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Abstract

In this chapter, we present the details of the derivation of an effective field theory (EFT) for a
Fermi gas of neutral dilute atoms and apply it to study the structure of both vortices and
solitons in superfluid Fermi gases throughout the BEC-BCS crossover. One of the merits of
the effective field theory is that, for both applications, it can provide some form of analytical
results. For one-dimensional solitons, the entire structure can be determined analytically,
allowing for an easy analysis of soliton properties and dynamics across the BEC-BCS
interaction domain. For vortices on the other hand, a variational model has to be proposed.
The variational parameter can be determined analytically using the EFT, allowing to also
study the vortex structure (variationally) throughout the BEC-BCS crossover.

Keywords: fermionic superfluids, superfluidity, effective field theory, solitons, vortices

1. Introduction

When cooling down a dilute cloud of fermionic atoms to ultralow temperatures, particles of

different spin type can form Cooper pairs and condense into a superfluid state. The properties

and features of these superfluid Fermi gases have been the subject of a considerable amount of

theoretical and experimental research [1, 2]. The opportunity to investigate a whole continuum

of inter-particle interaction regimes and the possibility to create a population imbalance result

in an even richer physics than that of superfluid Bose gases. In this chapter, we present an

effective field theory (EFT) suitable for the description of ultracold Fermi gases across the BEC-

BCS interaction regime in a wide range of temperatures. The merits of this formalism mainly
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lie in the fact that it is computationally much less requiring than the Bogoliubov-de Gennes

method, and that, in some cases, it can provide exact analytical solutions for the problem at

hand. In Section 2, we give a short overview of the path integral theory that forms the basis for

the EFT. In Section 3, we study the associated mean field theory for the description of homo-

geneous superfluids. In Section 4, we go beyond the mean-field approximation and describe

the framework of the EFT. Sections 5 and 6 are dedicated to the application of the EFT to two

important topological excitations: dark solitons and vortices.

2. Path integral theory and bosonification

The effective field theory for fermionic superfluids presented in this chapter is based on the

path integral formalism of quantum field theory. The advantage of this formalism lies in the

fact that the operators are replaced by fields, which can yield a more intuitive interpretation for

the physics of the system. Moreover, the fact that there are no operators make working with

functions of the quantum fields a lot easier.

In this section, the path integral description for ultracold Fermi gases will be briefly intro-

duced. Using the Hubbard-Stratonovich identity, the fermionic degrees of freedom can be

integrated out, resulting in an effective bosonic action. This effective bosonic action is the

object of interest of this chapter and will lie at the basis of the effective field theory. An

extended discussion of this section and the mean-field theory of the next section are given in

an earlier publication [3]. Comprehensive introductions to the path integral method include [4]

(Quantum Field Theory with Path Integrals), [5, 6] (The “classical” Path Integral), and [7]

(General review book on the Path Integrals and most of its applications).

2.1. A brief introduction to the path integral formalism

The partition function of a system described by the quantum field action functional S ϕ x; tð Þ;ϕ
�

x; tð Þ� can be expressed as a path integral [7]:

Z ¼

ð

Dϕx,τDϕx,τexp �SE ϕx,τ;ϕx,τ

h i� �

: (1)

Here, Dϕx,τ represents a sum over all possible space-time configurations of the field ϕ x; τð Þ,

and τ ¼ it indicates imaginary times running from τ ¼ 0 to τ ¼ ħβ with β ¼ 1= kBTð Þ. The

Euclidian action SE β
� �

of the system is found from the real-time action functional S tb; tað Þ

through the substitution

t ! �iτ ) S tb; tað Þ ! iSE β
� �

: (2)

For systems with an Euclidean action which is at most quadratic in the fields, the path integral

(1) can be calculated analytically. In particular, two distinct cases can be considered:

Bosonic path integral: The path integral sums over a bosonic (scalar, complex valued) field

Ψ x; τð Þ:

Superfluids and Superconductors8



ZB ¼

ð

DΨDΨexp �

ð

dτ

ð

dx

ð

dτ0
ð

dx
0

Ψ x; τð ÞA x; τ; x
0

; τ0
� �

Ψ x
0

; τ0
� �h i

� �

¼
1

det Að Þ
, (3)

For the case of a quadratic bosonic path integral, the integration over the complex field Ψ

reduces to a convolution of Gaussian integrals, which reduces to the inverse of the determinant

of the matrix A containing the coefficients of the quadratic form.

Fermionic path integral: The path integral sums over a fermionic (Grassmann, complex

valued) field ψ x; τð Þ:

ZF ¼

ð

Dψ

ð

Dψexp �

ð

dτ

ð

dx

ð

dτ0
ð

dx
0

ψ x; τð ÞA x; τ; x
0

; τ0
� �

ψ x
0

; τ0
� �h i

� �

¼ det Að Þ, (4)

In the case of spin-dependent fermionic fields, the matrix A becomes slightly more complex

since the spinor fields have multiple components1 to account for the spin degree of freedom.

The spinors ψ are described by anti-commuting Grassmann numbers [4, 8], thus satisfying

ψ2 ¼ 0. For the quadratic case, the fermionic path integral simply returns the determinant of

the matrix A.

Using the trace-log formula, these results can also be rewritten as:

ZB ¼ exp �Tr ln Að Þ½ �ð Þ, (5)

ZF ¼ exp þTr ln Að Þ½ �ð Þ: (6)

Partition functions with quadratic action functionals form the basis of the path integral formal-

ism. The usual approach for solving path integrals with higher order action functionals is to

reduce them to the quadratic forms given above by the means of transformations and/or

approximations.

In this chapter, the system of interest is an ultracold Fermi gas in which fermionic particles of

opposite pseudo-spin interact via an s-wave contact potential. The Euclidian action functional

for this system is given by

SE ¼

ð

ℏβ

0

dτ

ð

dx
X

σ∈ ↑;↓f g

ψσ xð Þ ℏ∂τ �
ℏ2

2mx
∇

2
x � μσ

� �	 


ψσ xð Þ

þ

ð

ℏβ

0

dτ

ð

dx

ð

dyψ
↑
xð Þψ

↓
yð Þgδ x� yð Þψ

↓
yð Þψ

↑
xð Þ,

(7)

where σ∈ ↑; ↓f g denotes the spin components of the fermionic spinor fields, the chemical

potentials μσ fix the amount of particles of each spin population, and g is the renormalized

interaction strength [9, 10], linking the interaction potential to the s-wave scattering length as:

1

The matrix A can be thought of as an infinite matrix composed of either 2� 2 or 4� 4 matrices, depending on whether

the spin-dependence of the fermionic field is considered in the theory.
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1

g
¼

m

4πℏ2as
�

ð

dk

2πð Þ3
m

ℏ2k2
: (8)

For the remainder of the chapter, the units

ℏ ¼ kB ¼ kF ¼ 2m ¼ 1 (9)

will be used, meaning that we work in the natural units of kF, EF, ωF ¼ EF=ℏ, and TF ¼ EF=kB.

