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1. Introduction  

The emotion accompanying with the voice is considered as a salient aspect in human 
communication. The effects of emotion in speech tend to alter the voice quality, timing, pitch 
and articulation of the speech signal. Gender classification, on the other hand, is an 
interesting field for psychologists to foster human-technology relationships. Automatic 
gender classification take on an increasingly ubiquitous role in myriad of applications, e.g., 
demographic data collection. An automatic gender classifier assists the development of 
improved male and female voice synthesizers (Childers et. al., 1988). Gender classification is 
also used to improve the speaker clustering task which is useful in speaker recognition. By 
separately clustering each gender class, the search space is reduced when evaluating the 
proposed hierarchical agglomerative clustering algorithm (Tranter and Reynolds, 2006). It 
also  avoids segments having opposite gender tags being erroneously clustered together. 
Gender information is time-invariant, phoneme-independent, and identity-independent for 
speakers of the same gender (Wu & Childers, 1991). In (Xiaofan & Simske, 2004), an accent 
classification method is introduced on the top of gender classification. Vergin et al. (Vergin, 
1996) claim that the use of gender-dependent acoustic-phonetic models reduces the word 
error rate of the baseline speech recognition system by 1.6%. In (Harb & Chen, 2005), a set of 
acoustic and pitch features along with different classifiers is tested for gender identification.  
The fusion of features and classifiers is shown to perform better than any individual 
classifier. A gender classification system is proposed in (Zeng et. al., 2006) based on 
Gaussian mixture models of speech features. Metze et al. have compared four approaches 
for age and gender recognition using telephone speech (Metze et. al., 2007).  Gender cues 
elicited from the speech signal are useful in content-based multimedia indexing as well 
(Harb & Chen, 2005). Gender-dependent speech emotion recognizers have been shown to 
perform better than gender-independent ones for five emotional state (Ververidis & 
Kotropoulos, 2004; Lin & Wei, 2005) in DES (Engberg & Hansen, 1996). However, gender 
information is taken for granted there. The most closely related work to the present one is 
related to the research by Xiao et al. (Xiao et. al., 2007), where gender classification was 
incorporated in emotional speech recognition system using a wrapper approach based on 
back-propagation neural networks with sequential forward selection. An accuracy of 94.65% 
was reported for gender classification on the Berlin dataset (Burkhardt et. al., 2005). 
In this research, we employ several classifiers and assess their performance in gender 

classification by processing utterances from DES (Engberg & Hansen, 1996), SES (Sedaaghi, 

2008) and GES (Burkhardt et. al., 2005) databases. They all contain affective speech. In O
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particular, we test the Bayes classifier with sequential floating forward feature selection 

(SFFS) (Fukunaga & Narendra, 1975; Pudil et. al., 1994), the probabilistic neural networks 

(Specht, 1990), the support vector machines (Vapnik, 1998), and the K-nearest neighbor 

classifiers (Fix & Hodges, 1991-a; Fix & Hodges, 1991-b). Although techniques based on 

hidden Markov models could be applied for gender classification in principle, they are not 

included in this study, because temporal information is ignored. 

2. Database  

The first dataset stems from Danish Emotional Speech (DES) database, which is publicly 
available and well annotated (Engberg & Hansen, 1996). The recordings in DES include 
utterances expressed by two professional actors and two actresses in five different emotional 
states (anger, happiness, neutral, sadness, and surprise). The utterances correspond to 
isolated words, sentences, and paragraphs. The complete database comprise approximately 
30 minutes of speech. 
Sahand Emotional Speech (SES) database (Sedaaghi, 2008) comprise utterances expressed by 

five male and five female students in five emotional states similar to the emotions employed 

in DES. Twenty four words, short sentences and paragraphs spoken in Farsi by each student 

are included in SES database leading to 1200 utterances and about 50 minutes recording. 

