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Blood Perfusion Models for  
Infrared Face Recognition 

Shiqian Wu, Zhi-Jun Fang, Zhi-Hua Xie and Wei Liang 
School of information technology, Jiangxi University of Finance and Economics, 

China 

1. Introduction 

Infrared (IR) technology has traditionally been applied to military use and remote sensing. 

During the last two decades, the cost of IR cameras (especially uncooled imagers) has been 

significantly reduced with the development of CCD technology, and therefore civil 

applications have increased constantly due to its unique features. One of such applications 

is IR face recognition (Prokoski et al., 1992, Prokoski, 2000, Kong et al., 2005). The 

fundamentals behind it are, as indicated by Kong et al (Kong et al., 2005) that IR images are 

independent of external illumination. While visible images represent the reflectance 

information of the face surface, IR face images contain more fundamental information about 

faces themselves, such as anatomical information (Prokoski, et al., 1992, Prokoski, 2000); the 

thermal characteristics of faces with variations in facial expression and make-up remain 

nearly invariant (Socolinsky & Selinger, 2002) and the tasks of face detection, localization, 

and segmentation are relatively easier and more reliable than those in visible images (Kong 

et al., 2005). It has been pointed by Prokoski et al. (Prokoski et al., 1992) that humans are 

homoiotherm and hence capable of maintaining constant temperature under different 

surroundings. The thermal images collected over 20 years have demonstrated that the 

thermal measurements of individuals are highly repeatable under the same conditions. 

Furthermore, as discussed by Prokoski (Prokoski, 2000), a facial thermal pattern is 

determined by the vascular structure of each face, which is irreproducible and unique.  

Based on the assumption that facial thermal patterns are determined by blood vessels 

transporting warm blood, Prokoski tried to extract the blood vessel minutiae (Prokoski, 

2001) or vascular network (Buddharaju et al., 2004, Buddharaju et al., 2005) as the facial 

features for recognition. The basic idea is to extract such features using image segmentation. 

It has been indicated by Guyton & Hall (Guyton & Hall, 1996) that the average diameter of 

blood vessels is around 10~15μm, which is too small to be detected by current IR cameras 

(limited by the spatial resolution); the skin directly above a blood vessel is on average 0.1°C 

warmer than the adjacent skin, which is beyond the thermal accuracy of current IR cameras. 

The methods using image segmentation in (Prokoski, 2001, Buddharaju et al., 2004, 

Buddharaju et al., 2005) are heuristic, and it still remains a big challenge to capture the 

pattern of blood vessels on each face.   

On the other hand, the phenomenon of “homoiotherm” due to human temperature 

regulation has led to the direct use of thermograms for recognition (Wilder et al., 1996, O
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Socolinsky & Selinger, 2002, Wu et al., 2003, Chen et al., 2005). Wilder et al. (Wilder et al., 

1996) used three different feature-extraction and decision-making algorithms for test. The 

recognition results revealed that both visible and IR imageries perform similarly across 

algorithms. The real-time IR face recognition system developed by Wu et al. (Wu et al., 2003) 

achieves good performance. Especially, Socolinsky & Selinger (Socolinsky & Selinger, 2002) 

simultaneously registered the IR and visible images of each candidate under controlled 

conditions. It has been concluded from their experimental results that (1) variations of IR 

images are less than those of visible images; (2) IR images are less sensitive to facial 

expression changes. The experiments conducted with the common methods like principle 

component analysis (PCA), linear discriminant analysis (LDA), local feature analysis (LFA) 

and independent component analysis (ICA) demonstrated that using thermal infrared 

imagery yields higher performance than using visible images under many circumstances 

(Socolinsky & Selinger, 2002).   

It is noted that the aforementioned database mainly involved same-session data (i.e., nearly-
simultaneous acquisition of training and testing data). Besides the same-session test, Chen et 
al. (Chen et al., 2005) paid more attention to test of time-lapse data (i.e., training data and 
testing data being collected in different time sessions). The intervals among training data 
and testing data   are several weeks, several months or even one year respectively. The 
large-scale studies involving both same-session and time-lapse data indicated that in a 
same-session scenario, neither modality is significantly better than the other using the PCA-
based recognition; however, using visible imagery outperforms that using IR imagery for 

time-lapse data.  
When we mention that humans are homoiothermal, it should be highlighted that the so 
called “homoiotherm” only refers to the approximately constant temperature in deep body 
(i.e., the core temperature), whereas the skin temperature distribution fluctuates with the 
ambient temperature, changes from person to person, and from time to time, as shown in 
(Houdas & Ring, 1982, Guyton & Hall, 1996, Jones & Plassmann, 2000). It should also be 
noted that an IR camera can only capture the apparent temperature instead of deep 
temperature. As indicated by Housdas & Ring (Houdas & Ring, 1982), the variations in 
facial thermograms result from not only external conditions, such as environmental 
temperature, imaging conditions, but also various internal conditions, such as physiological 
or psychological conditions. Socolinsky & Selinger (Socolinsky & Selinger, 2004A, 
Socolinsky & Selinger, 2004B) also explored such variations. 