Consequentially, the partition function of the ultracold Fermi gas can be written down as

Z ¼
Ð

DψσDψσexp �

ð

β

0

dτ

ð

dx
X

σ∈ ↑;↓f g

ψσ x; τð Þ
∂

∂τ
� ∇

2
x � μσ

� �

ψσðx; τÞ

0

@

2

6

4

þgψ
↑
x; τð Þψ

↓
ðx; τÞψ

↓
ðx; τÞψ

↑
ðx; τÞ

!#

,

(10)

where the label σ was explicitly added to the integration measure to show that the path

integration is performed also over both spin components of the spinor ψ. As noted above, only

quadratic path integrals can be solved analytically, meaning that an additional trick is needed2

to calculate the above partition sum (10). In the present treatment, this trick will be the

Hubbard-Stratonovich transformation.

2.2. Bosonification: the Hubbard-Stratonovich transformation

Using the Hubbard-Stratonovich identity [11–14],

exp �g

ð

d3xgψ
↑
ψ
↓
ψ
↓
ψ
↑

� �

¼

ð

DΨDΨexp

ð

d3x
Ψj j2

g
þ ψ

↑
ψ
↓
Ψþ ψ

↓
ψ
↑
Ψ

" # !

, (11)

it is possible to rewrite the action in a form that is quadratic in the fermionic fields ψ and ψ,

allowing for the fermionic degrees of freedom to be integrated out. The price of this transfor-

mation is the introduction of a new (auxiliary) bosonic field Ψ r; τð Þ, which can be interpreted

as the field of the Cooper pairs that will form the superfluid state. Diagramatically, the

Hubbard-Stratonovich identity removes the four-point vertex (quartic interaction term) and

replaces it with two three-point vertices (quadratic terms), as illustrated in Figure 1. It is

important to note that, although the Hubbard-Stratonovich transformation is an exact identity,

further calculations will require approximations for which the choice of collective field (or

“channel”) becomes important. Whereas the bosonic pair field is suitable for the superfluid

state, it will fail when one tries to use it to take into account interactions in the normal state.

It should therefore be pointed out that alternatives exist, notably Kleinert’s variational

2

Of course, it is always possible, given sufficient computational resources and time, to calculate the partition sum

numerically.
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perturbation theory, in which a classical collective field rather than a quantum collective field is

used. This allows for the simultaneous treatment of multiple collective fields [15], for example,

the pair field and the density field. For our present purposes, however, it is sufficient to restrict

ourselves to the superfluid state and describe it with a single collective field.

After applying the Hubbard-Stratonovich identity (11) to expression (10), the partition func-

tion becomes

Z ¼
Ð

DψσDψσ

Ð

DΨDΨexp �

ð

β

0

dτ

ð

dx
X

σ∈ ↑;↓f g

ψσ x; τð Þ
∂

∂τ
� ∇

2
x � μσ

� �

ψσðx; τÞ

0

@

2

6

4

�
Ψ x; τð Þj j2

g
� ψ

↑
x; τð Þψ

↓
ðx; τÞΨðx; τÞ � ψ

↓
ðx; τÞψ

↑
ðx; τÞΨðx; τÞ

!#

(12)

2.3. The resulting bosonic path integral

Since the path integral over the fermionic fields ψ and ψ is now quadratic, it can be performed

analytically using formula (4), resulting in the effective bosonic path integral [3]

Z ¼

ð

DΨDΨexp � �

ð

β

0

ð

dx
Ψ x; τð Þj j2

g
� Tr ln �G�1

� �� �

0

B

@

1

C

A

2

6

4

3

7

5
, (13)

where the components of the inverse Green’s function matrix �G�1 are given by

�G�1 x; τð Þ ¼

∂

∂τ
� ∇

2
x � μ

↑
�Ψ x; τð Þ

�Ψ x; τð Þ
∂

∂τ
þ ∇

2
x þ μ

↓

0

B

B

@

1

C

C

A

(14)

Since �G�1 depends on the bosonic field Ψ x; τð Þ, the action in the exponent is not quadratic,

and hence, the remaining bosonic path integral can still not be solved analytically. In order to

obtain a workable solution, two different approximations will be considered. First, a mean

field approximation (using a constant value forΨ) will be discussed in Section 3. Subsequently,

Figure 1. A diagrammatic representation of the different terms in the Hubbard-Stratonovich identity (11).
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this mean field theory will form the basis for a finite temperature effective field theory, which

also takes into account slow fluctuations of the pair field Ψ x; τð Þ. This theory will be presented

in Section 4.

3. The mean field theory

At first sight, the introduction of the auxiliary bosonic fields Ψ x; τð Þ and Ψ x; τð Þ through the

Hubbard-Stratonovich transformation seems to have been of little use; while the transforma-

tion enables us to perform the path integrals over the fermionic fields, we end up with path

integrals for Ψ x; τð Þ and Ψ x; τð Þ that still cannot be calculated exactly. The advantage of

switching to the bosonic pair fields, however, lies in the fact that they allow us to make a

physically plausible approximation based on our knowledge of the system. If we want to

investigate the superfluid state, we can assume that the most important contribution to the

path integral will come from the configuration in which all the bosonic pairs are condensed

into the lowest energy state of the system and form a homogeneous superfluid. This assump-

tion is most easily expressed in momentum-frequency representation q;mf g:

Ψ q;mð Þ !
ffiffiffiffiffiffi

βV
p

δ qð Þδm,0 � Δ, (15)

Ψ q;mð Þ !
ffiffiffiffiffiffi

βV
p

δ qð Þδm,0 � Δ
∗, (16)

where m characterizes the bosonic Matsubara frequencies ~ωm ¼ 2mπ=β, and V represents the

volume of the system. This approximation, which is called the saddle-point approximation for

the bosonic path integral, comes down to assuming that the pair field Ψ x; τð Þ takes on a

constant value Δ. By applying this approximation to the bosonic path integral in expression

