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Abstract

Sensitivity analysis and bifurcation analysis are closely related to each other. In sensitivity
analysis, especially global sensitivity analysis the effects of input parameter spaces on
output quantities of interest are studied. On the other hand, in bifurcation analysis the
critical points within feasible regions of parameters are detected where the long-term
dynamics changes qualitatively. Prior to bifurcation analysis, it is important to identify
the bifurcation parameters. In complex and computationally expensive problems which
consist plenty of uncertain parameters, it is essential to find a set of bifurcation parameters
before bifurcation analysis. Global sensitivity analysis is a powerful tool to identify the
bifurcation parameters which contribute most on output uncertainty. Global sensitivity
analysis is the first step toward bifurcation analysis which helps in dimension reduction
during bifurcation analysis. As an example, in this chapter, a multi compartment, lumped-
parameter model of an arm artery is considered and global sensitivity analysis (Sobol’s
method) is applied to identify the bifurcation parameters of the arm arteries.

Keywords: lumped parameter model, arm arteries, sensitivity analysis, bifurcation
analysis, bifurcation parameters, Sobol’s method

1. Introduction

Sensitivity analysis and bifurcation analysis are closely related to each other. In sensitivity

analysis, we study how the uncertainty in the output of a mathematical model or system

(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs

[1]. On the other hand, in bifurcation analysis the critical points within the feasible regions

of parameters are detected where the long-term dynamics changes qualitatively [2]. Prior to

the bifurcation analysis, it is important to identify the bifurcation parameters in complex and
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computationally expensive problems that consist plenty of uncertain parameters. Sensitivity

analysis is a powerful tool to identify the bifurcation parameters which contribute most on

output uncertainty. Also, sensitivity analysis helps in dimension reduction during the bifurca-

tion analysis by fixing less influential parameters on their nominal values.

Sensitivity analysis can be divided into two categories, local sensitivity analysis (LSA) and

global sensitivity analysis (GSA). In LSA a parameter value is perturbed around its nominal

values at a time, keeping other parameters fixed on their nominal values. The procedure is

repeated for all parameters one by one to study their impact on output variables. LSA tech-

niques are simple, easy to implement and computationally less expensive. On the other hand,

LSA is not suitable for non-linear models and does not explore the impact of entire parameter

spaces and their interactions effects on output variables [3, 4]. In order to overcome the

limitations associated with the LSA, GSA can be used. In GSA, the analysis is performed over

entire feasible regions of the input parameters and quantifies the impact of parameter interac-

tions on output variables. The only deficiency related to the GSA is its computational cost [5–12]

(Figure 1).

Figure 1. A simplified 5-step procedure to identify the bifurcation parameters using global sensitivity analysis.
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In this chapter, the main questions of interest are:

1. How to identify the bifurcation parameters in a model having plenty of input parameters?

2. Which parameters could be exempted from the bifurcation analysis (dimension reduction)?

This chapter seeks to answers the above-mentioned questions using a simplified 5-steps pro-

cedure of uncertainty and sensitivity analysis. As an example, a multi-compartment, lumped-

parameter model of arm arteries is considered [4] and global sensitivity analysis (Sobol’s

method) is applied to identify the bifurcation parameters (electrical) of the arm arteries.

2. Lumped-parameter model of the arm arteries

In this section, the major arteries of the arm are divided in to number of non-terminal and

terminal arterial segments (nodes). The total number of arterial segments, Ns ¼ 15 including 12

non-terminal and 3 terminal segments. Each non-terminal and terminal arterial segment is

represented by its corresponding non-terminal and terminal electrical circuit.