To improve the performance of IR face recognition for time-lapse session, more efforts have 

been put on classifier design (Socolinsky & Selinger, 2004A, Socolinsky & Selinger, 2004B, 

Srivastava & Liu, 2003). Meanwhile, some researchers focus on feature extraction. Yoshitomi 

et al. (Yoshitomi et al., 1997) used both thermal information and geometrical features for 

recognition. Wu et al. (Wu et al., 2005A) proposed a model to convert the thermograms to 

blood perfusion data and the performance on time-lapse data is significantly improved. The 

modified blood perfusion model by Wu et al. (Wu et al., 2007) further improves the time-

lapse performance.  

In this chapter, we will provide a comprehensive study on the proposed blood perfusion 
models. It is revealed that the transforms by the blood perfusion models reduce the within-
class scatter of thermograms and obtains more consistent features to represent human faces. 
In the following Section, the thermal pattern variations are analyzed. The blood perfusion 
models are presented and analyzed in Section 3. A variety of experiments on blood 
perfusion and thermal data are performed in Section 4, and the conclusions are drawn in 
Section 5. 
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2. Thermal pattern variations and analysis 

Although IR images are independent of illumination, fluctuations in thermal appearance occur 

in relation to ambient conditions, subject’s metabolism and so on. It is necessary to learn how 

the thermal patterns vary in different situations before presenting the proposed methods. 

Some of the factors affecting thermal distribution are presented in the following subsections. 

2.1 Deep body temperature vs skin temperature 
In 1958, Aschoff and Wever introduced the terms “thermal core”, the temperatures of which 

remain almost exactly constant, within +/ - 0.6°C, day in and day out except when a person 

develops a febrile illness (Guyton & Hall, 1996). Blatteis (Blatteis, 1998) indicates that even if 

ambient temperature varies widely, core temperature does not change as a function of ambient 

temperature. This is due to the presence of a closed control loop with negative feedback in the 

body system which prevents mean body temperature from deviating extensively from this 

value taken under thermoneutral conditions (Blatteis, 1998). In fact, a rise in core temperature 

of only 0.5 ºC causes extreme peripheral vasodilation (flushing of the skin in humans). This 

stability implies that the heat produced in the body and that lost from it stay in relative 

balance, despite the large variations in ambient temperature (Blatteis, 1998).  

The skin temperature, in contrast to the core temperature, fluctuates with the temperature of the 

surroundings (Guyton & Hall, 1996, Blatteis, 1998). One may infer, therefore, that in order to 

maintain core temperature stable, the rate of heat flow from core to skin is djusted according to 

the body’s thermal needs and that, as a result, skin temperature varies more widely than core 

temperature in relation to ambient temperature (Blatteis, 1998). Under steady-state conditions in 

a thermoneutral environment, (i.e., one in which neither the mechanism for heat production nor 

for heat loss is activated and the perceived thermal comfort is optimal), core temperature thus is 

higher than skin temperature (Blatteis, 1998). For resting, naked adults, this zone of ambient 

temperature lies between 28 and 30 °C (Blatteis, 1998). 

There is no single temperature level that can be considered to be normal because 
measurements on many normal people have shown a range of normal temperature 

measured orally, from less than 36.1°C to 37.5°C (Guyton & Hall, 1996). When excessive heat 
is produced in the body by strenuous exercise, temperature can rise temporarily to as high 
as 38.33-40.0°C. On the other hand, when the body is exposed to cold, the temperature can 
often fall to values below 96°F (35.56°C) (Guyton & Hall, 1996). 

