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Abstract

A depolarized fiber optic gyroscope (DFOG) prototype with closed-loop configuration,
sinusoidal-bias, and serrodyne-feedback electrooptic phase modulations was designed. A
complete optoelectronic design is realized by using computational simulation tools (opti-
cal subsystem: Synopsys®-Optsim™ software and electronic subsystem: National Instru-
ments®-MultiSim™ software). The design presented here includes both optical and
electronic circuits, being the main innovation, is the use of an analogical integrator pro-
vided with reset and placed in the feedback of the electrooptic phase-modulation chain
that produces a serrodyne-shaped voltage ramp signal for obtaining the interferometric
signal phase cancellation. The performance obtained for this model (threshold sensitivity
≤0.052�/h; dynamic range = � 78.19�/s) does reach the IFOG intermediate grade (tactical
and industrial applications) and does demonstrate the suitability and reliability of
simulation-based software tools for this kind of optoelectronic design.

Keywords: interferometric-fiber-optic-gyroscope (IFOG),
depolarized-fiber-optic-gyroscope (DFOG), super-luminescent-laser-diode (SLD),
single-mode-fiber (SMF), phase-modulator (PM), closed-loop configuration,
bias phase-modulation, feedback phase-modulation, serrodyne-wave, IFOG intermediate
grade, IFOG navigation grade, phase-sensitive-demodulator (PSD), Lyot depolarizer
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1. Introduction

In all the electro-optical engineering areas, particularly in the design of high-cost devices like

IFOGs, the computational simulation resources can provide a powerful and inestimable

advance. It stems from the rapidity, the reproducibility, and the reliability of this kind of

hardware to obtain the ultimate design of a preconceived model. Furthermore, it is possible to

obtain substantial cost savings in components and time consuming for the model assembly in

optical bench. Only after having obtained an ideal design so much for the performance charac-

teristics all that for the adaptation to a specific application, it is suitable to initiate the laboratory

manufacture stage for the prototype designed previously. In this article, it is shown to the reader

an aspect that is not usually in the literature, namely: how to realize the simulation of a classical

IFOG system without having to make the real model in the laboratory. For this proposal, three

classical electrooptic simulation tools: Synopsys™OptSim®, National Instruments™MultiSim®

and MathWorks™ Matlab-Simulink® will be used. In the present decade, the design trends on

interferometric fiber optic gyroscope (IFOG) are focused on devices with very high performance

(navigation-grade, sensitivity ≤0.001�/h), mainly targeting aeronautics and spacecraft applica-

tions. Nevertheless, it is also possible to realize designs for certain applications that do not need

such a high grade of performance (intermediate-grade, sensitivity ≤0.01�/h or industrial-grade,

sensitivity ≤1�/h). The latter mentioned will constitute the objective of the model presented.

What continues next is a brief overview of the basis of IFOG performance.

The nonreciprocal phase shift between the two waves in counter-propagation (clockwise and

counterclockwise) induced by rotation when both propagate across the sensing coil of optical-

fiber, also known as Sagnac effect, is usually given by the expression (see, for instance, [1–10]):

ϕ
S
¼

2 π L D

λ c
Ω (1)

being L the total length (m) of the sensing coil, D its diameter (m), Ω the rotation rate (rad/s),

and ϕ
S
is the phase shift difference (rad), λ and c are the wavelength (m) and the speed of light

(m/s) in free space, respectively, of the radiation emitted by the laser source. The proportionality

factor that precedes the rotation-ratio is known as the scale-factor (SF) of the gyroscope, and it is

a basic constructive constant that depends on geometric and optical parameters of the device.

Taking the following initial values for the design: L = 300m,D = 0.08m, and λ = 1310 nm, a value

of 1.86 μrad/(�/h) is obtained for SF. A detailed study of the depolarizationmechanism of optical

counter-propagated waves within the fiber optic sensing coil can be consulted in [11–17]. The

main advantage of the depolarization technique is that this approach allows using a single-

mode optical fiber for the sensing coil, with the consequent economic savings on optical com-

ponents costs of the gyroscope. This design is based on a conventional IFOG structure (interfer-

ometric fiber optic gyroscope) with a sinusoidal electrooptic phase modulation and a closed-

loop feedback phase modulation realized with classic analogical electronic components, which

provides a better stability and linearity of the gyroscope’s SF, while using cost-competitive

components. The rest of the paper is organized as follows. The next section (Section 2) is focused

on the design of optical and electronic sub-systems of the model. Section 3 provides some

important calculations and estimations of the performance of the design, and Section 4 shows
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the simulation results (optical and electronic subsystems). Finally, Section 5 includes a discus-

sion on simulation results, and Section 6 collects the main conclusions of this paper.

2. Sensor design

2.1. Design of the optical system

The components of the optical system of this gyroscope are depicted in Figure 1. The light

source is a 1310 nm superluminescent diode (SLD) with a Gaussian low ripple spectral profile.

