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Abstract

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200
atoms) possess geometric and electronic structures different from bulk gold. When these
gold clusters are protected by ligands, these clusters can be treated as chemical compounds.
This review focuses on gold clusters protected by chalcogenate (thiolate, selenolate, or
tellurolate) ligands and describes the methods by which these clusters are synthesized as
well as their geometric/electronic structures and physical and chemical properties. Recent
findings regarding ligand exchange reactions, which may be used to impart functionality to
these compounds, are also described.

Keywords: gold clusters, chalcogenate, geometric and electronic structures, physical
and chemical properties, ligand exchange reactions

1. Introduction

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200 atoms)

possess geometric and electronic structures different from those of bulk gold [1]. The geometric

structure often consists of an atomic arrangement, such as an icosahedral structure, that differs

from the close-packed structure of bulk gold, as a result of reducing the surface energy. In

addition, a discrete electronic structure appears rather than the continuous structure observed

in the bulk element. Owing to these characteristics, small gold clusters exhibit fundamental

properties and functionalities different from those of bulk gold. In addition, when these gold

clusters are protected by ligands, it is possible to treat them as chemical compounds. In early

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



studies, beginning in the 1960s, phosphine was employed as a protective ligand [2–16]. Repre-

sentative phosphine (PR3)-protected gold clusters (Aun(PR3)m) include [Au11(PPh3)8Cl2]
+,

[Au13(PMe2Ph)8Cl2]
3+, [Au39(PPh3)14Cl6]

2+, and Au55(PPh3)12Cl6 (Figure 1(a)). Unfortunately,

these clusters have been found to be unstable in solution, which restricts their practical appli-

cations. In contrast, thiolate (SR)-protected gold clusters (Aun(SR)m), first synthesized by Brust

et al. in 1994 (Figure 1(b)) [17], are highly stable both in solution and in the solid state, because

the SR ligands form strong bonds with gold atoms. These Aun(SR)m clusters exhibit various

physical and chemical properties not shown by bulk gold, such as photoluminescence and

catalytic activity. For these reasons, SR ligands have become the most common choice for use

with gold clusters [18–40]. Recently, the synthesis of gold clusters protected by other

chalcogenates (selenolate (SeR) or tellurolate (TeR); Figure 1(c)) [41–51], by alkynes [52–54], or

by two kinds of ligand (Figure 1(d)) [55–59] has also been reported. In this chapter, we focus

on gold clusters protected by chalcogenates (Aun(XR)m; XR = SR, SeR, or TeR) and describe the

synthetic procedures, geometric/electronic structures, and physical and chemical properties of

these compounds. Moreover, the physical and chemical properties of these gold clusters are

greatly affected by the type of functional group of the protecting ligand. The ligand exchange

Figure 1. The crystal structures of (a) Aun(PR3)m, (b) Aun(SR)m, (c) Aun(SeR)m, and (d) Aun(PR3)m(SeR)l. H atoms are

omitted for clarity. In [Au39(PPh3)14Cl6]
2+, C atoms are also not shown (these figures were adapted from Refs. [2, 10, 11, 29,

30, 34, 47, 48, 59]).
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reaction is a very powerful means for introducing the different ligands into the pre-synthesized

cluster. Although this type of reaction was discovered nearly 20 years ago [60–65], the associated

mechanism was not fully understood at that time. Recently, tremendous progress has been made

in terms of the precise synthesis and evaluation of metal clusters, and details of these reactions

have been elucidated [66, 67]. Recent findings regarding these reactions are therefore also included

herein.

2. Synthesis of Aun(XR)m clusters

The method used most frequently to synthesize Au
n
(XR)

m
clusters is based on the chemical

reduction of gold ions in the presence of ligands in solution (Figure 2). In this approach, a gold

salt and the ligand are mixed in solution to form Au-ligand complexes that are subsequently

treated with a reducing agent (normally NaBH4). Au
n
(XR)

m
clusters are formed by the aggregation

Figure 2. A typical procedure for the synthesis of Au
n
(SR)

m
clusters having a well-defined chemical composition.
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of the resulting gold atoms in conjunction with surface protection by the ligands [18]. In the

first report published by Brust et al., dodecanethiolate was used as the ligand [17]. Because a

gold salt and dodecanethiolate are soluble in different solvents, Brust transferred the gold salt

from an aqueous phase to a ligand-containing toluene phase using a phase-transfer reagent

(representing a two-phase system; Figure 2). In contrast, in more recent research, tetrahydro-

furan (THF) has often been used as the solvent because it could dissolve both gold salt and

ligand [68]. This removes the need for phase transfer of the gold salt and thereby simplifies the

synthesis to a one-phase system (Figure 2). Similarly, when a hydrophilic thiol is used as the

ligand, gold clusters can be synthesized in a one-phase system [69–71].