As the third database, the database of German Emotional Speech (GES) is investigated. An 
emotional database comprising 6 basic emotions (anger, joy, sadness, fear, disgust and 
boredom) as well as neutral speech is recorded (Burkhardt et. al., 2005). Ten professional 
native German actors (5 female and 5 male) have simulated these emotions, producing 10 
utterances (5 short and 5 longer sentences). The recorded speech material of about 800 
sentences have been evaluated with respect to recognizability and naturalness in a forced-
choice automated listening-test by 20-30 judges. Those utterances for which the emotion is 
recognized by at least 80% of the listeners are used for further analysis (i.e., 535 sentences) 
(Burkhardt et. al., 2005). 

3. Feature extraction 

The automatic gender classification is mainly achieved based on the average value of the 

fundamental frequency (i.e., F0). Also, the distinction between men and women have been 

represented by the location in the frequency domain of the first 3 formants for vowels 

(Peterson & Barney, 1952). To improve the efficiency, more features should be considered. 

The statistical features employed in our study are grouped in several classes and have been 

demonstrated in Table 1. They have been adopted from (Ververidis & Kotropoulos, 2006).  
 

 Formant features 

1-4 Mean value of the first, second, third, and fourth formant. 
5-8 Maximum value of the first, second, third, and fourth formant. 

9-12 Minimum value of the first, second, third, and fourth formant. 
13-16 Variance of the first, second, third, and fourth formant. 

 Pitch features 

17-21 Maximum, minimum, mean, median, interquartile range of pitch values. 

22 Pitch existence in the utterance expressed in percentage (0-100%). 
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23-26 Maximum, mean, median, interquartile range of durations for the 
plateaux at minima. 

27-29 Mean, median, interquartile range of pitch values for the plateaux at 
minima. 

30-34 Maximum, mean, median, interquartile range, upper limit (90%) of 
durations for the plateaux at maxima. 

35-37 Mean, median, interquartile range of the pitch values within the plateaux 
at maxima. 

38-41 Maximum, mean, median, interquartile range of durations of the rising 
slopes of pitch contours. 

42-44 Mean, median, interquartile range of the pitch values within the rising 
slopes of pitch contours. 

45-48 Maximum, mean, median, interquartile range of durations of the falling 
slopes of pitch contours. 

49-51 Mean, median, interquartile range of the pitch values within the falling 
slopes of pitch contours. 

 Intensity (Energy) features 

52-56 Maximum, minimum, mean, median, interquartile range of energy values. 

57-60 Maximum, mean, median, interquartile range of durations for the 
plateaux at minima. 

61-63 Mean, median, interquartile range of energy values for the plateaux at 
minima. 

64-68 Maximum, mean, median, interquartile range, upper limit (90%) of 
duration 
for the plateaux at maxima. 

69-71 Mean, median, interquartile range of the energy values within the 
plateaux at maxima. 

72-75 Maximum, mean, median, interquartile range of durations of the rising 
slopes of energy contours. 

76-78 Mean, median, interquartile range of the energy values within the rising 
slopes of energy contours. 

79-82 Maximum, mean, median, interquartile range of durations of the falling 
slopes of energy contours. 

83-85 Mean, median, interquartile range of the energy values within the falling 
slopes of energy contours. 

 Spectral features 

86-93 Energy below 250, 600, 1000, 1500, 2100, 2800, 3500, 3950 Hz. 
94-100 Energy in the frequency bands 250-600, 600-1000, 1000-1500, 1500-2100, 

2100-2800, 2800-3500, 3500-3950 Hz. 

101-106 Energy in the frequency bands 250-1000, 600-1500, 1000-2100, 1500-2800, 
2100-3500, 2800-3950 Hz. 

107-111 Energy in the frequency bands 250-1500, 600-2100, 1000-2800, 1500-3500, 
2100-3950 Hz. 

112-113 Energy ratio between the frequency bands (3950-2100) and (2100-0) and 
between the frequency bands (2100-1000) and (1000-0). 