(12) (i.e., after performing the Hubbard-Stratonovich transformation but before performing the

Grassmann integration over the fermionic fields), the resulting fermionic path integral can be

solved analytically using formula (4) to find the saddle-point expression for the partition

function:

Zsp ¼ exp
Δj j2

g
�
X

k, n
ln iωn � Ek þ ζð Þ �iωn � Ek � ζð Þ½ �

( )

: (17)

where ωn are the fermionic Matsubara frequencies ωn ¼ 2nþ 1ð Þπ=β. We have also introduced

the single-particle excitation energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2k þ Δ
2

q

with ξk ¼ k2 � μ, and we have defined the

average chemical potential μ and the imbalance chemical potential ζ as

μ ¼
μ
↑
þ μ

↓

2
and ζ ¼

μ
↑
� μ

↓

2
: (18)

The parameter ζ determines the population imbalance between the two spin populations. For

ζ ¼ 0, the numbers of particles of each spin type are equal, while for non-zero values of ζ, there

Superfluids and Superconductors12



will be more spin-up than spin-down particles or vice versa. The saddle-point partition func-

tion can now be rewritten in terms of the saddle-point thermodynamic potential per unit

volume Ωsp as

Zsp ¼ exp �βVΩsp

 �

: (19)

After performing the Matsubara summation over n [3] and replacing the sum over k by a

continuous integral in expression (17), we finally find for Ωsp:

Ωsp ¼ �
Δj j2

8πkFas
�

ð

dk

2πð Þ3
1

β
2cosh βEk

� �

þ 2cosh βζ
� �� �

� ξk �
Δj j2

2k2

( )

(20)

The saddle-point value Δsp for the pair field is found through the requirement that Δsp

minimizes Ωsp, which yields the gap equation:

∂Ωsp

∂Δ

�

�

�

�

T,μ,ζ

¼ 0 (21)

This is illustrated in Figure 2, which shows the thermodynamic potentialΩsp as a function of Δ

for several values of the imbalance chemical potential ζ. The superfluid state exists when Ωsp

reaches its minimum at a nonzero value of Δ. As ζ is increased, the normal state at Δ ¼ 0

develops and becomes the global minimum above a critical imbalance level. This transition

from the superfluid to the normal state under influence of increasing population imbalance is

known as the Clogston phase transition [16].

When working with a fixed number of particles, the chemical potential μ and the imbalance

chemical potential ζ have to be related to the fermion density nsp and density difference δnsp

(between the two spin populations) through the number equations

Figure 2. The thermodynamic potential Ωsp in function of Δ for several values of the imbalance chemical potential ζ, at

temperature T=TF ¼ 0:01 and chemical potential μ ¼ 1:3EF. The evolution of the normal state at Δ ¼ 0 as ζ increases

illustrates the Clogston phase transition.

An Effective Field Description for Fermionic Superfluids
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nsp ¼ �
∂Ωsp

∂μ

�

�

�

�

T,ζ,Δ

(22)

δnsp ¼ �
∂Ωsp

∂ζ

�

�

�

�

T,μ,Δ

(23)

Since in our units kF ¼ 1, the particle density nsp is fixed by nsp ¼ 1= 3π2
� �

. Given the input

parameters β, ζ, and as, the values Δ and μ can then be found from the coupled set of Eqs. (21)

and (22), while (23) fixes δnsp as a function of ζ. Solutions for Δsp and μ across the BEC-BCS

crossover are shown in Figure 3a and b.

4. The effective field theory

While the saddle-point approximation is a suitable model for the qualitative description

of homogeneous Fermi superfluids, it does not account for the effects of fluctuations of

the order parameter, nor does it include any excitations other than the single-particle

Bogoliubov excitations. To study the properties and dynamics of non-homogeneous sys-

tems, one needs to go beyond the limitations of a mean field theory. In this section, we

formulate an effective field theory (EFT) for the pair field Ψ r; tð Þ that can describe

nonhomogeneous Fermi superfluids in the BEC-BCS crossover at finite temperatures. To

this end, we return to the path integral expression (13) for the partition function, which

was obtained after performing the Hubbard-Stratonovich transformation and integrating

out the fermionic degrees of freedom. Since the exponent of this partition function only

depends on the fields Ψ r; tð Þ and Ψ r; tð Þ, we can define an effective bosonic action for the

pair field given by

Figure 3. Solutions for the pair field Δ and the average chemical potential μ in function of the interaction strength kFasð Þ�1

at temperature T=TF ¼ 0:01. The solution for Δ is shown for several values of the imbalance chemical potential ζ,

illustrating the transition from the superfluid to the normal state under influence of population imbalance.
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Seff ¼ SB � Tr ln �G
�1

� �� �

, (24)

where SB ¼ �
Ð

β

0

Ð

dx Ψ x;τð Þj j2

8 is the action for free bosonic fields. The inverse Green’s function

matrix �G
�1 for interacting fermions, which was defined in expression (14), can be separated

into its diagonal and off-diagonal components

�G
�1ðx, τÞ ¼ �G

�1
0 ðx, τÞ þ Fðx, τÞ

¼

∂

∂τ
� ∇

2
x
� μ

↑
0

0
∂

∂τ
þ ∇

2
x
þ μ

↓

0

B

B

@

1

C

C

A

þ
� 0 �Ψ ðx, τÞ

�Ψ ðx, τÞ 0

�

,
(25)

where �G
�1
0 describes free fermionic fields, while F describes the pairing of the fermions.