For this unit, the commercial reference SLD1024S of Thorlabs was used, with DIL-14 pin

assembly package, with FC/APC fiber pigtailing and realized in standard single-mode optical

fiber. This unit provides an adjustable optical power up to 22 mW maximum level, although

only 5 mW maximum level is needed for the present model. This unit takes an integrated

thermistor to perform the temperature control, so that it is possible to obtain the stabilization

of the power source on the spectral range. Accordingly with the temperature stabilization, the

chip package must not exceed a maximum temperature of 65�C. The directional optical coupler

is four ports (2 � 2 configuration), with 50/50 output ratio, realized with fiber-optic side-

polished technique, and an insertion loss of 0.60 dB. The linear polarizer placed at the output

of the directional input-output coupler is featured in polarization-maintaining fiber (PMF) with

a 2.50 m length, insertion loss of 0.1dB, and a polarization extinction ratio (PER) > 50 dB. The

integrated optical circuit IOC (integrated optical chip) performs the function of optical direc-

tional coupler at the input of the sensing fiber-optic coil (Y-Junction) and also the function of

electro-optic phase modulator (PM). In a more advanced design, the linear fiber-optic polarizer

Figure 1. Electro-optical system configuration.
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can be replaced by an integrated approach, so that the former remains joined at the input of the

IOC wave-guide [18]. This way, the bulk optic polarizer is avoided, which is one important

contribution to reduce the whole space occupied by the optical system of the gyroscope.

The chosen PM is electro-optical class. Its electrodes remain parallel to the wave-guide chan-

nels obtained by diffusion of Ti on a lithium-niobate (LiNbO3) substrate. The PM zone of the

IOC includes two pairs of electrodes placed symmetrically with regard to the central axis of the

integrated block. The output ports of the IOC remain connected, respectively, to the heads of

the two Lyot depolarizers (both made on PM-fiber), with lengths L1 and L2, respectively. These

Lyot depolarizers are realized in polarization-maintaining optical fiber (PMF), connecting two

segments appropriate lengths, so that the axes of birefringence of both form angles of 45�.

Calculations of Lyot depolarizer lengths are shown next. Calculated lengths L1 and L2 of the

Lyot depolarizers summarize 26.20 and 52.40 cm, respectively.

c ́alculo despolarizadores Lyot

LD
Lc

ffi
Lb
λ

) LD ffi
Lc Lb
λ

≈

20λð Þ
λ

B

� �

λ
¼

20λð Þ
λ

nX � nYj j

� �

λ

Lc ≈ 20λ ¼ 20� 1310� 10�9
� �

¼ 26:20� 10�6 m½ � ¼ 26:20 μm
� �

¼ coherence source lengthð Þ

Lb ¼
λ

nX � nYj j
¼

1310� 10�9

1� 10�4
¼ 10000� 1310� 10�9

� �

¼ 1:310� 10�2 m½ �

¼ f iber-optical beat length
� �

LD ffi
26:20� 10�6
� �

1:310� 10�2
� �

1310� 10�9
¼ 26:20� 10�2 m½ � ¼ f iber-optical depolarization length

� �

L1 ¼ LD ¼ 26:20 cm½ �

L2 ¼ 2L1 ¼ 2� 26:20 cm½ � ¼ 52:40 cm½ �

θ ¼ 45º ¼ angle between main birefringence axis of two fibers at splices
� �

These calculations were realized taking into account a 26.20 μm value for the coherence length

of a broadband light source (emitting at 1310 nm wavelength) and a 13.10 mm value for the

beat length of optical fiber. The two optical waves CW (clockwise) and CCW (counterclock-

wise) coming from the sensing coil gather together on the Y-Junction placed at the input of the

IOC. The sensing coil consists of 300 m of optical standard single-mode fiber (commercial type

SMF28), made by quadrupolar winding on a spool of 8 cm average-diameter, which provides

1194 turns. This optical fiber presents the following structural characteristics: step refractive

index, basis material = fused-silica, external coating = acrylate, core diameter = 8.2 μm, cladding

diameter = 125� 0.7 μm, and external coating diameter = 245� 5 μm, with the following optical

parameters: ncore = 1.467, ncladding = 1.460, NA = 0.143, maximum attenuation = 0.35 dB/km at

1310 nm, h-parameter = 2�10�6 m�1, dispersion coefficient ≤ 18.0 ps/(nm � km) at 1550 nm,

polarization dispersion coefficient ≤ 0.2 ps/km½, birefringence: B = 1.0�10�6.