2.2 Variation with ambient conditions 
The works by Chen et al. Chen et al., 2005), Socolinsky & Selinger (Socolinsky & Selinger, 

2004A, Socolinsky & Selinger, 2004B), Wu et al. (Wu et al., 2005A, Wu et al., 2007) have 

illustrated that variations in ambient temperature significantly change the thermal 

characteristics of faces, and accordingly affect the performances of recognition. Fig. 1 shows 

the thermal distribution of the same face in different ambient temperatures. All of the images 

are observed (the red part) from the pixel values ranging from 238 to 255. It is observed from 

Fig.1 that the skin temperature of the cheeks, tip of nose and hair increases as the ambient 

temperature increases. The intensities of the forehead region start off as bright when the 

ambient temperature is low. As the ambient temperature increases (above 27.9 ºC ~ 28.1 ºC), 

the intensities of the forehead region drops drastically due to the effect of sweating. It was 

indicated by Blatteis (Blatteis, 1998) that the human body has about three million sweat glands, 

the greatest density being found on the palms, soles and forehead. Thermoregulatory sweating 
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increases with elevation in core temperature (Blatteis, 1998),   and therefore the forehead 

region emits sweat easily when the ambient temperature increases.  Evaporation takes place 

once the sweat reaches the surface, hence causing the skin temperature to lower down.  
 

 
Fig. 1. Images taken at different ambient conditions (1st row: 24.8 ºC ~ 25.0 ºC, 2nd row: 25.7 

ºC ~ 26.1 ºC, 3th row: 27.1 ºC ~ 27.4 ºC, 4th row: 27.9 ºC ~ 28.1 ºC, 5th row: 28.4 ºC ~ 28.7 ºC, 
6th row: 28.9 ºC ~ 29.3 ºC)  
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(a) Histogram in ambient temperature 24.8 ºC ~ 25.0 ºC 

 

(b) Histogram in ambient temperature 28.9 ºC ~ 29.3 ºC 

Fig. 2. Histograms in different ambient temperatures of the same face 
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2.3 Variation due to metabolism 
Ganong (Ganong, 2001) indicates that the body temperature is lowest during sleep, slightly 

higher in the awake but relaxed state, and rises with activity. For activities such as 

exercising, the heat produced by muscular contraction accumulates in the body and cause 

the body temperature to rise (Ganong, 2001).  

Body temperature also rises slightly during emotional excitement, probably owing to 

unconscious tensing of the muscles (Ganong, 2001). It is chronically elevated by as much as 

0.5 ºC when the metabolic rate is high, as in hyperthyroidism, and lowered when the 

metabolic rate is low, as in hypothyroidism (Ganong, 2001). There is an additional monthly 

cycle of temperature variation characterized by a rise in basal temperature at the time of 

ovulation for women (Ganong, 2001). Temperature regulation is less precise in young 

children, and they may normally have a temperature that is 0.5 ºC or so above the 

established norm for adults (Ganong, 2001).  

Socolinsky & Selinger (Socolinsky & Selinger, 2004A, Socolinsky & Selinger, 2004B) also 

analysed that additional fluctuations in thermal appearance could be related to the subject’s 

metabolism. During their data collection, an uncontrolled portion of the subjects was 

engaged in strong physical activity at different periods prior to imaging. The time elapsed 

from physical exertion to imaging was uncontrolled and known to be different for different 

sessions. This further contributes to the change in thermal appearance.  

2.4 Variation due to breathing patterns 
Fig.3 shows the images when the person is breathing in (the first one), breathing out (the 

middle one) and no breathing (last one), and the curve below represents the reversed 

cumulative histograms. The curves in red, green and blue represent the subject breathing in, 
 

 

Fig. 3. Reversed cumulative histogram for inhalation & exhalation 
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breathing out and no breathing respectively. It can be seen that a relatively larger area of the 

face is subjected to low temperature (left part in the curve) when the subject breathes in and 

high temperature when breathes out. The area of the face with higher temperature part 

(right part in the curve) stays almost constant regardless of whether the subject is breathing 

in or out. Such change is obvious: when the subject exhales, the region directly below nose 

(i.e., region around nose and mouth) becomes warmer since exhaled air is at core body 

temperature, which is several degrees warmer than skin temperature. 

2.5 Variation due to alcohol consumption 
The variation in thermal distribution when the subject is under alcohol consumption is 

shown in Fig.4. It is generally known that alcohol increases body temperature because it 

dilates blood vessels in the skin. The flushed complexion associated with drinking is due to 

central vasomotor depression. In Fig.4, the top left image is taken immediately after 

consumption of alcohol, the top right image is taken 15 min later after consumption, bottom 

left image is taken after 35 min delay and finally the bottom right image is taken 100 min 

later. It can be observed that there are changes in the appearance of the thermal images at 

different timings after a single session of drinking alcohol. More regions of the face, 

especially the cheeks and forehead became warm as time passes after consumption. This is 

due to the fact that alcohol concentration in the blood flowing in the human face peaked 

only some time after consumption.  

Alcohol consumption can normally affect thermal distribution for each individual 

differently. It depends on the amount of dosage and how fast the rate of absorption of 

alcohol takes place in the body. The rate of absorption can in turn be determined by whether 

there was any food consumption beforehand or whether the subject had his /  her pyloric 

valves removed surgically (Goodwin, 2000). 