The product obtained from this technique is typically a mixture of Au
n
(XR)

m
clusters having

various numbers of constituent atoms. Because the physical and chemical properties of the

clusters are greatly affected by the number of atoms, separation by size or conversion to stable

clusters by exposure to severe conditions is required to obtain Au
n
(XR)

m
clusters with well-

defined physical properties and functions (Figure 2) [18, 72]. Polyacrylamide gel electrophoresis

[69–72], high-performance liquid chromatography [72–77], and solvent extraction are the most

frequently applied techniques for size separation. It is also common to use an etching reaction

for size convergence [72, 78–82]. In addition to these techniques, the ligand exchangemethod, in

which the ligands of a specific Au
n
(XR)

m
cluster are replaced with other ligands, is an effective

means of generating Au
n
(XR)

m
clusters with a specific chemical composition (Figure 2) [83].

Recent results associated with such ligand exchange reactions are discussed in Section 6.

3. Geometrical structures of Aun(XR)m clusters

Until 2007, it was believed that Au
n
(SR)

m
clusters possess a geometrical structure in which an

Au core is covered with thiolate ligands (Figure 3(a)) [84]. Since then, single-crystal X-ray

Figure 3. The geometrical structures of Au38(SR)24 (a) predicted by theoretical calculations in 1999 and (b) determined by

single-crystal X-ray structural analysis in 2010. The R groups have been omitted for clarity (these figures were adapted

from Refs. [30, 84]).
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structural analysis has revealed that several Au
n
(SR)

m
clusters consist of an Au core covered

with multipledS(R)[dAudS(R)]
x
d staples (Figure 3(b)) [30, 85–88]. Based on the geometri-

cal structures determined for Au
n
(SR)

m
clusters to date, it can be assumed that almost all small

Au
n
(SR)

m
clusters have this type of core-shell structure. Single-crystal X-ray structural analysis

has also demonstrated that small Au
n
(SeR)

m
clusters have core-shell structures similar to those

of small Au
n
(SR)

m
clusters (Figure 1(c)) [47, 48]. The geometrical structure of Au

n
(TeR)

m

clusters has not yet been determined experimentally, although theoretical calculations [45, 89]

have shown that these clusters are also likely to have a similar core-shell structure.

4. Electronic structures of Aun(XR)m clusters

Unlike bulk gold, small Au
n
(SR)

m
clusters have discrete electronic structures. As a result,

multiple peak structures can be observed in the optical absorption spectra of these clusters.

As an example, Au
n
(SC12H25)m clusters show multiple peak structures across the entire visible

range in their optical absorption spectra up to the size of Au144(SC12H25)60 (Figure 4) [75]. Such

fine peak structures are not observed in the spectra of larger clusters, although peaks that can

be attributed to surface plasmon resonance absorption have been identified at approximately

Figure 4. Optical absorption spectra of films composed of Au
n
(SC12H25)m clusters (n = 38–520) at various temperatures

(25–290 K) (this figure was adapted from Ref. [75]).
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520 nm in their optical absorption spectra (Figure 4). Thus, the electronic structures of

Au187(SC12H25)68 and larger clusters tend to resemble that of bulk gold (Figure 5) [75].

At present, the relationship between cluster size and electronic structure is not well under-

stood for Au
n
(SeR)

m
and Au

n
(TeR)

m
clusters, because only a small number of such compounds

have been studied to date. However, the researches regarding Au25(SeR)18 and Au38(SeR)24
clusters have demonstrated that changing the ligands from SR to SeR reduces the HOMO-

LUMO gap of the clusters [42, 43] and that this effect becomes more pronounced in the case of

clusters containing TeR in the ligand shell [45].

