pass, each non-assigned row is scanned

again to determine whether it can be added to an existing group. Two important performance

measures to gauge the quality of the block ordering computed are the average block density

(av_bd) value, defined as the amount of non-zeros in the matrix divided by the amount of

elements in the non-zero blocks, and the average block size (av_bs) value, which is the ratio

between the sum of dimensions of the square diagonal blocks divided by the number of

diagonal blocks. The cost of Saad’s method is closer to that of checksum-based methods for

cases in which a good blocking already exists, and in most cases it remains inferior to the cost

of the least expensive block LU factorization, i.e. block ILU(0).

Our recently developed variable-block variant of the ARMS method (VBARMS) incorporates

an angle-based compression technique during the factorization to detect fine-grained dense

structures in the linear system automatically, without any users knowledge of the underlying

problem, and exploits them to improve the overall robustness and throughput of the basic

multilevel algorithm [50]. It is simpler to describe VBARMS from a graph point of view.

Suppose to permute A in block form as

~A ≈PBAP
T
B ¼

~A11
~A12 ⋯ ~A1p

~A21
~A22 ⋯ ~A2p

⋮ ⋮ ⋱ ⋮

~Ap1
~Ap2 ⋯ ~App

2

6

6

6

6

4

3

7

7

7

7

5

, (28)

where the diagonal blocks ~Aii, i ¼ 1,…, p are ni � ni and the off-diagonal blocks ~Aij are ni � nj.

We use upper case letters to denote matrix sub-blocks and lower case letters for individual

matrix entries. We may represent the adjacency graph of ~A by the quotient graph of Aþ AT

[36]. Calling B the partition into blocks given by (28), we denote as G=B ¼ VB;EBf g the

quotient graph obtained by coalescing the vertices assigned to the block ~Aii (for i ¼ 1,…, p)

into a supervertex Yi. In other words, the entry in position i; jð Þ of ~A is a block of dimension

∣Yi∣� ∣Yj∣, where ∣X∣ is the cardinality of the set X. With this notation, the quotient graph

G=B ¼ VB;EBf g is defined as

VB ¼ Y1;…;Yp

� 

, EB ¼ Yi;Yj

� �

j∃v∈Yi;w∈Yj s:t: v;wð Þ∈E
� 

: (29)
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An edge connects two supervertices Yi and Yj if there exists an edge from a vertex in Aii to a

vertex in Ajj in the graph V;Ef g of Aþ AT .

The complete pre-processing and factorization process of VBARMS consists of the following steps.

Step 1. Find the block ordering PB of A such that, upon permutation, the matrix PBAP
T
B has

fairly dense non-zero blocks. We use the angle-based graph compression algorithm proposed

by Saad and described earlier to compute exact or approximate block structures in A.

Step 2. Scale the matrix at Step 1 in the form S1PBAP
T
BS2 using two diagonal matrices S1 and S2,

so that the 1-norm of the largest entry in each row and column is smaller or equal than 1.

Step 3. Find the block independent sets ordering PI of the quotient graph G=B ¼ VB;EBf g.

Apply the permutation to the matrix obtained at Step 2 as

PIS1PBAP
T
BS2P

T
I ¼

D F

E C

� �

: (30)

We use a simple form of weighted greedy algorithm for computing the ordering PI . The

algorithm is the same as the one used in ARMS, and described in [25]. It consists of traversing

the vertices G=B in the natural order 1, 2,…, n, marking each visited vertex v and all of its

nearest neighbors connected to v by an edge and adding v and each visited node that is not

already marked to the independent set. We assign the weight ∥Y∥F to each supervertex Y.

In the 2� 2 partitioning (30), the upper left-most matrix D is block diagonal like in ARMS.

However, due to the block permutation, the diagonal blocks of D are additionally block sparse

matrices, as opposed to simply sparse matrices in ARMS and in other forms of multilevel

incomplete LU factorizations, see [51, 52]. The matrices F, E, C are also block sparse because

of the same reason.