 

 

Fig. 4. Images taken at different timings after alcohol consumption 
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Actually, many other factors affect the thermograms. These include imaging condition 

(e.g., thermal drift, distance, glasses etc), psychological condition (e.g., angry, blushing, 

stress etc) and physiological condition (toothache, headache etc). As indicated by Jones & 

Plassmann (Jones & Plassmann, 2000), “ the skin temperature distribution changes from 

person to person, and from time to time” . It is difficult to extract the unique features of a 

face. 

3. Blood perfusion models 

It is assumed that the ambient condition is stable without wind and sun effect, and the 

subjects are in the steady state without temperature regulation, i.e., the following 

assumptions are made:  

Assumption 1: The deep body temperature is constant, and no thermal regulation (e.g., 

sweating) is considered;  

Assumption 2: The ambient temperature is lower than body temperature (e.g., indoor 

condition is considered);  

Assumption 3: Pathological conditions (e.g., fever, headache, inflammation, etc) and 

psychological conditions (e.g., anger, blush, etc) are not considered. 
  

(a) Thermal data ( e
T = 26.2 oC);                                      (b) Corresponding blood perfusion data 

Fig. 5. Thermal data vs blood perfusion data 

In view of the heat transfer and thermal physiology under these assumptions, the heat 

transfer on skin surface can be described by the following heat equilibrium equations 

(Houdas & Ring, 1982): 

 r e f c m bH H H H H H+ + = + +   (1) 

where H represents the heat flux per unit area. The subscripts r, e and f stand for radiation, 

evaporation and convection respectively. These three terms on left hand are the outflows 

which point from the skin surface to the environment. The subscripts c, m and b stand for 

body conduction, metabolism and blood flow convection. These are the influx terms in the 

direction from the body to the skin surface. Based on the analysis in (Wu et al., 2005A), 

blood perfusion is expressed as follows: 
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4 4 3 1 2 1( ) (P ) ( ) ( )

( )

M M M
s e s e c s m

b a s

T T A d g T T k T T D H

c T T

εσ μ β ν
ω

α

− +− + − − − −
=

−   (2) 

where the specific parameters are tabulated in Table 1. Equation (2) defines the thermogram 
to blood perfusion transform, with which a thermal datum T(x, y ) at location (x, y) can be 

therefore converted into the corresponding blood perfusion ( , )x yω . An example of the 

conversion is shown in Fig. 5. 
 

symbol description Value 

ω  Blood perfusion  

σ  Stefan-Boltzmann constant 5.67*10-8 W m-2K-4 

ε  Tissue/ skin thermal emissivity 0.98 

sT  Skin temperature  

eT  Ambient temperature  

aT  Artery temperature 312.15K  

cT  Core temperature 312.15K  

k  tissue/ skin thermal conductivity 0.2Wm-1K-1  
μ  Air thermal conductivity 0.024 W m-1K-1 

b
c  blood specific heat 3.78*103 J kg-1 K-1 

m
H  metabolic heat flux per unit area 4.186W m-2  

α  tissue/ skin countercurrent exchange ratio 0.8 

P  Prandtl constant 0.72 

ν  kinematic viscosity of air 1.56*10-5 m2/ s 

β  air thermal expansion coefficient 3.354*10-3K -1 

g local gravitational acceleration 9.8m2/ s  

A constant 0.27 

M constant 0.25 

d Characteristic length of a face 0.095 

D Distance from body core to  skin surface 0.095 

Table 1. Nomenclature 

The proposed blood perfusion model by equation (2) defines a transform from the thermal 

space to the blood perfusion space. It is a point-wise transform and has the following 

characteristics: the location of the facial features is preserved; the shape of the subject is 

identical to the thermograms. It is noted that the concept of blood perfusion is meaningful 

only for skin part; for the non-skin part (e.g., hair and background), it could be viewed as an 

equivalent “blood perfusion”.  

It is easy to derive the differential of blood perfusion to temperature T as follows: 

 

3 3 1 2

2

[4 ( ) ( ) ]( )

( )

M M M

e c

b a

T A d P g T T kT D T T Sd

dT c T T

εσ μ β νω
α

−+ − + − +
=

−
  (3) 

where   
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4 4 3 1 2 1

( ) ( ) ( ) ( )
M M M

e e c m
S T T A d P g T T k T T D Hεσ μ β ν− += − + − − − −  (4) 

As eT T>  according to Assumption 2, aT T> , and S is always positive since the blood 

perfusion is positive, 
d

dT

ω
 is definitely positive. This implies that the relationship between 

the skin temperature T and the blood perfusion ω is monotonous. The skin area with 
relatively high temperature results in high blood perfusion as demonstrated in Fig.5.  