Applying Kirchhoff’s current and voltage laws on electrical representation of arm arteries, the

following mathematical equations for pressure and flow are obtained:

Pressure and flow equations at non-terminal nodes:

Flow equation:

_qi ¼
pi�1 � pi � Riqi

Li
, i ¼ 1, 2, 3,…15 and i 6¼ 11, 13

_q11 ¼
p6 � p11 � R11q11

L11

_q13 ¼
p11 � p13 � R13q13

L13

(1)

Pressure equation:

_pi ¼
qi � qiþ1

Ci
, i ¼ 1, 2, 3,…15 and i 6¼ 6, 11

_p6 ¼
q6 � q11 � q7

C6
, _p11 ¼

q11 � q12 � q13
C11

at bifurcationð Þ
(2)

Pressure and flow equations at terminal nodes:

_qin ¼
2pin � 2pi � Riqin

Li

_pi ¼
qin � qout

Ci

_qout ¼
2pi � 2pout � 2Rbqout

Li
, i ¼ 10, 12, 15

(3)

Sensitivity Analysis: A Useful Tool for Bifurcation Analysis
http://dx.doi.org/10.5772/intechopen.72345

71



where, Ri, Ci and Li is the blood flow resistance, compliance of the vessel and blood inertia of

ith segment of the arm arteries respectively. The electrical parameters Ri;Ci; Lið Þ of ith segments

are related with structural parameters Ei; li; di; hið Þ as,

Ri ¼
8νli

π d
2

� �4
, Ci ¼

ρli

π d
2

� �2
, Li ¼

2π d
2

� �2
li

Eili
(4)

where, Ei is the Young modulus, li denotes length of the vessel, d is the diameter of the vessel

and hi represents the wall thickness of ith segment of the vessel. Moreover, ν (0.004 Pa s) is the

blood viscosity and ρ (1050 kgm�3) is the blood density. The nominal values of all parameters

of arm segments are given in Table 1. The geometry along with the values of the parameters is

taken from [13, 14].

3. Uncertainty and sensitivity analysis

Uncertainty analysis (UA) and sensitivity analysis (SA) are closely related; however they

represent two different disciplines. Uncertainty analysis assesses the uncertainty in model

Nodes E l d h R C L

units kgm�2s�2 �105 m �10�2 m �10�3 m �10�4 kgs�1m�4 � 106 kg�1s2m4 � 10�11 kgm�4 � 106

1 4 6.1 7.28 6.2 3.539 7.454 1.539

2 4 5.6 6.28 5.7 5.868 4.778 1.898

3 4 6.3 5.64 5.5 10.15 4.035 2.648

4 4 6.3 5.32 5.3 12.82 3.514 2.976

5 4 6.3 5 5.2 16.43 2.974 3.369

6 4 4.6 4.72 5 15.10 1.9 2.76

7 8 7.1 3.48 4.4 78.90 0.667 7.838

8 8 7.1 3.24 4.3 105 0.531 9.042

9 8 7.1 3 4.2 142.9 0.448 10.55

10 8 2 2.84 4.1 55.11 0.1207 3.647

11 8 2 4.3 4.9 31.94 1.067 4.844

12 16 6.7 1.82 2.8 1173 0.0834 31.88

13 8 7.9 4.06 4.7 40.19 0.9366 5.434

14 8 6.7 3.48 4.6 50.22 0.80 6.075

15 8 3.7 3.66 4.5 33.60 0.3958 3.693

The value of boundary resistance Rbð Þ on three terminal nodes is 3:24� 109 kgs�1m�4, ν ¼ 0:004 kgs�1m�1 and

ρ ¼ 1050 kgm�3 [4, 5, 13, 14].

Table 1. Numerical values of parameters for each node of the arm arteries (shown in Figure 2).
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outputs caused by uncertainty of its inputs. Whereas, sensitivity analysis study the impact of

input quantities of interest (QoI) on output quantities of interest (QoI). In this study, the input

(QoI) are electrical parameters (Ri, Ci, Li) and output (QoI) are pressure and flow at each node of

the arm arteries. Further, for uncertainty analysis Latin hypercube sampling (LHS) is used and

variance-decomposition method (Sobol’s method) is used for global sensitivity analysis (GSA).