Table 1. List of extracted features adopted from (Ververidis & Kotropoulos, 2006). 
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Not all the features can be extracted from each utterance. For example, some pitch contours 
do not have plateaux below 45% of their maximum pitch value, or some utterances do not 
have pitch at all because they are unvoiced. When a large number of missing feature values 
is met, the corresponding feature is discarded. The features with NaN (not a number) values 
are replaced with the mean value of the corresponding feature. The outliers (features with 
value 10000 times greater or smaller than the median value) are then eliminated. Also the 
features with bias are investigated. Then all features are normalized. The discarded features 
are as follows. 

• DES: 8, 17-51, 57-85, 105 (47 features remained), 

• SES: 8, 23-29, 33-34, 41, 48, 57-63, 67, 75, 82, 94, 96, 98, 103-105, 109-113 (80 features 
preserved), 

• GES: 8, 23-29, 33-34, 41, 60, 67, 75, 82, 94, 96, 98-99, 103-107, 109-113 (84 features 
retained). 

4. Classifiers 

The output of the gender classifier on emotional speech is a prediction value (label) of the 

actual speaker's gender. In order to evaluate the performance of a classifier, the repeated s-

fold cross-validation method is used. According to this method if s=20, the utterances in the 

data collection are divided into a training set containing 80% of the available data and a 

disjoint test set containing the remaining 20% of the data. The procedure is repeated for s=20 

times. The training and the test set are selected randomly. The classifier is trained using the 

training set and the classification error is estimated on the test set. The estimated 

classification error is the average classification error over all repetitions (Efron & Tibshirani , 

1993). 

The following classifiers have been investigated: 
1. Naive Bayes classifier using the SFFS feature selection method (Pudil et. al., 1994). The 

SFFS consists of a forward (inclusion) step and a conditional backward (exclusion) step 
that partially avoids local optima. In the proposed method, feature selection is used in 
order to determine a set of 20 features that yields the lowest prediction error for a fixed 
number of cross-validation repetitions. Ten best sorted features among the 20 best 
selected features are as follows. 

• 10 best features for DES: {112, 15, 10, 107, 96, 52, 102, 14, 13, 99}, 

• 10 best features for SES: {6, 32, 51, 3, 76, 20, 44, 52, 17, 22}, 

• 10 best features for GES: {38, 69, 43, 80, 42, 40, 63, 8, 15, 6}. 
2. Probabilistic Neural Networks (PNNs) (Specht, 1990). PNNs are a kind of radial basis 

function (RBF) networks suitable for classification problems. A PNN employs an input, 
a hidden, and an output layer. The input nodes forward the values admitted by 
patterns to the hidden layer ones. The hidden layer nodes are as many as the input 
nodes. They are simply RBFs that nonlinearly transform pattern values to activations. 
The nodes at the output layer are as many as the classes. Each node sums the activation 
values weighted possibly by proper weights. The input pattern is finally classified to 
the class associated to the output node whose value is maximum. PNNs with a spread 
parameter equal to 0.1 are found to yield the best results. If the spread parameter is near 
zero, the network acts as a nearest neighbor classifier. As the spread parameter becomes 
large, the network takes into account several nearby patterns. 
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3. Support vector machines (SVMs) (Vapnik, 1998). SVMs with five different kernels, have 
been used. Training was performed by the least-squares method. The following kernel 
functions have been tested:  

• Gaussian RBF (denoted SVM1): K(xi,xj)= exp{-γ||xi-xj||2} with γ =1;   

• multilayer perceptron (denoted SVM2): K(xi, xj)=S(xiT xj -1), where S(.) is a sigmoid 
function;  

• Quadratic kernel (denoted SVM3): K(xi,xj)= (xiT xj + 1)2; 

• Linear kernel (denoted SVM4): K(xi,xj)= xiT xj ; 

• Polynomial kernel (denoted SVM5): K(xi,xj)= (xiT xj + 1)3 . A polynomial kernel of 
degree 4 is found to yield the same results with the cubic kernel. 