From the perspective of image processing, the proposed transform is a nonlinear one, as can 

be seen from Fig. 6. In essence, it increases the dynamic range of IR images and enhances the 

overall image contrast as visually demonstrated in Fig. 5. More specific and also 

importantly, it expands the contrast on high-temperature part (i.e., skin) and suppresses the 

contrast on low-temperature part (i.e., hair, background, etc.). As mentioned in Section 2, the 

thermal variations are usually big in low-temperature part due to environmental changes, 

but very small in high-temperature part because of the temperature regulation. Since the 

high-temperature part is the most meaningful portion of the signal for the decision making,   

the proposed blood-perfusion-based transform is appropriate since it overcomes the 

inherent variations in thermogram data.  
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Fig. 6. The relationship between temperature data and blood perfusion data  

Using the parameters shown in Table 1, it is found that 
fH  has much less effect (second-

order effect) on blood perfusion than rH . If  eT  has a change eTΔ , and we neglect the small 

variation of
fH ,  we have: 
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−
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i.e.,  

 
4 4

[( ) ( ) ]e e e
T T T

T T
ω ζ

+ Δ
Δ ≈ −   (6) 

where  

 
4

/ ( )
b a

T c T Tζ εσ α= −   (7) 

Expanding equation (6):  

 

3 2

2 3 4

3 2
[4 6 ( ) 4 ( ) ( ) )]e e e e e e e

T T T T T T T

T T T T TT T
ω ζ

Δ Δ Δ Δ
Δ ≈ + + +   (8) 

If /
e
T TΔ  is small (note: the unit of T is Kelvin temperature), and ignore the high-order 

terms, we obtain: 

 

3

4
4 e

e

T
T

T
ω ζΔ ≈ Δ   (9) 

It reveals from equation (9) that if 
e
T  has a small variation, the change of blood perfusion is 

almost linear, which is illustrated in Fig. 7. However, the gradient for each point is the 

function of its temperature. 
 

 
Fig. 7. The difference of blood perfusions vs different ambient temperatures （ 0

23
e
T C= ） 

Let
3 4

4 /
e
T Tη ζ= , which determines the transform from the 

e
TΔ  to ωΔ , and use equation 

(7), we have: 
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3

4
( )

e

b a

T

c T T

εσ
η

α
=

−
  (10) 

Using the parameters specified in Table 1, and setting 
0

15 ~ 30
e
T C= , and

0
32 ~ 36T C= , 

the variations of parameter η  are demonstrated in Fig. 8. It is observed that the smaller T 

and 
e
T  are, the smaller η  is. Even when  

0
30

e
T C=  and 

0
36T C= , η  is less than 0.7. This 

implies that if the ambient temperature has variation
e
TΔ , the resultant variation of blood 

perfusion ωΔ  is always less than 
e
TΔ . Hence, from the perspective of pattern recognition, 

the transform in equation (2) reduces the within-class scatter resulting from ambience, and 

obtains more consistent data to represent the human face. 
 

 

Fig. 8. The transform coefficient η  from 
e
TΔ  to ωΔ  in different temperatures 

It should be highlighted that some parameters, for example M, D, d etc., described in 
equation (2) are obtained from experiments. These values should vary or differ from person 
to person instead of constants as shown in Table 1. Furthermore, it is found that terms Hf, 

Hc, Hm and He are less significant compared to other terms. Therefore, it is reasonable to 

ignore these terms to obtain a simplified blood perfusion model as follows:  

 

4 4
( )

( )

e

b a

T T

c T T

εσ
ω

α
−

=
−

  (11) 

For convenience, we call equation (2) as complex blood perfusion model or original blood 
perfusion (OBP) model and equation (11) as modified blood perfusion (MBP) model. The 
relationship between the two models is depicted in Fig. 9. It is observed that both models 
have similar properties, for example, nonlinear and monotonous increase, but with different 
gradients.  
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Fig. 9. Original blood perfusion model vs modified blood perfusion model 

4. Experimental results 

4.1 IR face recognition system 
The experiments were performed using the real-time IR face recognition system as 

described in (Wu et al., 2003). The schematic diagram of the system is shown in Fig.10. After 

an image is captured, its quality is evaluated by an objective measurement (Wu et al., 

2005B). Only the image with good quality is inputted to the following detection and then 

recognition modules. Before normalize the face in a specific size, the face orientation is 

detected by single linkage clustering (Wu et al. 2006). Then, the facial features are extracted 

by the principle component analysis and Fisher’s linear discriminant method, and the 

classifier employs the RBF neural network as shown in (Wu et al. 2003) for details. The 

performance is evaluated in terms of maximum recognition score.  