Step 4. Factorize the matrix (30) in the form

D F

E C

� �

¼
L 0

EU�1 I

� �

�
U L�1F

0 A1

 !

, (31)

where I is the identity matrix of appropriate size, and form the reduced system with the Schur

complement

A1 ¼ C� ED�1F: (32)

The Schur complement is also block sparse and has the same block partitioning of C.

Steps 2–4 can be repeated on the reduced system a few times until the Schur complement is

small enough. After one additional level, we obtain

ð33Þ

that can be factored as
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ð34Þ

Denote as Aℓ the reduced Schur complement matrix at level ℓ, for ℓ > 1. After scaling and

preordering Aℓ, a system with the matrix

P
ℓð Þ
I D

ℓð Þ
1 AℓD

ℓð Þ
2 P

ℓð Þ
I

� �T
¼

Dℓ Fℓ

Eℓ Cℓ

� �

¼
Lℓ 0

EℓU
�1
ℓ

I

� �

�
Uℓ L�1

ℓ
Fℓ

0 Aℓþ1

 !

(35)

needs to be solved, with

Aℓþ1 ¼ Cℓ � EℓD
�1
ℓ
Fℓ: (36)

Calling

xℓ ¼
y
ℓ

zℓ

� �

, bℓ ¼
f
ℓ

g
ℓ

� �

(37)

the unknown solution vector and the right-hand side vector of system (35), the solution

process with the above multilevel VBARMS factorization consists of level-by-level forward

elimination followed by an exact solution on the last reduced system and suitable inverse

permutation. The solving phase is sketched in Algorithm 1.

In VBARMS, we perform the factorization approximately, for memory efficiency. We use block

ILU factorization with threshold to invert inexactly both the upper leftmost matrix Dℓ ≈LℓUℓ at

each level ℓ, and the last level Schur complement matrix Aℓmax
≈ LSUS. The block ILU method

used in VBARMS is a straightforward block variant of the one-level pointwise ILUTalgorithm.

We drop small blocks B∈RmB�nB in Lℓ, Uℓ, LS, US whenever ∥B∥F
mB �nB

< t, for a given user-defined

threshold t. The block pivots in block ILU are inverted exactly by using GE with partial

pivoting. In assembling the Schur complement matrix Aℓþ1 at level ℓ, we take advantage of

the finest block structure of Dℓ, Fℓ, Eℓ, Cℓ, imposed by the block ordering PB on the small

(usually dense) blocks in the diagonal blocks of Dℓ and the corresponding small off-diagonal

blocks in Eℓ and Fℓ; we call optimized level-3 BLAS routines [53] for computing Aℓþ1 in

Eq. (36). We do not drop entries in the Schur complement, except at the last level. The same

threshold is applied in all these operations.

The VBARMS code is developed in the C language and is adapted from the existing ARMS

code available in the ITSOL package [54]. The compressed sparse storage format of ARMS is

modified to store block vectors and block matrices of variable size as a collection of contiguous

non-zero dense blocks (we refer to this data storage format as VBCSR). First, we compute the

factors Lℓ, Uℓ and L
�1

ℓ
Fℓ by performing a variant of the IKJ version of the Gaussian Elimination

algorithm, where index I runs from 2 to mℓ, index K from 1 to I � 1ð Þ and index J from K þ 1ð Þ

to nℓ. This loop applies implicitly L
�1

ℓ
to the block row Dℓ; Fℓ½ � to produce Uℓ; L

�1

ℓ
Fℓ

h i

. In the

second loop, Gaussian Elimination is performed on the block row Eℓ;Cℓ½ � using the multipliers
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computed in the first loop to give EℓU
�1

ℓ
and an approximation of the Schur complement Aℓþ1.

Then, after Step 1, we permute explicitly the matrix at the first level as well as the matrices

involved in the factorization at each new reordering step. For extensive performance assess-

ment results of the VBARMS method, we point the reader to [50].