4. For K-NNs, it is hard to find systematic methods for selecting the optimum number of the 
closest neighbors and the most suitable distance. Four K-NNs have been employed with 
different distance functions, such as the Euclidean denoted as KNN1, cityblock (i.e., sum 
of absolute differences) denoted as KNN2, cosine-based (i.e. one minus the cosine of the 
included angle between patterns) denoted as KNN3 and correlation-based (i.e., one minus 
the sample correlation between patterns) denoted as KNN4, respectively. We have 
selected K=2 in all experiments. Other values of K did not affect the classification accuracy 
unless the consensus rule was applied instead of the normal rule. In this case, none of the 
results of the K-NN would be stable and thus valid for classification. 

5. Gaussian Mixture model (GMM) have been employed in many fields, e.g., speech and 
speaker recognition (Stephen & Paliwal, 2006; Reynolds & Rose, 1995). In GMM, during 
the training phase, pdf (probability density function) parameters for each class (gender) 
are estimated. Then, during the classification phase, a decision is taken for each test 
utterance by computing the maximum likelihood criterion. GMM is a combination of K 
Gaussian laws. Each law in the mixture is weighted and specified by two parameters: 
the mean and the covariance matrix (Σk).  

5. Comparative results 

Figure 1 illustrates the correct classification rates achieved by each of the aforementioned 11 
classifiers on DES database, when 20% of the total utterances have been used for testing.  
For each classifier, columns ``Total'', ''Male'', and ''Female'' correspond to the total correct 

classification rate, the rate of correct matches between the actual gender and the predicted one 

by the classifier for utterances uttered by male speakers, and the rate of correct matches 

between the actual gender and the predicted one by the classifier for utterances uttered by 

female speakers, respectively. The leftmost column shows the total correct classification rate. 

The middle  and the rightmost  columns are the classification rates that correspond to correct 

matches between the actual speaker gender (i.e. the ground truth) and the gender prediction 

by the classifier for male and female speakers, separately. In the sequel, the total correct 

classification rate, the correct classification rate for male speakers, and the correct classification 

rate for female speakers are abbreviated as TCCR, MCCR, and FCCR, respectively.  In Figure 

1, the maximum and minimum TCCR for DES were obtained by the SVM1 (90.94%) and the 

SVM2 (57.33%), respectively. The maximum and minimum MCCR for DES were related to 

GMM (95.42%) and SVM2 (58.11%), respectively. For FCCR on DES, the maximum and 

minimum values were obtained by the Bayes classifier with SFFS (91.07%) and SVM2 (56.54%), 

respectively. The best results for TCCR, MCCR and FCCR are marked with ``↓’’ sign. 
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Fig. 1. Correct classification rates on DES database for the different methods when the size 
of test utterances is 20% of the total utterances.  

Figures 2 & 3 demonstrate similar  results for SES and GES databases, respectively. 
 

 

Fig. 2. Correct classification rates on SES database for the different methods when the size of 
test utterances is 20% of the total utterances.  

www.intechopen.com



Gender Classification in Emotional Speech 

 

369 

 

Fig. 3. Correct classification rates on GES database for the different methods when the size 
of test utterances is 20% of the total utterances.  

In Figure 2, the maximum and minimum TCCR for SES were obtained by the the Bayes 
classifier using SFFS (89.73%) and the SVM2 (58.83%), respectively. The maximum and 
minimum MCCR for SES were related to SVM4 (93.51%) and SVM2 (68.83%), respectively. 
For FCCR on SES, the maximum and minimum values were obtained by the Bayes classifier 
with SFFS (92.36%) and SVM2 (48.86%), respectively. 
In Figure 3, the maximum and minimum TCCR for GES were obtained by Bayes+SFFS 

(95.40%) and the GMM (78.74%), respectively. This is where SVM2 failed to classify at all. 

The maximum and minimum MCCR for GES were related to SVM1 (94.43%) and GMM 

(70.20%), respectively. The maximum and minimum values for FCCR on GES, were 

achieved by the Bayes classifier with SFFS (97.45%) and KNN3 (78.94%), respectively. 