Compared to the high-dimensional cardiovascular models (3D, 2D, 1D), lumped-parameter

models of the cardiovascular system (CVS) are computationally less expensive, therefore they

are suitable for GSA. In our previous studies, we found that for lumped-parameter models of

Figure 2. Model geometry of arm artery (A), with total number of arterial segments, Ns = 15, including 12 non-terminal and 3

terminal segments. Each non-terminal and terminal segment is represented by its corresponding non-terminal (C) and

terminal electrical circuits (D). Pressure waves is used as an input boundary condition (B) and pout = 15 mmHg which is

mean venous pressure used to calculate boundary outflow. The parameter values of each arterial segment are given inTable 1.
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the CVS, the Sobol’s method is computationally less expensive as compared to the other

variance-decomposition methods, like FAST and sparse grid stochastic collocation method

based on Smolyak algorithm [5, 12].

3.1. The method of Sobol

The method of Sobol is the variance-decomposition method used for global sensitivity analy-

sis. The method decomposes the output variance of a system or model into fractions and

assigns them to the inputs factors. For example, given a model of the form Y ¼ f Xð Þ ¼

f x1; x2;…; xkð Þ, where X is the vector of K uncertain parameters, which are independently

generated within a unit hypercube i.e. xi ∈ 0; 1½ �k for i ¼ 1, 2, 3,…, K. Compared to the other

GSA methods, the Sobol’s method is one of the most commonly used variance-decomposition

method, because of its ease of implementation. The method is primarily based on the decom-

position of output Y into summands of elementary functions in terms of increasing dimension-

ality [1, 8],

f x1; x2;…; xkð Þ ¼ f 0 þ
X

k

i

f i xið Þ þ
X

k

i

X

k

i<j

f ij xi; xj
� �

þ…þ f 1,2,3,…,k x1; x2; x3;…; xkð Þ (5)

In Eq. (5), f is integrable, f 0 is a constant, f i is a function of xi, f ij is a function of xi and xj and so

on. Furthermore, all the terms in the functional decomposition are orthogonal, which leads

toward the following definitions of the terms of the functional decomposition in term of

conditional expected values.

f 0 ¼ E Yð Þ

f i xið Þ ¼ Ex�i Yjxið Þ � f 0

f ij xi; xj
� �

¼ Ex�ij Yjxi; xj
� �

� f 0 � f i � f j

…

(6)

where, E describes the mathematical expectation and x�i denotes all parameters except xi and

so on. The total unconditional variance can be obtained by,

V ¼

ð

Ω
K

f 2 Xð Þdx� f 20 (7)

From Eq. (7), the total unconditional variance can be decomposed in a similar manner like in

Eq. (5) as,

V ¼
X

k

i

V i xið Þ þ
X

k

i

X

k

i<j

V ij xi; xj
� �

þ…þ f 1,2,3,…,k x1; x2; x3;…; xkð Þ (8)
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where, V is the variance operator. The relationship between functions and partial variance are

given by,

V i ¼ Vxi Ex�i Yjxið Þð Þ ¼ V f i xið Þ
� �

V ij ¼ Vxi ,xj Ex�ij Yjxi; xj
� �� �

� V i � V ¼ V f ij xi; xj
� �

� �

…

(9)

Dividing both sides of the Eq. (8) by V, we get:

1 ¼
X

k

i

Si xið Þ þ
X

k

i

X

k

i<j

Sij xi; xj
� �

þ…þ S1,2,3,…,K x1; x2; x3;…; xKð Þ (10)

Where,

Si ¼
V ij

V
, and

Sij ¼
V ij

V

(11)

where, Si is the main effect (first order sensitivity index) of the ith parameter on output

uncertainty and Sij is the interaction effect of ith and jth parameters on output uncertainty.