4.2 Database collection 
The IR images were captured by the ThermoVision A40 made by FLIR Systems Inc. This 

camera, which uses an uncooled microbolometer sensor with resolution of 320×240 pixels 

and the spectral response is 7.5 ~ 13 microns, is specially designed for accurate temperature 

measurement. The sensitivity is as high as 0.08 °C. One of its prominent features is the 

function of automatic self-calibration to cope with the temperature drift. Furthermore, we 

have a blackbody MIKRON M340 to check and compensate the accuracy of measurement. 

The database used in experiments comprises 850 data of 85 individuals which were carefully 

collected at the same condition: i.e., same environment under air-conditioned control with 

temperature around 24.3 ~ 25.3°C, and each person stood at a distance of about 1 meter in 

front of the camera. Each person has 10 templates: 2 in frontal-view, 2 in up-view, 2 in 

down-view, 2 in left-view, and 2 in right-view. All the 10 images of each subject were 

acquired within 1 minute.  As glass is opaque to IR, people are required to remove their 

eyeglasses. 
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Fig. 10. Schematic diagram of the IR face recognition system 

4.3 Recognition results for same-session data 
The test situation is similar to the watchlist scenario described in FRVT 2002 (Bone & 
Blackburn, 2002). The subject is allowed to walk slowly back and forth in front of the camera 
at a distance between 0.7m and 1.4m. He/ she may have different poses and facial 
expressions. For different purposes, the subjects were asked to wear/ remove eyeglasses.  

A. Effect of eyeglasses 
During the first part of this experiment, the subjects were required to remove their 
eyeglasses. These testing images were captured right after collecting the training data. Here, 
the numbers of subjects and probe images are 10 and 114 respectively.  
Immediately after the first part of the experiment, the same group of testing persons was 
instructed to put on their eyeglasses for the next round of image capturing. The number of 
probe images is 108. The recognition results performed on thermal data, original blood 

perfusion (OBP) model and modified blood perfusion (MBP) model are tabulated in Table 2 
and Table 3. The recognition scores are demonstrated in Fig.11 and Fig. 12 respectively. 
 

Ambient Condition 

24.3 ˚C – 25.3 ˚C 

Thermal 

data 

OBP 

model 

MBP 

model 

Recognition Rate 96.4% 100% 100% 

Mean Score 0.825 0.913 0.874 

Variance 0.299 0.289 0.280 

Table 2. Recognition rate for same-session data without eyeglasses 

Normalization

Image acquisition

Quality evaluation

Face detection

Classifier 

Feature extraction

OBP model

MBP model

Orientation detection
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Ambient Condition 

24.3 ˚C – 25.3 ˚C 

Thermal 

data 

OBP 

model 

MBP 

Model 

Recognition Rate 80.9% 91.7% 91.7% 

Mean Score 0.705 0.803 0.764 

Variance 0.448 0.418 0.437 

Table 3. Recognition rate for same-session data with eyeglasses 

 

Fig. 11. Maximum recognition score for same-session data without eyeglasses 

 
Fig. 12. Maximum recognition score for same-session data with eyeglasses 
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From Table 2, it can be seen that the recognition rates for both blood perfusion models are excellent 
(achieved 100% recognition rate). The maximum recognition scores obtained are generally 
high for all the three models. The small variances indicate that the performances are robust. 
It is observed from Table 3 that wearing eyeglasses leads to decrease of recognition rate, 
especially for thermal images. The effects on OBP model and MBP model are similar and 
both the blood perfusion models greatly outperform the thermal model in terms of 
recognition rates and scores.  

B. Effect of ambient temperature & metabolism 
In this experiment, 15 subjects were engaged in some physical activity prior to imaging. 

They came to register their images in the afternoon between 1 p.m. to 4 p.m. The outdoor 

condition on that day was a warm and sunny weather, with ambient temperature ranging 

around 28.3 °C– 29.5 °C, while the indoor temperature is around 25.1 °C– 25.3 °C. There are 

totally 150 probe images collected. In this case, body temperature has significantly changes 

due to different activities and ambient temperatures. Accordingly, the performance in this 

situation decreases in terms of the recognition rates, recognition scores and score variances 

as shown in Table 4 and Fig.13, although the interval between training and testing is around 

2 minutes. As discussed in Section 2, the thermal characteristics indeed change under 
 

Ambient Condition 

28.3˚C – 29.5 ˚C to 25.1 

°C– 25.3 °C 

Thermal 

data 

OBP 

model 

MBP 

Model 

Recognition Rate 64.7% 81.7% 80.3% 

Mean Score 0.461 0.474 0.470 

Variance 0.488 0.428 0.430 

Table 4. Recognition rate of same-session data under variations due to ambient temperature 

and metabolism 

 
Fig. 13. Maximum recognition score for same-session data under variations due to ambient 
temperature and metabolism 

www.intechopen.com



Blood Perfusion Models for Infrared Face Recognition 

 

199 

variations due to ambient temperature and metabolism. In light of this, limitations are posed 

for recognition using thermal imaging. It is also observed that blood perfusion models try to 

alleviate these variations and yield reasonably performances. However, the recognition 

scores are relatively low and the variances are relatively high. 