5. Physical and chemical properties of Aun(XR)m clusters

Au
n
(SR)

m
clusters exhibit size-specific electronic structures, and their physical and chemical

properties also vary with size. Herein, we first discuss typical physical and chemical charac-

teristics of such Au
n
(SR)

m
clusters.

5.1. Photoluminescence

Small Au
n
(SR)

m
clusters have been shown to exhibit photoluminescence (Figure 6(a)) [18, 20,

23, 70, 71, 90]. As an example, Au25(SG)18 (SG = glutathionate) exhibits photoluminescence with

an estimated quantum yield of ~1 � 10�3 [71], which can be used for sensing and imaging

applications [91].

5.2. Redox behavior

Au
n
(SR)

m
clusters also display redox behavior [20, 21]. Figure 6(b) shows a differential pulse

voltammogram obtained from Au25(SC2H4Ph)18, in which the peaks at �1.9 and �0.3 V orig-

inate from [Au25(SC2H4Ph)18]
�/2� and [Au25(SC2H4Ph)18]

0/� redox couples, respectively. This

Figure 5. Structural changes in Au
n
(SC12H25)m clusters with varying numbers of gold atoms (this figure was adapted

from Ref. [75]).
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redox behavior is not confined to clusters with discrete electronic structures; Au
n
(SR)

m
clusters

larger than Au144(SR)60 also exhibit redox behavior as a result of quantized double-layer

charging [21]. The redox properties of Au
n
(SR)

m
clusters could be applied to single-electron

transistors [92].

5.3. Optical activity

Several clusters, such as Au38(SR)24 and Au40(SR)24, have optical isomers with different

dS(R)[dAudS(R)]
x
d staple (x = 1, 2) configurations [93–95] and thus are optically active [36].

Figure 6(c) presents the circular dichroism spectra of two optical isomers of Au38(SC2H4Ph)24

Figure 6. Size-specific physical and chemical properties of Aun(SR)m clusters: (a) photoluminescence, (b) redox behavior,

(c) optical activity, and (d) catalytic activity (these figures were adapted from Refs. [22, 90, 95]).
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[95]. The anisotropy factor associated with the optical activity of this cluster increases with

wavelength up to a maximum of 4 � 10�3.

5.4. Catalytic activity

Catalytic activity is another typical size-specific property of Au
n
(SR)

m
clusters (Figure 6(d))

[22, 72]. As an example, Au25(SR)18 catalyzes the oxidation of CO, styrene, benzyl alcohol,

cyclohexane, and sulfides. The same cluster also exhibits catalytic activity for the hydrogena-

tion of nitrophenol, aldehydes, and ketones and promotes CdC coupling reactions. As noted,

several Au
n
(SR)

m
clusters have optical isomers and therefore could potentially function as

asymmetric catalysts [96].

5.5. Effect of changing ligands

Regarding Au
n
(SeR)

m
and Au

n
(TeR)

m
clusters, it has been reported that the incorporation of SeR

or TeR ligands changes the nature of the bonding between the Au atoms and the ligands [97,

98]. In the case of Au
n
(SeC12H25)m clusters, this effect reduces the degree of charge transfer from

the Au atoms to the ligands (Figure 7(a)) such that the Audligand bond becomes much more

covalent than that in Au
n
(SC12H25)m clusters [41]. Owing to these changes in bonding charac-

teristics, Au25(SeR)18 (R = C12H25 or C8H17) exhibits greater resistance to degradation in solution

compared with Au25(SR)18 (R = C12H25 or C8H17) (Figure 7(b)) [42, 99]. In addition to such an

improved stability, the use of SeR ligands is expected to improve conductivity between the gold

core and the ligands [97, 100, 101], and future work is likely to demonstrate the conductivity of

Au
n
(SeR)

m
clusters. Furthermore, recent studies have found that Au25(SePh)18 exhibits catalytic

activity for the reduction of 4-nitrophenol (Figure 7(c)) [48].

Figure 7. A comparison of (a) the Au L3-edge X-ray absorption near-edge structure spectra of Au25(SeC12H25)18 and

Au25(SC12H25)18 and (b) the stability of Au25(SeC12H25)18 and Au25(SC12H25)18 in solution under harsh conditions.