In the following, we concentrate on the top methods, i.e., SVM1, SVM4, GMM, and the 
Bayes classifier with SFFS. Table 2 demonstrates the confusion matrix for gender 
classification of the top methods after running each method several times and taking the 
mean value. The correct classification rates for each gender are shown in boldface. SVM1 
outperforms the other methods achieving a correct classification rate of 90.94% (TCCR) with 
a standard deviation of 0.65. GMM is  the best classifier, when the correct matches are 
between the actual gender and the predicted one  by the classifier are measured for actors' 
utterances, yielding a rate of 95.42% (MCCR). The Bayes classifier using SFFS achieves  a 
rate of 91.07%, when the correct matches between the actual gender and the predicted one 
by the classifier are measured for actresses' utterances (FCCR).  
Similarly, Tables 3 & 4 show the confusion matrices for gender classification of the top 
methods on SES and GES databases, respectively. The Bayes classifier using SFFS 
outperforms the other methods achieving a correct classification rate of 89.74% (TCCR) with 
a standard deviation of 0. 1.03 on SES. It is also the best classifier for FCCR with 92.36% on 
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SES. SVM4 is considered as the best classifier for MCCR with 93.51% on SES. Also Bayes 
classifier using SFFS outperforms other classifiers for TCCR with 95.40% on GES with a 
standard deviation of 1.16. Moreover, it is the best classifier for FCCR with 97.45% on GES. 
SVM1 is the best classifier for MCCR with 94.43% on GES.  
 

GMM 
Ground Truth ↓

Response (%) 
Male      Female

 Bayes-SFFS 
Ground Truth ↓

Response (%) 
Male      Female 

Male 
Female 

95.42         4.58 
28.59       71.41 

 Male 
Female 

87.69     12.31 
  8.93       91.07 

Correct rate 83.42%  Correct rate 89.38% 

     

SVM1 
Ground Truth ↓

Response (%) 
Male      Female

 SVM4 
Ground Truth ↓

Response (%) 
Male      Female 

Male 
Female 

92.08         7.92 
10.19       89.81 

 Male 
Female 

92.72         7.28 
 13.12      86.88 

Correct rate 90.95%  Correct rate 89.80 % 

Table 2. Confusion matrix for the 4 best methods when 20% of the utterances of DES 
database are used for testing. 

GMM 
Ground Truth ↓

Response (%) 
Male      Female

 Bayes-SFFS 
Ground Truth ↓

Response (%) 
Male      Female 

Male 
Female 

86.34        13.66 
18.08       81.92 

 Male 
Female 

87.11      12.89 
  7.64      92.36 

Correct rate 84.13%  Correct rate 89.74% 

     

SVM1 
Ground Truth ↓

Response (%) 
Male      Female

 SVM4 
Ground Truth ↓

Response (%) 
Male      Female 

Male 
Female 

90.94         9.06 
14.16       85.84 

 Male 
Female 

93.51         6.49 
 14.83      85.17 

Correct rate 88.39%  Correct rate 89.34% 

Table 3. Confusion matrix for the 4 best methods when 20% of the utterances of SES 
database are used for testing. 

GMM 
Ground Truth ↓

Response (%) 
Male      Female

 Bayes-SFFS 
Ground Truth ↓

Response (%) 
Male      Female 

Male 
Female 

70.20       29.80 
12.72       87.28 

 Male 
Female 

93.34        6.66 
  2.55      97.45 

Correct rate 78.74%  Correct rate 95.40% 

     

SVM1 
Ground Truth ↓

Response (%) 
Male      Female

 SVM4 
Ground Truth ↓

Response (%) 
Male      Female 

Male 
Female 

94.43        5.57 
 9.21       90.79 

 Male 
Female 

93.13        6.87 
  5.55      94.45 

Correct rate 92.61%  Correct rate 93.79% 

Table 4. Confusion matrix for the 4 best methods when 20% of the utterances of GES 
database are used for testing. 
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In the following,  the behaviour of the best classifiers are investigated against changing the 
parameters.  Figures 4, 5 & 6 highlight the behaviour of the Bayes classifier with SFFS on DES, 
SES and GES databases, respectively, for varying numbers of cross-validation repetitions and 
varying portions of utterances engaged in testing. The flatness of the shapes confirms that if 
we select 20% of the utterances for testing and 20 repetitions, our judgements are fair.  