C. Effect of breathing patterns 
In Sect 2.4, we analyzed the effects on thermal variation associated with breathing. Here, 

experiments are conducted to obtain the recognition results when the subject is inhaling, 

exhaling, followed by breathing normally. First, we performed the experiments when the 

subjects are inhaling. The number of probe images collected is 140. Table 5 illustrates the 

recognition rates obtained by the three different models and Fig. 14 shows the maximum 

recognition scores. 
 

Ambient Condition Data Type Recognition Rate 

Thermal 69.8% 

Complex Blood Perfusion 90.1% 
 

24.3˚C – 25.3 ˚C 
Modified Blood Perfusion 87.1% 

Table 5. Recognition rate for same-session data when inhalation 

 

Fig. 14. Maximum recognition scores for same-session data when inhalation 

In the next experiment, with the same group of people for test, they are instructed to only 
exhale during recognition. The total number of probe images in this case is 140. Table 6 
shows the recognition rates and the recognition scores are depicted in Fig.15. 
 

Ambient Condition Data Type Recognition Rate 

Thermal 84.1% 

Complex Blood Perfusion 89.8% 
 

24.3˚C – 25.3 ˚C 
Modified Blood Perfusion 89.8% 

Table 6. Recognition rate for same-session data when exhalation 
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Fig. 15. Maximum recognition scores for same-session data when exhalation 

The same group of people involved in the previous two breathing experiments is then 

instructed to breathe without any restraints in the next series of experiments. The number of 

probe images of subjects breathing normally is totally 135. The performances are shown in 

Table 7 and Fig. 16. 

It is interesting to note how the recognition rates obtained from the thermal model vary 

under the three scenarios. It can be seen that the thermal model results in big change of 

performances (14.3%), and yields the best recognition rate result (84.1%) during the 

exhalation experiments. For both the blood perfusion models, the recognition rate results 

obtained from the three different scenarios are comparable, and yields the best recognition 

rate result (94.1%) during the normal breathing. This is further verified that the blood 

perfusion models are efficient. 

D. Effect of hairstyle 
It is also interesting to find the effect of hair on recognition performance as the 

hair/ hairstyle keeps change frequently. Table 8 and Fig. 17 illustrate the recognition results 

for a person with no hair, while Fig. 18 shows the recognition results for a female with long 

hair. 
 

Ambient Condition Data Type Recognition Rate 

Thermal 77.8% 

Complex Blood Perfusion 94.1% 
 

24.3˚C – 25.3 ˚C 
Modified Blood Perfusion 94.1% 

 

Table 7. Recognition rate for same-session data when normal breathing 
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Fig. 16. Maximum recognition scores for same-session data when normal breathing 

 

Ambient Condition 

24.3 ˚C – 25.3 ˚C 

Thermal 

data 

OBP 

model 

MBP 

Model 

Recognition Rate 80% 100% 100% 

Mean Score 0.5132 0.6892 0.6632 

Variance 0.3189 0.1853 0.1850 
 

Table 8. Mean and variance of recognition scores for a bald subject 

 

 
 

Fig. 17. Maximum recognition score for a bald subject  
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Fig. 18. Maximum recognition score for a female with long hair 

Hair is an annoying factor for both segmetation and normalization of faces. As the thermal 
pattern of a face changes along with ambient temperature, psychological and physiological 
conditions, and the geometrical features of a face in an IR image is not clear, it is difficult to 
locate the facial features in IR images for face segmentation and normalization. In our 
recognition system (Wu et al., 2003), a face is segmented by temperature disparity between 
ambience and a face. Such method accordingly yields segmentation error by hair. Such 
situation is more serious for a female with long hair: for the same person, the segmentation 
results are significantly different caused by hair in different poses as shown in Figs. 19 and 
20 respectively.  On the other hand, hair is not a feature for recognition and accordingly 
affects performances. Therefore, the performance in terms of recognition rate and scores on 

subjects with bald head outperforms that on subjects with long hair.  
 