Using this decomposition, we can write the effective bosonic action functional (24) as

Sef f ¼ SB � Tr½lnð�G
�1
0 þ FÞ�

¼ SB � Tr½lnð�G
�1
0 Þ� � Tr½lnð1�G0FÞ�

¼ SB þ S0 þ

X

∞

p¼1

1

p
Tr½ðG0FÞ

p�:

(26)

While, in general, this infinite sum over all powers of the pair field cannot be calculated

analytically, there exist many possible approximations that lead to various theoretical treat-

ments of the ultracold Fermi gas. For example, the mean field saddle-point approximation

from the previous section can be retrieved by simply setting

F x; τð Þ ≈Fsp ¼
0 �Δ

�Δ 0

� �

(27)

in (26) and calculating the whole sum over p. In the Ginzburg-Landau (GL) treatment for

ultracold Fermi gases, the action is approximated by assuming small fluctuations of the pair

field Ψ x; τð Þ around the normal state Ψ ¼ 0. This assumption comes down to keeping only

terms up to p ¼ 2 in the sum in (26) and approximating F x; τð Þ by the following gradient

expansion

F x; τð Þ ≈F0 þ x� x0ð Þ � ∇xFjx0 þ
1

2

X

i, j¼x, y, z
xi � x0, ið Þ xj � x0, j

� � ∂
2
F

∂xi∂xj

�

�

�

�

x0

þ τ� τ0ð Þ
∂F

∂τ

�

�

�

�

τ0

þ
1

2
τ� τ0ð Þ2

∂
2
F

∂τ2

�

�

�

�

τ0

,

(28)

with F0 ! 0. The result is an effective field treatment which is valid close to the critical

temperature Tc of the superfluid phase transition. Inspired by the GL formalism, we will now

An Effective Field Description for Fermionic Superfluids
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present a beyond saddle-point EFT that is capable of describing Fermi superfluids in the BEC-

BCS crossover at finite temperatures. This theory is based on the assumption that the pair field

Ψ x; τð Þ exhibits slow variations in space and time around a constant bulk value. Since this is a

weaker condition than the GL assumption of small variations, it is ultimately expected to lead

to a larger applicability domain. The assumption of slow fluctuations is implemented through

a gradient expansion of the pair field around its saddle-point value, similar to (28) but with

F0 ! Fsp. Subsequently, we consider the full infinite sum in (26):

X∞

p¼1

1

p
Tr G0Fð Þp½ � ¼

X∞

p¼1

1

p
Tr G0FG0F…G0F

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

p factors

2

6
4

3

7
5: (29)

In every term of this sum, we replace (at most) two occurrences of F x; τð Þ by its gradient

expansion and substitute all remaining factors F x; τð Þ by Fsp. Afterward, the entire sum over p

can be calculated analytically. The result of this calculation, the details of which can be found in

[17], is an explicit expression for the Euclidian action functional that governs the dynamics of

the pair field Ψ x; τð Þ of a three-dimensional (3D) superfluid Fermi gas:

SEFT ¼

ðβ

0

dτ

ð

dx
D

2
Ψ

∂Ψ

∂τ
�

∂Ψ

∂τ
Ψ

� �

þΩs þ
C

2m
∇xΨ � ∇xΨ
� �

�
E

2m
∇x Ψj j2
� �2

	

þQ
∂Ψ

∂τ

∂Ψ

∂τ
� R

∂ Ψj j2

∂τ

 !2
3

5
: (30)

The EFT coefficients Ωs, C, D, E, Q and R are given by

Ωs ¼ �
1

8πkFas
Δj j2 �

ð
dk

2πð Þ3
1

β
ln 2cosh βEk

� �
þ 2cosh βζ

� �� �
� ξk �

Δj j2

2k2

( )

(31)

C ¼

ð
dk

2πð Þ3
k2

3m
f 2 β;Ek; ζ
� �

(32)

D ¼

ð
dk

2πð Þ3
ξk

Ψj j2
f 1 β; ξk; ζ
� �

� f 1 β;Ek; ζ
� �� �

(33)

E ¼ 2

ð
dk

2πð Þ3
k2

3m
ξ2
k
f 4 β;Ek; ζ
� �

(34)

Q ¼
1

2 Ψj j2

ð
dk

2πð Þ3
f 1 β;Ek; ζ
� �

� E2
k
þ ξ2

k

� �
f 2 β;Ek; ζ
� �� �

(35)

R ¼
1

2 Ψj j2

ð
dk

2πð Þ3
f 1 β;Ek; ζ
� �

þ E2
k
� 3ξ2

k

� �
f 2 β;Ek; ζ
� �

3 Ψj j2

"

þ
4 ξ2

k
� 2E2

k

� �

3
f 3 β;Ek; ζ
� �

þ 2E2
k
Ψj j2f 4 β;Ek; ζ

� �

#

, (36)
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where the functions f p β; ε; ζ
� �

are recursively defined as

f 1 β; e; ζ
� �

¼
1

2e

sinh βe
� �

cosh βe
� �

þ cosh βζ
� � (37)

f pþ1 β; e; ζ
� �

¼ �
1

2pe

∂f p β; e; ζ
� �

∂E
(38)

In general, each of these EFT coefficients depends on the modulus squared of the order parameter

Ψ x; τð Þj j2. In practice, however, we will assume that the coefficients associated with the second

order derivatives of the pair field can be kept constant and equal to their bulk value, since

retaining their full space-time dependence would strictly speaking lead us beyond the second-

order approximation of the gradient expansion. This means that in expressions (32), (34), (35), and

(36) for the coefficients C, E, Q, and R, we set Ψ x; τð Þj j2 ¼ Ψ
∞j j2 and Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2k þ Ψ
∞j j2

q

, where

Ψ
∞j j2 is the saddle-point value of the pair field for a uniform system. For the coefficientsΩs andD

on the other hand, the full space-time dependence of Ψ x; τð Þj j2 is preserved.

The effective action functional (30) forms the basis of our EFT description of superfluid Fermi

gases. The validity and limitations of the formalism are largely determined by the main

assumption that the order parameter varies slowly in space and time, which corresponds to

the condition that the pair field should vary over a spatial region much larger than the Cooper

pair correlation length. A detailed study of the limitations imposed by this condition was

carried out in [18]. In the following chapters, we will demonstrate some of the ways in which

the EFT can be employed by applying it to the description of two important topological

excitations of the superfluid: dark solitons and vortices.

5. Application 1: Soliton dynamics

In this section, we will use the EFT that was developed in Section 4 to study the properties of

dark solitons in Fermi superfluids.

5.1. What is a dark soliton?

Solitons are nonlinear solitary waves that maintain their shape while propagating through a

medium at a constant velocity. They are found as the solution of nonlinear wave equations and

emerge in a wide variety of physical systems, including optical fibers, classical fluids, and

plasmas. More recently, they have also become a subject of interest in superfluid quantum

gases [19–23]. In these systems, solitons appear most often in the form of dark solitons, which

are characterized by a localized density dip in the uniform background and a jump in the

phase profile of the order parameter. The magnitude of this density dip and phase jump are

intrinsically connected to the velocity vs with which the soliton propagates through the super-

fluid, as illustrated in Figure 4. The higher the soliton velocity, the smaller the phase jump and
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soliton depth become. Above a certain critical velocity vc, the phase jump and density dip will

disappear completely and a dark soliton solution no longer exists.