Further, the total sensitivity index, STi
can be calculated as,

STi
¼

Ex�i Vxi Yjx � ið Þ
� �

V
¼ 1�

Vx�i Exi Yjx � ið Þ
� �

V
(12)

In general, the main effect is used identify the most influential parameters (bifurcation param-

eters) and the total effect is taken into account for those parameters which are exempted from

bifurcation analysis (factor fixing). The total effect, STi
of the ith parameter means main effect

plus higher-order effect due to interactions of the ith parameter. In this study, the interaction

effects of parameters on the output (QoI) are negligible, therefore the main effects are used for

factor fixing and ranking of bifurcation parameters.

3.2. Algorithm to compute sensitivity indices

In this section, a detailed working algorithm is presented to compute the main effect, Si using

the Monte Carlo simulations, we follow the steps, given in [1, 15].

1. Generate a random numbers matrix of row dimension 2K and column length N (the

sample size) and split into two independent sampling matrices, A N;Kð Þ and B N;Kð Þby

using LHS. Where, K is the number of uncertain model parameters.
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A N;Kð Þ ¼

x11 x12 … x1K

x21 x22 … x2K

… … … …

xN1 xN2 … xNK

2

6

6

6

4

3

7

7

7

5

(13)

B N;Kð Þ ¼

x1 Kþ1ð Þ x1 Kþ2ð Þ … x1 2Kð Þ

x2 Kþ1ð Þ x2 Kþ2ð Þ … x2 2Kð Þ

… … … …

xN Kþ1ð Þ xN Kþ2ð Þ … xN 2Kð Þ

2

6

6

6

4

3

7

7

7

5

(14)

2. Define matrix Ci, which is matrix A except the ith column of matrix B.

Ci N;Kð Þ ¼

x11 x12 … x1 K þ ið Þ … x1K

x21 x22 … x2 K þ ið Þ … x2K

… … … … … …

xN1 xN2 … xN K þ ið Þ … xNK

2

6

6

6

4

3

7

7

7

5

(15)

3. Compute and save model runs for all parameter spaces using matrices A, B and Ci i.e.

YA t;Ts;Nð Þ ¼ f Að Þ, YB t;Ts;Nð Þ ¼ f Bð Þ and YCi
t;Ts;N;Kð Þ ¼ f Cið Þ, where, t are the time

points for one heart beat with period tp ¼ 0:8s, Ts represents the state variables (pressure

and flow time series at six locations of arm artery NTs
¼ 15ð Þ and Nis the total number of

model runs N ¼ 4000ð Þ.

4. For the time dependent model outputs, we compute the time dependent main sensitivity

index, of each parameter at each time-point of the pressure and flow waves, using the

estimator offered by Jansen [15–17].

Sti ¼
V i

V
¼

Vxi Ex�i Yjxið Þð Þ

V
¼

V � 1
2N

P

N

n¼1

Y
nð Þ
B � Y

nð Þ
Ci

� �2

V

¼ 1�
1

2N� V

X

N

n¼1

Y
nð Þ
B � Y

nð Þ
Ci

� �2

(16)

where,

V ¼
1

N

X

N

n¼1

Y
nð Þ
B

� �2
� E2 (17)

and

E ¼
1

N

X

N

n¼1

Y
nð Þ
B

 !2

(18)

The total variance Vð Þ and the expectation Eð Þ are also calculated at each time-point of

pressure and flow waves with respect to each parameter.
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5. Finally, the main effect, Si of each parameter on the state variables is calculated.

Si ¼
1

NTs

1

Nt

XNTs

j¼1

XNt

t¼0

Sti t; j; tð Þ, i ¼ 1, 2,…, K (19)

In Eq. (19), NTs
is the number of output variables (pressure and flow time series at all

locations) and Nt is the number of time-points [12].

3.3. Input parameters distribution

The results of the UA and SA are greatly affected by the choice of input parameters distribu-

tions. In principle, the parameters distributions should be estimated using medical data.