Algorithm 1 VBARMS_Solve(Aℓþ1, bℓ). The solving phase with the VBARMS method.

Require: ℓ∈N∗, ℓmax ∈N
∗, bℓ ¼ f

ℓ
; g

ℓ

� �T

1: Solve Lℓy ¼ f
ℓ

2: Compute g0
ℓ
¼ g

ℓ
� EℓU

�1
ℓ
y

3: if ℓ ¼ ℓmax then

4: Solve Aℓþ1zℓ ¼ g0
ℓ

5: else

6: Call VBARMS_Solve(Aℓþ1, g
0

ℓ
)

7: end if

8: Solve Uℓyℓ ¼ y� L�1
ℓ
Fℓzℓ


 �

5. Numerical experiments

In this section, we illustrate the performance of the VBARMS method for solving a suite of block

structured linear systems arising from an implicit Newton-Krylov formulation of the RANS equa-

tions in the turbulent incompressible flow analysis past a three-dimensional wing. On multicore

machines, the quotient graph G=B is split into distinct subdomains, and each of them is assigned to

a different core. Following the parallel framework described in [55], we separate the nodes

assigned to the ith subdomain into interior nodes, that are those coupled by the equations only with

the local variables, and interface nodes, those that may be coupled with the local variables stored on

processor i as well as with remote variables stored on other processors (see Figure below).

local variables

local interface

variables

external interface

variables
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The vector of the local unknowns xi and the local right-hand side bi are split accordingly in two

separate components: the subvector corresponding to the internal nodes followed by the

subvector of the local interface variables

xi ¼
ui

yi

� �

, bi ¼
f i
gi

� �

: (38)

The rows of A indexed by the nodes of the ith subdomain are assigned to the ith processor.

These are naturally separated into a local matrix Ai acting on the local variables xi ¼ ui; yi
� �T

,

and an interface matrix Ui acting on the remotely stored subvectors of the external interface

variables yi,ext. Hence, we can write the local equations on processor i as

Aixi þUi,extyi,ext ¼ bi (39)

or, in expanded form, as

Bi Fi

Ei Ci

� �

ui

yi

� �

þ
0
P

j∈Ni
Eijyj

 !

¼
f i
gi

� �

, (40)

where Ni is the set of subdomains that are neighbors to subdomain i and the submatrix Eijyj

accounts for the contribution to the local equation from the jth neighboring subdomain. Note

that matrices Bi, Ci, Ei , and Fi still preserve the fine block structure imposed by the block

ordering PB. From a code viewpoint, the quotient graph is initially distributed amongst the

available processors; then, the built-in parallel hypergraph partitioner available in the Zoltan

package [56] is applied on the distributed data structure to compute an optimal partitioning of

the quotient graph that can minimize the amount of communications.

At this stage, the VBARMS method described in Section 4.2 can be used as a local solver for

different types of global preconditioners. In the simplest parallel implementation, the so-

called block-Jacobi preconditioner, the sequential VBARMS method can be applied to invert

approximately each local matrix Ai. The standard Jacobi iteration for solving Ax ¼ b is

defined as

xnþ1 ¼ xn þD�1 b� Axnð Þ ¼ D�1 Nxn þ bð Þ, (41)

where D is the diagonal of A, N ¼ D� A and x0 is some initial approximation. In cases we

have a graph partitioned matrix, the matrix D is block diagonal and the diagonal blocks of D

are the local matrices Ai. The interest to consider the block Jacobi preconditioner is its inherent

parallelism, since the solves with the matrices Ai are performed independently on all the

processors and no communication is required.