 
Fig. 4. Probability of correct classification of the Bayes classifier with SFFS on DES database 
for varying repetitions and portions of the utterances used during testing. 

 
Fig. 5. Probability of correct classification of the Bayes classifier with SFFS on SES database 
for varying repetitions and portions of the utterances used during testing. 
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Fig. 6. Probability of correct classification of the Bayes classifier with SFFS on GES database 
for varying repetitions and portions of the utterances used during testing. 

Tables 5, 6 and 7 investigate, in detail, the minimum and maximum rates measured for the 
Bayes classifier with SFFS on DES, SES and GES databases, respectively. The minimum 
TCCR for DES, SES and GES was measured when 20, 40 and 40 repetitions were made using 
15%, 10%  and 45% of utterances for testing, respectively. The maximum TCCR for DES, SES 
and GES was measured by making 30, 40 and 30 repetitions and employing 45%, 50% and  
50% of the available utterances for testing, respectively. The minimum MCCR for DES, SES 
and GES  was measured when 50, 40 and 40 repetitions were made while using 30%, 10% 
and 45% of utterances for testing, respectively. The maximum MCCR for DES, SES and GES 
was measured by making 40, 50 and 30 repetitions and employing 45%, 50% and 50% of the 
available utterances for testing, respectively. For FCCR on DES, SES and GES, 20, 10 and 40 
repetitions and 50%, 50% and 45% of utterances for testing yield the minimum rate, 
respectively, while 30, 40 and 20 repetitions and 45%, 50% and 50% of the utterances 
engaged in testing are required for the maximum rate, respectively. 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 87.11 91.82 89.46 1.22 

MCCR 83.94 92.58 87.71 1.71 

FCCR 87.07 93.75 91.21 1.49 

Table 5. Behaviour of Bayes classifier with SFFS for gender classification on DES database. 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 87.66 93.19 90.10 1.22 

MCCR 83.96 90.28 87.42 1.55 

FCCR 89.83 96.49 92.79 1.52 

Table 6. Behaviour of Bayes classifier with SFFS for gender classification on SES database. 

www.intechopen.com



Gender Classification in Emotional Speech 

 

373 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 89.67 97.08 93.69 1.34 

MCCR 85.66 97.74 90.59 2.25 

FCCR 93.67 99.47 96.79 1.21 

Table 7. Behaviour of Bayes classifier with SFFS for gender classification on GES database. 

Tables 8-10 illustrate the behaviour of SVM1 on DES, SES and GES databases, respectively, 
when the size of the test utterances ranges between 10% and 50% of the available utterances. 
For TCCR on DES, SES and GES, 50%, 45% and 45% of the available utterances yield the 
minimum value, while 40%, 10% and 10% of the utterances yield the maximum value, 
respectively. For MCCR, 25%, 50% and 35% the test utterances yield the minimum value 
while 40%, 10% and 25% of the available utterances yield the maximum value for MCCR. 
For FCCR, 15%, 45% and 45% of the utterances engaged during testing yield the minimum 
value, while 20%, 15% and 15% of the utterances yield the maximum value. 
Tables 11 and 12 show the behaviour of SVM4 on DES, SES and GESdatabases. The size of 
the test utterances ranges between 10% and 50% of the available utterances. For TCCR on 
DES, SES and GES, 30%, 35% and 50% of the available utterances yield the minimum value, 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 88.91 91.17 89.79 0.82 

MCCR 89.45 94.14 91.38 1.50 

FCCR 86.18 89.81 88.19 1.32 

Table 8. Behaviour of SVM1 on DES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 86.14 89.71 87.59 1.25 

MCCR 88.32 93.14 90.21 1.45 

FCCR 82.97 86.37 84.96 1.31 

Table 9. Behaviour of SVM1 on SES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 89.49 92.93 91.32 1.23 