5.2. Solution for a one-dimensional dark soliton

For the case of a dark soliton in a one-dimensional (1D) Fermi superfluid with a uniform

background, the EFT provides an exact analytical solution for the pair field [24]. To describe

the dynamics of the system, it is necessary to move from the imaginary-time action functional

(30) to the real-time one, using the formal replacements.

τ ! it (39)

SEFT β
� �

! �iSEFT tb; tað Þ: (40)

From the relation between the real-time action functional and the Lagrangian density L,

SEFT tb; tað Þ ¼

ðtb

ta

dt

ð

dxL, (41)

we subsequently find the following expression for L:

L ¼ i
D

2
Ψ

∂Ψ

∂t
�

∂Ψ

∂t
Ψ

� �

�Ωs �
C

2m
∇xΨ � ∇xΨ
� �

þ
E

2m
∇x Ψj j2
� �2

þQ
∂Ψ

∂t

∂Ψ

∂t
� R

∂ Ψj j2

∂t

 !2

,

(42)

where the Hamiltonian density H is defined as

Figure 4. Example of the density profile (upper row) and phase profile (lower row) of a dark soliton for different soliton

velocities vs relative to the critical velocity vc.
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H ¼ Ωs þ
C

2m
∇xΨ � ∇xΨ
� �

�
E

2m
∇x Ψj j2
� �2

þQ
∂Ψ

∂t

∂Ψ

∂t
� R

∂ Ψj j2

∂t

 !2

: (43)

As mentioned above, a dark soliton in a superfluid is mainly characterized by a jump in the

phase profile and a dip in the amplitude profile of the order parameter. Therefore, it is

convenient to write the pair field Ψ x; tð Þ as

Ψ x; tð Þ ¼ ∣Ψ x; tð Þ∣eiθ x;tð Þ
: (44)

Moreover, since a soliton is a localized perturbation, we write the modulus as a product of the

constant background value ∣Ψ
∞
∣ and a relative amplitude a x; tð Þ that modifies the background

value at the position of the soliton:

∣Ψ x; tð Þ∣ ¼ ∣Ψ
∞
∣a x; tð Þ: (45)

Substituting this form for the pair field in the field Lagrangian (42), we find

L ¼� κ að Þa2
∂θ

∂t
� Ωs að Þ �Ωs a∞ð Þ½ � �

1

2
ρqp að Þ ∇xað Þ2 �

1

2
ρsf að Þ ∇xθð Þ2

þ Q� 4R Ψ
∞j j2 a2

� �

Ψ
∞j j2

∂a

∂t

� �2

þQ Ψ
∞j j2 a2

∂θ

∂t

� �2

,

(46)

with

κ að Þ ¼ D að Þ Ψ∞j j2, (47)

ρqp að Þ ¼
C� 4E Ψ

∞j j2 a2

m
Ψ∞j j2, (48)

ρsf að Þ ¼
C

m
Ψ
∞j j2 a2: (49)

Here, we added Ωs a∞ð Þ to the original Lagrangian to obtain a regularized Lagrangian density

in which energy values are considered with respect to the energy of the uniform system. The

superfluid density ρsf determines how much the pair condensate resists gradients in its phase

field, while the quantum pressure ρqp is a consequence of the fact that the condensate also

resists gradients in the pair density. We will further limit ourselves to a 1D problem in which

the soliton propagates with constant speed vs in the x-direction on a uniform background. This

assumption can be implemented through the condition that the space-time dependence of the

pair field satisfies the relation f x; tð Þ ¼ f x� vstð Þ. We then perform a change of variables

x0 ¼ x� vst and t0 ¼ t, corresponding to a transformation to the frame of reference that moves

along with the soliton and has its origin at the soliton center. It follows that

f x� vstð Þ ¼ f x0ð Þ,
∂

∂x
¼

∂

∂x0
,

∂

∂t
¼

∂

∂t0
� vs

∂

∂x0
: (50)

If we further drop the primes, the Lagrangian density (46) in the soliton frame of reference can

be written as
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L ¼ κ að Þa2vs
∂θ

∂x
� Ωs að Þ �Ωs a∞ð Þ½ � �

1

2
~ρqp að Þ

∂a

∂x

� �2

�
1

2
~ρsf að Þ

∂θ

∂x

� �2

: (51)

with the modified superfluid density and quantum pressure

~ρqp að Þ ¼
C� 4E Ψ∞j j2 a2

m
Ψ
∞j j2 � 2 Q� 4R Ψ

∞j j2 a2
� �

Ψ
∞j j2v2s , (52)

~ρsf að Þ ¼
C

m
Ψ
∞j j2 a2 � 2Q Ψ

∞j j2 a2v2s : (53)

From the above expression for L a;θð Þ, we can now find the equations of motion for the relative

amplitude field a xð Þ and the phase field θ xð Þ:

∂

∂t

∂L

∂ ∂tað Þ

� �

þ
∂

∂x

∂L

∂ ∂xað Þ

� �

¼
∂L

∂a
, (54)

∂

∂t

∂L

∂ ∂tθð Þ

� �

þ
∂

∂x

∂L

∂ ∂xθð Þ

� �

¼
∂L

∂θ
: (55)

Starting with the equation for the phase field, we easily find:

∂

∂x
κ að Þa2vs � ~ρsf að Þ

∂θ

∂x

� �

¼ 0 (56)

⇔

∂θ

∂x
¼

κ að Þa2vs þ α

~ρsf að Þ
: (57)

The integration constant α can be determined through the boundary condition for a dark soliton:

∂θ

∂x
! 0 for x ! �∞: (58)

which yields α ¼ �vsκ∞ with κ
∞
¼ κ a

∞
ð Þ and thus

∂θ

∂x
¼

vs

~ρsf að Þ
κ að Þa2 � κ

∞

� �

: (59)

If we set θ �∞ð Þ ¼ 0, the phase profile of the superfluid is given by

θ xð Þ ¼ vs

ðx

�∞

κ a x0ð Þð Þa2 x0ð Þ � κ
∞

~ρsf a x0ð Þð Þ
dx0: (60)