If the diagonal blocks of the matrix D are enlarged in the block-Jacobi method so that they

overlap slightly, the resulting preconditioner is called Schwarz preconditioner. Consider again

a graph partitioned matrix with N nonoverlapping sets W0
i , i ¼ 1,…, N and W0 ¼ ∪

N
i¼1W

i
0. We

define a δ-overlap partition

Multilevel Variable-Block Schur-Complement-Based Preconditioning for the Implicit Solution of the Reynolds…
http://dx.doi.org/10.5772/intechopen.72043

61



Wδ ¼ ⋃
N

i¼1

Wδ

i (42)

where Wδ

i ¼ adj Wδ�1
i

� �

and δ > 0 is the level of overlap with the neighboring domains. For

each subdomain, we define a restriction operator Rδ

i , which is an n� n matrix with the j; jð Þth

element equal to 1 if j∈Wδ

i , and zero elsewhere. We then denote

Ai ¼ Rδ

iAR
δ

i : (43)

The global preconditioning matrix MRAS is defined as

M�1
RAS ¼

X

s

i¼1

RT
i A

�1
i Ri (44)

and named as the Restricted Additive Schwarz (RAS) preconditioner [3, 57]. Note that the

preconditioning step still offers a good scope par parallelism, as the different components of

the error update are formed independently. However, due to overlapping some communica-

tion is required in the final update, as the components are added up from each subdomain. In

our experiments, the overlap used for RAS was the level 1 neighbors of the local nodes in the

quotient graph.

A third global preconditioner that we consider in this study is based on the Schur complement

approach. In Eq. (40), we can eliminate the vector of interior unknowns ui from the first

equations to compute the local Schur complement system

Siyi þ
X

j∈Ni

Eijyj ¼ gi � EiB
�1
i f i � g0i, (45)

where Si denotes the local Schur complement matrix

Si ¼ Ci � EiB
�1
i Fi: (46)

The local Schur complement equations considered altogether write as the global Schur com-

plement system

S1 E12 … E1p

E21 S2 … E2p

⋮ ⋱ ⋮

Ep1 Ep�1,2 … Sp

0

B

B

B

@

1

C

C

C

A

y1
y2
⋮

yp

0

B

B

B

B

@

1

C

C

C

C

A

¼

g01
g02
⋮

g0p

0

B

B

B

B

@

1

C

C

C

C

A

, (47)

where the off-diagonal matrices Eij are available from the parallel distribution of the linear

system. One preconditioning step with the Schur complement preconditioner consists in solving
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approximately the global system (47), and then recovering the ui variables from the local equa-

tions as

ui ¼ B�1
i f i � Fiyi

 �

(48)

at the cost of one local solve. We solve the global system (47) by running a few steps of the

GMRES method preconditioned by a block diagonal matrix, where the diagonal blocks are the

local Schur complements Si. The factorization

Si ¼ LSiUSi (49)

is obtained as by-product of the LU factorization of the local matrix Ai,

Ai ¼

LBi
0

EiU
�1
Bi

LSi

 !

UBi
L�1
Bi
Fi

0 USi

 !

(50)

which is by the way required to compute the ui variables in Eq. (48).

5.1. Results

The parallel experiments were run on the large-memory nodes (32 cores/node and 1 TB of

memory) of the TACC Stampede system located at the University of Texas at Austin. TACC

Stampede is a 10 PFLOPS (PF) Dell Linux Cluster based on 6400+ Dell PowerEdge server

nodes, each outfitted with 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon Phi

Coprocessor (MIC Architecture). We linked the default vendor BLAS library, which is MKL.

Although MKL is multi-threaded by default, in our runs we used it in a single-thread mode

since our MPI-based parallelisation employed one MPI process per core (communicating

via the shared memory for the same-node cores). We used the Flexible GMRES (FGMRES)

method [58] as Krylov subspace method, a tolerance of 1:0e� 6 in the stopping criterion and a

Figure 2. Geometry and mesh characteristics of the DPW3 Wing-1 problem proposed in the 3rd AIAA drag prediction

workshop. Note that problems RANS1 and RANS2 correspond to the same mesh, and are generated at two different

Newton steps.
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maximum number of iteration equal to 1000. Memory costs were calculated as the ratio

between the sum of the number of non-zeros in the local preconditioners and the sum of the

number of non-zeros in the local matrices Ai.