(c) Representative UV-vis optical absorption spectra acquired during the reduction of 4-nitrophenol to 4-aminophenol

over Au25(SePh)18 (these figures were adapted from Refs. [42, 43, 48]).
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6. Ligand exchange reactions

As described above, Au
n
(SR)

m
clusters tend to resist degradation. However, this type of metal

cluster readily exchanges its ligands with other coexisting ligands in solution (Figure 8(a)). A

complete understanding of the associated mechanism would allow these reactions to be con-

trolled, thus permitting synthesis of novel metal clusters with specific functions. Recently,

more details regarding exchange reactions between metal clusters and ligands have been

reported, and these findings are discussed in this section.

6.1. Mechanism

Murray et al. reported the ligand exchange reactions of this type of cluster nearly 20 years ago

[60–65]. However, their research was conducted using mixtures and did not use advanced

techniques such as mass spectrometry and single-crystal X-ray structural analysis to character-

ize the products. Therefore, a thorough understanding of the details of these reactions was not

obtained. More recent research has elucidated the associated mechanism. As an example,

Au25(SR)18 has a geometry in which the Au13 core is covered by six dS(R)d[AudS(R)]2d

staples (Figure 9(a)). As a result, there are two types of SR units in Au25(SR)18: those in contact

with the Au13 core (core-site SR; Figure 9(a)) and those at the apex of each staple (apex-site SR;

Figure 9(a)) [102, 103]. Ackerson et al. performed a single-crystal X-ray structural analysis of the

product obtained from the reaction of Au25(SC2H4Ph)18 (SC2H4Ph = 2-phenyl ethanethiolate)

Figure 8. A schematic diagram of ligand exchange reactions including (a) only ligand exchange, (b) induction of quasi-

isomerization, and (c) induction of size transformation.
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with para-bromobenzenethiol to ascertain which SR was more likely to be exchanged [103]. The

results showed that Au25(SC2H4Ph)16(p-BBT)2 (p-BBT = para-bromobenzenethiolate), in which the

substitution had occurred at the core-site SR ligands, was obtained (Figure 9(a)), suggesting that

the ligand exchange occurred at the core-site SR locations. However, this prior work did not

determine whether other structures may have been present in the reaction mixture or not. For

this reason, Niihori et al. employed reversed-phase high-performance liquid chromatography to

allow the high-resolution separation of the coordination isomers generated by a similar reaction

and estimated the distribution of isomers in the product. It was confirmed that the product

mixture mainly contained a coordination isomer in which the core-site SR ligands had been

substituted (Figure 9(b)) [104]. Fernando and Aikens performed density functional theory

(DFT) calculations at approximately the same time, and the results indicated that ligand

exchange was likely to occur at core-site SR ligands in Au25(SR)18 [105]. These results demon-

strated that ligand exchange preferentially proceeds at core-site SR ligands in Au25(SC2H4Ph)18.

The research by Hossain et al. has revealed that preferential exchange at core-site SR ligands also

occurs in the reaction between [Au25(SC2H4Ph)18]
� and other chalcogenides (Figure 9(c)) [106].

6.2. Induction of quasi-isomerization

Studies have found that, in addition to ligand exchange, a change in geometry can also

take place during reactions with thiol (RSH) (Figure 8(b)). This discovery originated from

the prediction of the geometry of Au24(SR)20 clusters. Specifically, Jin et al. synthesized

Au24(SC2H4Ph)20 in 2010 [107], after which Pei and coworkers predicted the geometry of these

clusters via DFT calculations based on Au24(SCH3)20 [108]. Thereafter, Jin et al. characterized

Au24(SCH2Ph-
tBu)20 (SCH2Ph-

tBu = 4-tert-butylphenylmethanethiolate) by single-crystal X-ray

structural analysis but found that the resulting structure was different from that predicted by

Pei’s group [109]. This discrepancy prompted Jiang et al. to study the geometric structures of

Au24(SR)20 clusters (R = CH3, C2H4Ph, or CH2Ph-
tBu) using DFT, leading to the conclusion that

the most stable structure of a Au24(SR)20 cluster depends on the ligand [110]. At present, this

theory has not been proven experimentally for Au24(SR)20. However, in 2016, Jin et al. reported

that exchanging the ligands of Au28(SPh-
tBu)20 (SPh-tBu = 4-tert-butylbenzenethiolate) with

cyclohexanethiolate (S-c-C6H11) altered the skeletal structure of the cluster (Figure 10(a)) [111].