Unfortunately, the medical data is not easy to obtained. The input parameters distributions

could be chosen according to the expert opinion or using the data from the literature. Due to

limited data availability, here in this work the input parameters are randomized within �10%

range of their base (nominal) values using Latin hypercube sampling (LHS).

3.4. Convergence of sensitivity indices

The method of Sobol requires N K þ 2ð Þ number of model simulations to compute Si. The main

effect, Si is computed for N = [500, 1000, 2000, 3000, 4000] model runs. It is observed that, when

the total number of simulations run N increases from 3000 then the sensitivity indices (Si)

become stable [18]. Therefore, the minimum number of simulations for each parameter to

achieve convergence of sensitivity indices is around 3000.

4. Results and discussion

In this section, the sensitivity results based on main effect Si are presented. In order to calculate

sensitivity time series, the method of Sobol is applied on each time point of the output QoI i.e.

pressure and flow waves at each location of the arm arteries. For each parameter, there are two

sensitivity time series at each segment of the arm arteries, one for the pressure and one for the

flow. In total, K �NTs
¼ 45� 33 ¼ 1485 sensitivity time series are obtained. In order to repre-

sent the sensitivity results in a compact way, mean absolute values of each pressure and flow

sensitivity time series per parameter is taken. In this way, a matrix of dimension 45� 33 is

acquired, where each entry of the matrix represents the mean absolute values of pressure and

flow sensitivity time series per parameter, see Figure 3. The numbers in the boxes show the

impact (%) on the output (pressure and flow) when input parameters Ri;Ci; Lið Þ are random-

ized within the feasible ranges of �10%. The parameters having main effect, Si > 10% on

output QoI are not shown in the Figure 3. Each row in Figure 3 represents the ranking of

influential (bifurcation) parameters. For convenience, the electrical parameters Ri;Ci; Lið Þ, i ¼

1, 2, 3,…, 15 that have impact greater than 10% on pressure and flow are considered as bifur-

cation parameters which further can be used in bifurcation analysis. For example, for pressure
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at node-2, L1 and L2 are the bifurcation parameters, see in Figure 4 (top). Whereas, for flow at

node -2, L1 and L2 are considered as bifurcation parameters, see Figure 4 (bottom).

In a similar fashion, each row of Figure 3 represents the ranking of bifurcation parameters

which further can be used in bifurcation analysis. The parameters which have main effect

Si < 10% can be exempted from the bifurcation analysis. The criteria for factor fixing vary

from problem to problem.

5. Conclusion

In this chapter, a 5-step procedure of global sensitivity analysis is presented to identify the

bifurcation parameters in a lumped-parameter model of the arm arteries. Moreover, the pro-

posed procedure can be applied on any morphology or structure of the systemic circulation

(carotid bifurcation, aorta or complete systemic circulation). The results of sensitivity analysis

are useful to identify and rank the bifurcation parameters, as well as help which parameters

could be exempted from the bifurcation analysis. In this particular example of the arm arteries,

23 out of 45 parameters can be excluded from the bifurcation analysis. Whereas, 22 identified

as bifurcation parameters, which further can be used/studied in the bifurcation analysis.

Figure 3. Main effect sensitivity of 45-electrical parameters Ri;Ci;Lið Þ on pressure and flow time series pi; qi
� �

at

15-segments N1;N2;…;N15ð Þ of the arm arteries with number of simulations run per parameter, N is 4000. In total

N(K + 2) = 4000(45 + 2) = 188,000 = 0.188 million of simulations run are required to compute the main and total sensitivity

indices. The total time taken to compute the sensitivity indices is approximately 3 hours.
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Figure 4. Ranking of bifurcation parameters Ri;Ci; Lið Þ in complete arm arteries for pressure (top) and flow (bottom) at

node-2. It can be clearly seen that, L1, L2 and L1, L3 are considered as bifurcation parameters for pressure and flow at

node-2 respectively.
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