Next, we derive the equation of motion for a xð Þ:

∂

∂x
�~ρqp að Þ

∂a

∂x

� �

¼
∂

∂a
κ að Þa2
� �

vs
∂θ

∂x
�

∂Ωs

∂a
�
1

2

∂~ρqp

∂a

∂a

∂x

� �2

�
1

2

∂~ρsf

∂a

∂θ

∂x

� �2

: (61)

Inserting the solution for the derivative of the phase field (59) and defining
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X að Þ ¼ Ωs að Þ �Ωs a∞ð Þ, (62)

Y að Þ ¼ κ að Þa2 � κ
∞

� �2

2~ρsf að Þ , (63)

we find

1

2

∂~ρqp

∂a

∂a

∂x

� �2

þ ~ρqp að Þ ∂
2
a

∂x2
¼ ∂

∂a
X að Þ � v2sY að Þ
� �

: (64)

While the above equation does not allow for a straightforward solution for a as a function of

the position x, it can be solved for x as a function of a instead. Using the boundary conditions

for a dark soliton

∂a

∂x

�

�

�

�

x!�∞
¼ 0 and a xð Þjx!�∞ ¼ 1, (65)

we find that (64) can be integrated, yielding:

1

2
~ρqp að Þ ∂a

∂x

� �2

¼ X að Þ � v2sY að Þ, (66)

⇔

∂x

∂a

� �2

¼ 1

2

~ρqp að Þ
X að Þ � v2sY að Þ , (67)

⇔ x ¼ � 1
ffiffiffi

2
p

ða

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~ρqp a0ð Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X a0ð Þ � v2sY a0ð Þ
p da0: (68)

Here, a0 ¼ a x ¼ 0ð Þ is the relative amplitude at the center of the soliton, which is found as the

solution of

X a0ð Þ � v2sY a0ð Þ ¼ 0: (69)

For given values of the interaction parameter kFasð Þ�1, the temperature T=TF, the imbalance

chemical potential ζ, and the soliton velocity vs, formulae (60) and (68) allow us to calculate the

complete pair field profile of the dark soliton. For example, the soliton density and phase

profiles in Figure 4 were calculated using the above expressions.

5.3. Dark solitons in imbalanced Fermi gases

The dark soliton solution derived in the previous section has been employed in the description

of various soliton phenomena in superfluid Fermi gases. For instance, adding a small two-

dimensional perturbation to the exact 1D solution allows for a description of the snake insta-

bility mechanism [25], which makes the soliton decay into vortices if the radial width of

the system is too large [23, 26]. We have also studied collisions between dark solitons by

numerically evolving two counter-propagating 1D solitons in time [27]. As an example of an
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application, we will give a short description of the influence of spin-imbalance on dark solitons,

a topic that was studied in detail in [18].

In ultracold Fermi gases, the amount of atoms in each spin population can be tuned experimen-

tally, allowing for the possibility of having unequal amounts of spin-up and spin-down particles

[28, 29]. In that case, when particles of different spin type pair up and form a superfluid state, an

excess of unpaired particles will remain in the normal state, which in turn can have interesting

effects on other phenomena in the system, including dark solitons. In the context of the EFT, we

control the population imbalance by setting the value of the imbalance chemical potential ζ,

defined in (18). Figure 5a and b shows respectively the fermion particle density n xð Þ and spin-

population density difference δn xð Þ (both with respect to the bulk density n
∞
) along a stationary

dark soliton for kFasð Þ�1 ¼ 0 (unitarity), T ¼ 0:1TF, and for different values of ζ. The density and

density difference profiles are calculated using formulas (22) and (23) in a mean-field local

density approximation. From the left figure, we observe that as we raise the imbalance chemical

potential, the fermion density at the soliton center increases and the soliton broadens. However,

we also know that, for a stationary dark soliton, the pair density at the center is always zero (as

shown in the upper left panel of Figure 4), which means that the particles filling up the soliton

are unpaired particles. This is confirmed by the right figure, which shows that the density

difference between spin-up and spin-down particles in the soliton center increases with ζ. The

same effects are observed across the whole BEC-BCS crossover.

As the imbalance between the spin components in the Fermi gas increases, so does the amount

of unpaired particles that cannot participate in the superfluid state of pairs. While some of

these normal state particles can coexist with the pair condensate as a thermal gas, it is energet-

ically favorable for the remaining excess to be spatially separated from the superfluid. In this

context, the soliton dip is a very suitable location to accommodate the excess particles and

consequently fills up with an increasing amount of unpaired particles as the imbalance gets

higher. Also, the broadening of the soliton with increasing imbalance might be a way of

Figure 5. Fermion density (left figure) and density difference (right figure) profiles of a dark soliton for kFaSð Þ�1 ¼ 0 at

temperature T=TF ¼ 0:1, for different values of the imbalance chemical potential ζ. The densities are given with respect to

the bulk density n
∞
.
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providing the system with more space to store the excess component. The fact that a dark

soliton in an imbalanced superfluid Fermi gas has to drag along additional particles changes

its effective mass, which in turn influences its general dynamical properties [18]. Moreover,

since a soliton plane provides more space to accommodate the excess component than a vortex

core, the presence of spin imbalance has been found to stabilize dark solitons with respect to

the snake instability [25].

6. Application 2: the vortex structure

As a second application, the time-independent version of the theory is considered in order to

derive the stable vortex structure. For the description of the vortex, the quantum velocity field

v will be used, defined as:

v ¼
ℏ

m
∇xθ, (70)

where θ is the phase field from the hydrodynamical description (44). In the time-independent

case, the action (30) reduces to the free energy (times the inverse temperature), which is given by:

F ¼

ð
drF a;∇xa; xð Þ with F a;∇xa; xð Þ ¼ X að Þ þ

1

8
ρsf að Þv2 xð Þ þ

1

2
ρqp að Þ ∇xaj j2: (71)

The free energy was written in a more compact3 form using the hydrodynamical description

(48), (49), (62) and (70). As an application of the effective field theory, the general structure of a

superfluid vortex will be numerically determined and compared with the commonly used

variational hyperbolic tangent. A more detailed description on vortices in superfluids and

their behavior can be found in [30].