In our experiments, we analyzed the turbulent incompressible flow past a three-dimensional

wing illustrated in Figure 2 using the EulFS code developed by the second author [59]. The

geometry, called DPW3 Wing-1, was proposed in the 3rd AIAA Drag Prediction Workshop

[35]. Flow conditions are 0.5 ∘ angle of attack and Reynolds number based on the reference

chord equal to 5 � 106. The freestream turbulent viscosity is set to 10% of its laminar value. In

Matrix Method Graph time (s) Factorization time (s) Solving time (s) Total time (s) Its Mem

BJ + VBARMS 17.3 8.58 41.54 50.13 34 2.98

RANS1 RAS + VBARMS 17.4 10.08 42.28 52.37 19 3.06

SCHUR + VBARMS 17.6 11.94 55.99 67.93 35 2.57

BJ + VBARMS 17.0 16.72 70.14 86.86 47 4.35

RANS2 RAS + VBARMS 16.8 21.65 80.24 101.89 39 4.49

SCHUR + VBARMS 17.5 168.85 173.54 342.39 24 6.47

BJ + VBARMS 27.2 99.41 187.95 287.36 154 4.40

RANS3 RAS + VBARMS 25.2 119.32 90.47 209.79 71 4.48

SCHUR + VBARMS 22.0 52.65 721.67 774.31 140 4.39

Table 1. Experiments on the DPW3 Wing-1 problem. The RANS1, RANS2 and RANS3 test cases are solved on 32

processors. We ran one MPI process per core, so in these experiments we used shared memory on a single node.

Matrix Method Graph time (s) Factorization time (s) Solving time (s) Total time (s) Its Mem

BJ + VBARMS 51.5 12.05 105.89 117.94 223 3.91

RANS4 RAS + VBARMS 43.9 14.05 91.53 105.58 143 4.12

SCHUR + VBARMS 39.3 15.14 289.89 305.03 179 3.76

RANS5 RAS + VBARMS 1203.94(1) 16.80 274.62 291.42 235 4.05

Table 2. Experiments on the DPW3 Wing-1 problem. The RANS4 and RANS5 test cases are solved on 128 processors.

Note (1): due to a persistent problem with the Zoltan library on this run, we report on the result of our experiment with

the metis (sequential) graph partitioner [60].

Solver Number of processors Graph time (s) Total time (s) Its Mem

8 38.9 388.37 27 5.70

16 28.0 219.48 35 5.22

RAS + VBARMS 32 17.0 101.49 39 4.49

64 16.0 54.19 47 3.91

128 18.2 28.59 55 3.39

Table 3. Strong scalability study on the RANS2 problem using parallel graph partitioning.
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Tables 1 and 2 we show experiments with the parallel VBARMS solver on the five meshes of

the DPW3Wing-1 problem. On the largest mesh we report on only one experiment, in Table 2,

as this is a resource demanding problem. In Table 3 we report on a strong scalability study on

the problem denoted as RANS2 by increasing the number of processors. Finally, in Table 4 we

show comparative results with parallel VBARMS against other popular solvers; the method

denoted as pARMS is the solver described in [55] using default parameters while the method

VBILUT is a variable-block incomplete lower-upper factorization with threshold from the

ITSOL package [54]. The results of our experiments show that the proposed preconditioner is

effective to reduce the number of iterations especially in combination with the Restricted

Additive Schwarz method, and exhibits good parallel scalability. A truly parallel implementa-

tion of the VBARMS method that may offer better numerical scalability will be considered as

the next step of this research.