 
Testing image acquired                                                                                Normalized image after  
                                                                                                                          face detection program 

Fig. 19. Testing person with long hair: image 1 obtained after face detection program 

 
Testing image acquired                                                                                Normalized image after  

                                                                                                                          face detection Program 

Fig. 20. Testing person with hair: image 2 obtained after face detection program 
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It is interesting to find from Table 8 that 2 images are not recognized correctly for the bald 

subject when the thermal images are used , although the segmentation is excellent for such 

subjects as demonstrated in Fig.21. This is mainly caused by big pose variations. However, the 

2 images can be recognized correctly by employing the proposed blood perfusion models. 
 

 
Testing image acquired                                                           Normalized Image after  

                                                                                                                         Face Detection Program 

Fig. 21. Testing person with bald head: image obtained after face detection program 

E. Overall results for same-session data 
Considering all the aforementioned effects that can affect recognition performance, an 

overall recognition performance results based on same-session testing is generated. The 

number of subjects participating in this experiment is 85 and the number of probe images 

used here is 1780. Table 9 illustrates the overall results obtained.   

These results illustrate that both the blood perfusion models are less sensitive to variations 

to the factors as aforementioned, than the thermal data. It can also be observed that the 

recognition rate obtained from the OBP model is only slightly better than that of the MBP 

model. This suggests that the MBP model not only aids in reducing complexity and the 

computational time, it can also perform as well as the OBP model for same-session data.   
 

Ambient Condition Model Recognition Rate 

Thermal data 66.9% 

OBP model 86.6% 
 

24.3 ˚C – 25.3 ˚C 
MBP model 86.4% 

Table 9. Recognition rate for same-session data 

4.4 Recognition results for time-lapse data 
Time-lapse recognition was conducted based on the data collected one month later. The 
testing situation and environmental condition are similar to that when collecting the 
training data, under the temperature ranging from 24.3 ˚C – 25.3 ˚C. The number of probe 
images is 180. The results obtained are indicated in Table 10 and Fig.22. 

As the testing data were captured in air-conditioned room, it is considered that the testing 

individuals are in steady state without body temperature regulation. However, these time-

lapse data comprise a variety of variations: ambient temperature (although it is small), face 

shape resulted from hair styles, and physiology etc. The effect of hair styles leads to 

inconsistence in face normalization, and accordingly results in decrease of recognition rate. 

However, we found that one crucial factor came from physiology, for example, relaxed in 

morning, and tired in afternoon and at night. It was shown that even the ambient 

temperature was almost the same, the face images collected when the person was overtired 

cannot be recognized at all, and the effect of physiology on recognition rate varies from 

person to person. It is the key reason to affect the performance identified on time-lapse data.  
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The experimental results shown in Table 10 and Fig.22 reveal that it is difficult to use the 

thermograms to identify the person accurately under time-lapse scenarios. The recognition 

rate, using temperature data, decreases significantly from 66.9% (for same- session data) to 

23.8%. The performance using OBP model also yields big change ranged from 86.6% for 

same-session data to 76.6% for time-lapse data. However, it should be highlighted from 

Table 10 that the MBP model achieves better performance than the OBP model under time-

lapse testing. The recognition rate (83.7%) on time-lapse data is comparable to that of same-

session data. It is also observed from Fig. 22 that the scores performed on the MBP model is 

the highest amongst the three models at most times. Therefore, it is concluded that the MBP 

model is more suitable for real IR face recognition system. 
 

Ambient Condition Model Recognition Rate 

Thermal data 23.8% 

OBP model 76.6% 
 

24.3 ˚C – 25.3 ˚C 
MBP model 83.7% 

Table 10. Recognition rate for time-lapse data 

 

Fig. 22. Maximum recognition score for time-lapse data 

5. Conclusion 

Infrared imagery has been proposed for face recognition because it is independent on external 

illumination and shading problem. However, the thermal pattern of a face is also severely 

affected by a variety of factors ranging from eyeglasses, hairstyle, environmental temperature 

to changes in metabolism, breathing patterns and so on. To alleviate these variations, blood 

perfusion models are proposed to convert thermal information into physiological data. The 

transforms are nonlinearly monotonous, and are able to reduce the within-class scatter 

resulting from ambience, metabolism and so on, and more consistent features which 

represent the human faces are obtained. The extensive experiments demonstrated that the 

recognition performances with blood perfusion models are substantially better than that 

with thermal data in different situations, especially for time-lapse data.  
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It should be highlighted that physiological (e.g., fever) and psychological (e.g., happy, angry 

and sad etc) conditions also affect the thermal patterns of faces. Further analysis and 

experiments on these variations will be our future work. 
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