6.1. What is a vortex?

Both in the classical and the quantum sense, a vortex is defined as a line in the fluid around

which there is a circulating flow. In order to quantify this rotation around an axis, the circula-

tion κ is defined as:

κ ¼ ∮
γ
v rð Þ � ds, (72)

where γ is a closed contour and v the superfluid velocity field (70). A distinct feature of super-

fluids4 is that the circulation κ is only allowed to take on values which are integer multiples of the

circulation quantum h=m. In superfluids, circulation is always carried by quantized vortices.

This quantization of the circulation can be derived using the definition of the velocity field (70).

Upon substitution, the circulation (72) can be written as:

3

Where again the free energy at infinity was subtracted to obtain a well behaved free energy.
4

In the case of a superconductor, the quantized value is given by the magnetic flux.
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κ ¼
ℏ

m
∮
γ
∇xθ � ds ¼ n

h

m
with n∈ℤ, (73)

where the gradient theorem was used together with the fact that the phase field θ is a periodic

function (period 2π).

As the bulk superfluid itself is irrotational, any loop with nonzero circulation must encircle a

node in the superfluid order parameter. As a consequence, the superfluid pair density must go

to zero along the entire vortex line, resulting in a vortex “core” region with a radius compara-

ble to the healing length. Important to note is that vortices of a single circulation quantum are

energetically more favorable than multiply quantized vortices in a homogeneous condensate

(which is the type of condensate that will be considered in this chapter) [9]. For the remainder

of this application, only singly quantized vortices will thus be studied.

6.2. About the structure of a quantum vortex

The most natural coordinate system to describe vortices are the polar coordinates x ¼ r;ϕ
� �

.

The origin of the polar coordinates will be chosen in the center of the vortex (at the point where

the superfluid density reaches zero). In order to derive the vortex structure, a set of boundary

conditions is required. In the radial direction, the boundary conditions are then given by5:

a r ! 0ð Þ ¼ 0 and a r ! ∞ð Þ ¼ 1, (74)

meaning that the superfluid density relaxes to the bulk value away from the vortex.

We factorize the amplitude function in a radial and an angular part6:

a r;ϕ
� �

¼ f rð ÞΦ ϕ
� �

: (75)

Since the structure is periodic, the general solution for Φ ϕ
� �

is thus given by:

Φ ϕ
� �

¼
X

∞

n¼�∞

ane
inϕ, (76)

leading to a basis of angular modes for the vortex structure. In order to find the lowest energy

state, one usually restricts the problem to one of the many possible modes:

Φ ϕ
� �

¼ einϕ with n∈ℤ, (77)

which results in the velocity field and circulation (using (70) and (72)) for a single mode given by:

5

Note that the condition at r ! ∞ could be replaced by ∂rar!∞ ¼ 0. This could however lead to numerical difficulties in the

center of the vortex.
6

This product decomposition is not generally valid in all coordinate systems [31].
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v rð Þ ¼ n
ℏ

mr
eϕ ) κ ¼ n

h

m
, (78)

where the velocity field diverges in the point where the superfluid vanishes. It was noted before

that for our case, themost energetic vortex states are those with the least circulation quanta. Since

the object of interest is the vortex structure with a minimal free energy, the value of n will be

restricted to n ¼ �1. The state with n ¼ 1 is known as the “vortex,”where the state with n ¼ �1

is known as the “anti-vortex.” This means that the vortex velocity field is given by7:

v rð Þ ¼ �
ℏ

mr
eϕ, (79)

where the “+” sign is for vortices and the “-” sign for anti-vortices.

Currently, there is no analytical solution available for the full vortex structure f rð Þ. Calculations

including vortices are therefore either done numerically (for the exact structure) or variation-

ally. One way to numerically find the minimal structure is by writing down the equations of

motion (the Euler-Lagrange equations for the free energy (71)), which is analogous to what

was done for the soliton in the previous section. Directly solving the equations of motion,

however, is a numerical challenge due to the divergence of the velocity field in the center of the

vortex. A second numerical method is briefly discussed further on. The disadvantage of the

full numerical approach is that it takes time. As an alternative, it is possible to work with a

variational model. By working with a variational model, it is possible to retain a fair amount of

accuracy while gaining several orders of magnitude in computational speed. The usage of

variational models is discussed in the next subsection. A disadvantage of using variational

models is however that a certain structure is proposed, meaning the variational guess can be

wrong in certain situations. When using variational models, one should consequently always

check the validity of the model and the range of application.

6.3. A variational model for the vortex core

In order to speed up the vortex calculations, a variational model can be used to describe the

vortex structure. First of all, the variational model should meet the required boundary condi-

tions (74). Second, the variational model should contain the necessary information to describe

the vortex physics. For example, in liquid helium, the vortex core sizes are of the order of

nanometers [33], meaning that the vortex core structure will not play a prominent role in the

vortex physics; in this case, a simple hollow cylinder is already a good variational model for

the vortex core. For vortices in ultracold gases on the other hand, the vortex core size is of the

order of micrometers [34], meaning that its structure becomes important8; a simple cylindric

hole will no longer capture the entire vortex physics. In order to provide a more detailed

description, different variational models are available [9, 30].

7

Note that this velocity field is the same as the elementary vortex flow known in classical hydrodynamics [32].
8

The condensate size to vortex core size is typically in the range 10–50.
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The variational model that will be discussed here is the hyperbolic tangent model:

f rð Þ ¼ tanh
r
ffiffiffi

2
p

ξ

� �

, (80)

where the quantity ξ is defined as the healing length. The hyperbolic tangent (80) is the exact

solution of the Gross-Pitaevskii equation in 1D for a condensate with a hard wall boundary

[9, 35]. Since the variational model describes the healing from a hole in the condensate, it is

expected that this model will also sufficiently describe the vortex physics. The merit of the

presented effective field theory in Section 4 is that an analytical solution can be derived for

the vortex healing length ξ; this will be done in the remainder of this subsection. Using the

definitions (71), the free energy of the variational vortex structure is given by:

F ¼
ð

∞

0

rdr X að Þ þ A

2r2
tanh2 r

ffiffiffi

2
p

ξ

� �

þ
ρqp tanh r

ffiffi

2
p

ξ

� �� �

4ξ2cosh 4 r
ffiffi

2
p

ξ

� �

2

4

3

5, (81)

where the value of the constant A is defined as:

A ¼ 2C Δ
∞j j2: (82)