Figure 9. Preferential sites in ligand exchange reactions. (a) and (c) Geometrical structures of the products obtained from

the reaction between Au25(SC2H4Ph)18 and para-bromobenzenethiol and benzeneselenol, respectively. (b) Chromatogram

of the product obtained from the reaction between Au24Pd(SC2H4Ph)18 and dodecanethiol (these figures were adapted

from Refs. [103, 104, 106]).
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This same work also demonstrated that exchanging the ligands of Au28(S-c-C6H11)20 with SPh-tBu

regenerated the original geometry, meaning that the reaction was reversible (Figure 10(a)) [111].

Thus, it has recently been revealed that both ligand exchange and quasi-isomerization (as

opposed to true isomerization because the ligand is different) can be induced for a particular

Aun(SR)m cluster.

6.3. Induction of size transformation

Researches have also shown that the introduction of a significant structural deformation via

ligand exchange can result in the formation of Aun(SR)m clusters with different chemical

compositions (Figure 8(c)) [102]. An example is the reaction of Au38(SC2H4Ph)24 clusters

(Figure 3(b)) with tBu-PhSH in solution, from which Au36(SPh-
tBu)24 was generated as the

main product (yield ~90%) (Figure 10(b)) [112]. This outcome indicates that exchange with a

ligand containing a bulky functional group can affect the chemical composition of the cluster.

Figure 10. Examples of ligand exchange reactions, including (a) quasi-isomerization and (b) size transformation (these

figures were adapted from Refs. [111, 112]).
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Research regarding the mechanism of such reactions has also been conducted. Jin et al. found

that the following four processes occur in the reaction between Au38(SC2H4Ph)24 and
tBu-PhSH:

(I) ligand exchange, (II) structural distortion, (III) disproportionation, and (IV) size focusing

conversion together with further ligand exchange (Figure 10(b)) [112]. In the first process, ligand

exchange occurs without size or structural transformations, while the structural distortion of the

resulting Au38(SC2H4Ph)24�m(SPh-
tBu)m (m > ~12) is initiated in the second process. During the

third process, one Au38(SC2H4Ph)24–m(SPh-
tBu)m releases two gold atoms to form Au36 and

another Au38(SC2H4Ph)24–m(SPh-
tBu)m captures these two atoms and two free ligands to form

Au40(SC2H4Ph)24–m(SPh-
tBu)m+2. In the final process, the Au40(SC2H4Ph)24�m(SPh-

tBu)m+2 begins

to convert to Au36, such that pure Au36(SPh-
tBu)24 is eventually obtained (Figure 1(b)). Aun(SR)m

clusters such as Au28(SPh-
tBu)20, Au36(SPh-

tBu)24, and Au36(S-c-C5H9)24, none of which can be

generated via direct synthesis at atomic precision, have also been synthesized in a size-selective

manner by inducing this kind of structural deformation [102].

6.4. Relation between ligand structure and outcome

In this way, the outcomes are significantly affected by the bulkiness of the ligand in the ligand

exchange reactions. Normally, ligand exchange with alkanethiol or PhC2H4SH does not result

in structural transformation, but simply leads to ligand exchange. Conversely, a bulky ligand

such as tBu-PhSH often leads to structural transformation. At present, these are no clear rules

for predicting the final state of the deformed cluster (whether quasi-isomerization or size

transformation). The final state seems to be related to the magnitude of the structural transfor-

mation and the possibility of isomeric structures with similar stabilities.

7. Summary

This chapter summarized common methods of fabricating Aun(XR)m clusters and surveyed the

various geometric and electronic structures of these compounds, as well as their physical and

chemical properties. Recent discoveries regarding ligand exchange reactions capable of

enhancing the functionality of these clusters were also described. Although the precise synthe-

sis of such clusters was first reported only 13 years ago at the time of writing, many studies

regarding these clusters have been conducted in the interim, all of which have significantly

improved our understanding of synthetic methods as well as the structures and functions of

the clusters. It is expected that more information related to Aun(XR)m clusters will be gained on

the basis of continuing research, leading to the readily synthesis of metal clusters with desired

functions in the near future.
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