MCCR 90.73 95.41 93.01 2.01 

FCCR 87.79 91.48 89.64 1.23 

Table 10. Behaviour of SVM1 on GES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 87.19 90.46 88.68 1.19 

MCCR 88.19 92.72 90.40 1.39 

FCCR 83.81 89.17 86.96 1.78 

Table 11. Behaviour of SVM4 on DES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 
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Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 86.87 89.56 88.09 0.93 

MCCR 91.05 94.09 92.75 0.98 

FCCR 80.17 86.23 83.44 2.03 

Table 12. Behaviour of SVM4 on SES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 90.30 93.91 92.38 1.32 

MCCR 87.86 93.88 91.07 2.10 

FCCR 92.72 94.69 93.68 0.76 

Table 13. Behaviour of SVM4 on GES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 

while 15%, 25% and 10% of the utterances yield the maximum value, respectively. For 

MCCR, 30%, 15% and 50% the test utterances yield the minimum value while 20%, 10% and 

15% of the available utterances yield the maximum value for MCCR. For FCCR, 10%, 35% 

and 25% of the utterances engaged during testing yield the minimum value, while 40%, 15% 

and 10% of the utterances yield the maximum value. 

Tables 14-16 illustrate the behaviour of GMM on DES and SES databases, respectively, 

when the size of the test utterances ranges between 10% and 50% of the available 

utterances (GMM is not a good classifier for GES). For TCCR on DES and SES, 40% and 

50% of the available utterances yield the minimum value, while 50% and 10% of the 

utterances yield the maximum value, respectively. For MCCR, 50% and 20% of the test 

utterances yield the minimum value while 10% and 50% of the available utterances yield 

the maximum value for MCCR. For FCCR, 40% and 50% of the utterances engaged during 

testing yield the minimum value, while 50% and 10% of the utterances yield the 

maximum value. 

 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 82.02 84.81 83.59 0.89 

MCCR 91.73 96.06 94.71 1.33 

FCCR 68.88 77.89 72.47 2.70 

Table 14. Behaviour of GMM on DES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 
 

Rates Min (%) Max (%) Mean (%) Std (%)

TCCR 69.66 85.03 79.97 5.53 

MCCR 86.34 92.49 88.92 2.37 

FCCR 46.83 83.67 71.02 13.36 

Table 15. Behaviour of GMM on SES database for gender classification when the size of the 
test utterances varies between 10% and 50% of the utterances. 

The computational speed was measured using a PC P4, 3GHz CPU and 1 GB RAM while a 

virus shield was active.  
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Classifier DES SES GES 

GMM 21.81 31.80 44.36

Bayes+SFFS 30.22 48.11 30.76

PNN 7.88 1.33 1.98 

SVM1 2.90 1.78 0.34 

SVM2 1.62 1.73 0.33 

SVM3 1.34 1.46 0.28 

SVM4 1.30 1.43 0.28 

SVM5 1.38 1.47 0.28 

KNN1 0.87 1.00 0.30 

KNN2 0.69 0.99 0.30 

KNN3 0.40 0.41 0.16 

KNN4 0.44 0.42 0.18 

Table 17. Computational time (in sec) for different classifiers on different databases. 

Accordingly, SVM1 outperforms the other methods with respect to all the four factors: 
TCCR, MCCR, FCCR, and speed for emotional speech. 
However, for non-emotional speech, we recommend GMM. 

6. Conclusions 

We have investigated several popular methods for gender classification by processing 
emotionally colored speech from the DES, SES and GES databases. Based on the results, 
several conclusions can be drawn. The SVM with a Gaussian RBF kernel (SVM1) has 
demonstrated to yield the most accurate results considering other parameters such as the 
computation speed. The correct gender classification rates have been more than 90% when 
emotional speech utterances from both genders were processed, or when emotional speech 
utterances of male or female speakers were used. Another acceptable alternative is the Bayes 
classifier using sequential floating forward feature selection. 
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