The second term in the integrand of (81) causes a divergence, since

lim
R!∞

A

2

ð

R

0

1

r
tanh2 r

ffiffiffi

2
p

ξ

� �

dr∝ log Rð Þ (83)

diverges logarithmically with increasing radius of the integration domain. The physical reason

is clear: the velocity profile of a vortex decays as 1=r, so that the kinetic energy of the superflow

will grow as the logarithm of the container size. However, the derivative with respect to ξ of

this kinetic energy of the superflow does not diverge. This can be seen by first switching to a

dimensionless variable x ¼ r=ξ:

F ¼ ξ2
ð

∞

0

xX að Þdxþ A

2
lim
R!∞

ð

R=ξ

0

tanh2 x
ffiffiffi

2
p

� �

dx

x

0

B

@

1

C

A
þ
ð

∞

0

ρqp tanh x=
ffiffiffi

2
p� �� �

4cosh 4 x=
ffiffiffi

2
p� � dx: (84)

The last term no longer contains a dependency on ξ, so its derivative with respect to ξ

vanishes. We obtain

dF

dξ
¼ 2ξ

ð

∞

0

xX að Þdxþ A

2
lim
R!∞

d

dξ

ð

R=ξ

0

tanh2 x
ffiffiffi

2
p

� �

dx

x

2

6

4

3

7

5
(85)

The remaining derivative now acts on the boundary of the integration domain. Applying
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d

dξ

ð

R=ξ

0

g xð Þdx ¼ lim
Δξ!0

1

Δξ

ð

R= ξþΔξð Þ

0

g xð Þdx�
ð

R=ξ

0

g xð Þdx

0

B

@

1

C

A

¼ lim
Δξ!0

1

Δξ

R

ξþ Δξ
� R

ξ

� �

g
R

ξ

� �

¼ � R

ξ2
g

R

ξ

� �

(86)

to (85) we get

dF

dξ
¼ 2ξ

ð

∞

0

xX að Þdx� A

2ξ
lim
R!∞

tanh2 R
ffiffiffi

2
p

ξ

� �	 


, (87)

so that

dF

dξ
¼ 0⇔ 2ξ

ð

∞

0

xX að Þdx ¼ A

2ξ
: (88)

With A ¼ 2C Δ∞j j2 as above, and

B ¼
ð

∞

0

xX að Þdx (89)

we find a closed form result

ξ ¼ 1

2

ffiffiffiffi

A

B

r

: (90)

The formula for the healing length (90) can also be plotted, this is done in Figure 6. In both

limits, the healing length shows to be in a good agreement with the exact limits.

6.4. Comparison to the exact (numerical) solution

In order to check the validity of the variational model (80) (and thus the results it produces) is,

the variational structure should be compared with the exact vortex structure. This exact vortex

structure is easily obtained by a direct minimization of the free energy functional (71). As

mentioned before, the direct minimization of the free energy is more suitable for the calcula-

tion of the vortex structures; the reason why this method is preferential lies in the fact that the

velocity field diverges for r ! 0. The divergence of the velocity field in the origin will be

strongly pronounced when solving the equations of motion. While in the case of a direct

minimization, the same divergence will have less impact on the solution.

The numerical method that was used in order to determine the exact vortex structure for a

given set of parameters β; as; ζ
� �

is discussed in full detail in [38]. In a nutshell, this method
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comes down to making a discretized version of the vortex structure: f 1; f 2;…; fN
 �

, where

f 1 ¼ 0 and fN ¼ 1 due to the boundary conditions. During the minimization procedure, a

program runs through the list of points f njn∈ 2; 3;…;N � 1f g
 �

, where it suggests a (random)

new value; if the new value results in a lower energy, it is accepted as the new value of the

vortex structure. The minimization program continues to run until a certain tolerance is

reached and the structure is not changing any more.

Once the exact structure is obtained, it can be analyzed and compared to the variational vortex

structure. As an example, we can look at the relative difference in the free energy throughout

the BEC-BCS crossover for different temperatures and polarizations. From the plots shown in

Figure 7, it can be seen that the difference in free energy is around the order of 1%; this seems

Figure 6. The vortex variational healing length (90) throughout the BEC-BCS crossover for the case β ¼ 100 and ζ ¼ 0.

The dotted lines yield the exact solutions in the deep BEC [36] and BCS [37] limits. This plot made using the same data as

in [38].

Figure 7. The relative energy difference between the exact and variational solutions throughout the BEC-BCS crossover

for different values of the temperature β and polarization ζ. These results were also shown and discussed in [38].
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to suggest that the variational guess is a good guess.9 Moreover, the results in Figure 7 allow to

provide an error bar on energy calculations using the variational structure. This error bar on

the energy is useful for example when making phase diagrams including vortex structures. In

order to be sure whether the variational model is indeed a good description of the vortex hole,

other parameters were also tested and discussed in [38]. The conclusion from the numerical

analysis was that the variational model is indeed a good fit for describing the vortex structure.

7. Concluding section

In this chapter, an effective field theory for the description of dilute fermionic superfluids was

derived. The main advantages of an effective field theory are the gain in computational speed

and the fact that it allows analytic solutions for dark solitons and the variational healing length

of the vortex structure. Both the gain in computational speed and the availability of an analytic

starting point contribute to the possibility to study several soliton/vortex phenomena through-

out the entire BEC-BCS crossover at finite temperatures β for a given polarization ζ within a

reasonable computational time span.

On the subject of soliton dynamics, we specifically looked at 1D dark solitons, for which an exact

analytical solution was derived. Using this solution, the effect of spin-imbalance on the soliton

properties was studied, revealing that the unpaired particles of the excess component mainly

reside inside the soliton core. Additionally, the EFT has also been employed in the study of the

snake instability of dark solitons [25] and the dynamics of dark soliton collisions [27] in imbal-

anced superfluid Fermi gases.

For vortices, the structure of a vortex was studied, for which unfortunately no analytical

solution is available at the moment. Using a variational model, an analytical solution for the

vortex healing length was derived. The variational model was compared with the exact solu-

tion. From this analysis, the variational model was found to be a good fit for the exact vortex

structure. Other EFT research on vortices includes the behavior of vortices in multiband

systems [39] and the study of the “vortex charge” [40].
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In Figure 7b, the energy difference seems to blow up towards the BCS limit. This divergence is due to the fact that at that

point superfluidity is lost due to polarization (Clogston limit); at this point superfluidity disappears.
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