6. Conclusions

The applicability of Newton’s method in steady flow simulations is often limited by the

difficulty to compute a good initial solution, namely, one lying in a reasonably small neighbor-

hood of the sought solution. This problem can now be overcome by introducing some approx-

imations in the first stages of the solution procedure. In the case of unsteady flow problems, on

the other hand, the use of Newton’s method in conjunction with a dual-time stepping proce-

dure is even more effective since the flow field computed at the preceding physical time level is

likely to be sufficiently close to the sought solution at the next time level to allow the use of

Newton’s algorithm right from the beginning of the sub-iterations in pseudo-time. On the

downside of Newton-Krylov methods is the need for efficiently preconditioned iterative algo-

rithms to solve the sparse linear system arising at each inner iteration (Newton step). The

stiffness of the linear systems to be solved increases when the Jacobian is computed “exactly”

and the turbulence transport equations are solved fully coupled with the mean flow equations.

In this chapter, we have presented a block multilevel incomplete factorization preconditioner for

solving sparse systems of linear equations arising from the implicit RANS formulation. The

method detects automatically any existing block structure in the matrix, without any user’s prior

Matrix Method Factorization time (s) Solving time (s) Total time (s) Its Mem

pARMS — — — — 6.63

RANS3 BJ + VBARMS 99.41 187.95 287.36 154 4.40

BJ + VBILUT 20.45 8997.82 9018.27 979 13.81

pARMS — — — — 5.38

RANS4 BJ + VBARMS 12.05 105.89 117.94 223 3.91

BJ + VBILUT 1.16 295.20 296.35 472 5.26

Table 4. Experiments on the DPW3 Wing-1 problem. The RANS3 test case is solved on 32 processors and the RANS4

problem on 128 processors. The dash symbol � in the table means that in the GMRES iteration the residual norm is very

large and the program is aborted.
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knowledge of the underlying problem, and exploits it to maximize computational efficiency. The

results of this chapter show that, by taking advantage of this block structure, the solver can be

more robust and efficient. Other recent studies on block ILU preconditioners have drawn similar

conclusions on the importance of exposing dense blocks during the construction of the incom-

plete LU factorization for better performance, in the design of incomplete multifrontal LU-

factorization preconditioners [61] and adaptive blocking approaches for blocked incomplete

Cholesky factorization [62]. We believe that the proposed VBARMS method can be useful for

solving linear systems also in other areas, such as in Electromagnetics applications [63–65].
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Nomenclature

Roman symbols

a artificial sound speed

d dimension of the space, d ¼ 2, 3

e0 specific total energy

h0 specific total enthalpy

ℓ level of fill in incomplete lower upper factorizations

m number of degrees of freedom within a gridpoint

n order of a matrix

nnz number of non-zero entries in a sparse matrix

n unit inward normal to the control surface

p static pressure

q flux vector due to heat conduction

t time

u velocity vector

x vector of the d Cartesian coordinates
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Ci median dual cell (control volume)

∂Ci boundary of the median dual cell (control surface)

E edges of a graph

G Að Þ graph of matrix A

M global mass matrix

ML left preconditioning matrix

Ma mach number

I identity matrix

Ni shape function

P permutation matrix

PrT turbulent Prandtl number

RΦ spatial residual vector

Re Reynolds’ number

T triangle or tetrahedron

U conserved variables vector

V vertices of a graph

VM lumped mass matrix

z parameter vector

Greek symbols

α angle of attack

Δt physical time step

Δτ pseudo-time step

ΔU ¼ Unþ1,kþ1 �Unþ1,k

εmc machine zero

r density

ν kinematic viscosity

~ν working variable in the turbulence transport equation

τ pseudo-time variable

τ Newtonian stress tensor
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Φ flux balance

Ω
e
i Petrov Galerkin weighting function

Subscript

i nodal index or row index of a matrix

j nodal index or column index of a matrix

e cell index

∞ Free-stream condition

Superscript

inv inviscid

k inner iterations counter

n physical time step counter

T transpose

vis viscous
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