The chosen PM is electro-optical class. Its electrodes remain parallel to the wave-guide chan-

nels obtained by diffusion of Ti on a lithium-niobate (LiNbO3) substrate. The PM zone of the
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IOC includes two pairs of electrodes placed symmetrically with regard to the central axis of the

integrated block. The output ports of the IOC remain connected, respectively, to the heads of

the two Lyot depolarizers (both made on PM-fiber), with lengths L1 and L2, respectively. These

Lyot depolarizers are realized in polarization-maintaining optical fiber (PMF), connecting two

segments of appropriate lengths, so that the axes of birefringence of both form angles of 45�.

2.2. Design of the electronic system

In absence of rotation (Ω = 0 rad/s), the transit-time of the two counter-propagated waves

across the sensing coil is τ seconds, being its value:

τ ¼
L

c ncore

�
	 
 ¼

ncore L

c
(2)

With the values of parameters adopted previously for the model design, assuming 1467 for

ncore value and using 1194 turns of optical-fiber wrapped on standard fiber-optic coil, the

resultant value for the transit time is τ = 1.467 μs. On the other hand, the transit time value

also determines the value of modulation frequency fm that must be applied to Phase-

Modulator (PM ), given by the expression:

fm ¼
1

2 τ
(3)

resulting, for the present design in a calculated value of 340.83 kHz. Equation (3) comes from

the condition of maximum amplitude of the bias phase-difference modulation for the optical

wave, which is possible to formulate by the following expression:

Δϕbias tð Þ ¼ 2ϕ0 sin
2π fm τ

2

� �

cos 2π fm t�
τ

2

	 
h i

(4)

The condition of maximum amplitude needs the 2πfmτ = π relation to be satisfied (and then,

Eq. (3) is accomplished). The block diagram of the electronic scheme for phase modulation and

demodulation circuits is represented in Figure 2. A closed-loop configuration has been

adopted with sinusoidal bias phase modulation and serrodyne feedback phase modulation,

taking as initial reference the state-of-the-art of demodulation circuits reported till now [19–24].

However, and this is the novelty, it has been changed the structure of feedback chain, adding

now a new design of analogical integrator which incorporates one FET transistor (2N3848) as it

is depicted in Figure 3. The function of this transistor is realizing periodically the shortcut of

the capacitor therefore nulling instantaneously the voltage on feedback branch of integrator

OPAMP. The time period for shortcut FET transistor is driving by the value of Vgate voltage,

which, in turn, is controlled by an unstable Flip-Flop circuit.

Referring to Figure 3, block #7 generates a linear ramp voltage Vγ on its output, and this ramp

resets each time period driving by Vgate voltage. In this way, a resultant serrodyne-wave

voltage is easily generated at the output of this integrator circuit, obtaining finally the same
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intended sawtooth voltage on feedback phase modulation chain as reported on previous

designs by literature [25–27]. Working as feedback phase modulation signal, the analogical

serrodyne wave presents two important advantages with regard to the sinusoidal-one: (a) it is

possible to generate the serrodyne wave easily by means of a simple integrator circuit (Miller

integrator) with simple and low-cost electronic components; (b) the phase cancellation process

inside the control loop becomes simpler and more efficient.

In accordance with the interference principle, the light intensity at the photodetector optical

input presents the following form (for sinusoidal phase-modulation):

Id tð Þ ¼
I0
2

1þ cos Δϕ
� �� �

¼
I0
2

1þ J0 ϕm

� �

þ 2
X

∞

n¼1

J2n ϕm

� �

cos 2 nωm tð Þ

" #(

cos ϕS�2
X

∞

n¼1

J2n�1 ϕm

� �

sin 2 n� 1ð Þωm t½ � sinϕS

) (5)

being Jn the Bessel-function of the first kind of nth order. Here, Δϕ represents the effective

phase-difference of the two counter-propagating optical waves on sensing coil. This value

results from the combined action of the phase-modulation process (ϕm ¼ ϕbias þ ϕf ) and the

Sagnac phase shift induced by the rotation-rate (ϕS). The output signal of the photodetector, in

photocurrent form, is proportional to the light intensity at its optical input. This photocurrent

signal is converted to voltage with a transimpedance amplifier that is placed at the entry of

demodulation circuit. The demodulation circuit takes the task of extracting the information of

the Sagnac rotation-induced phase shift (ϕS). The corresponding voltage signal at its output

(VS) scales as sine-function of the effective Sagnac phase difference. The PI controller performs

an integration of the VS signal in time domain, so that a voltage signal (Vγ) is obtained; this

signal growing almost linearly with the time. This latter signal is filtered by means of a low

pass filter so that the corresponding output signal on voltage form (VΩ) is a DC voltage value

that is possible to consider to be almost proportional to the gyroscope rotation-rate Ω (when

sinϕS ≈ϕS). Therefore, the analogical output voltage signal VΩ constitutes the measurement of

Figure 2. Analog closed-loop scheme for feedback phase-modulation configuration.
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Figure 3. Block-diagram for electro-optical system and phase-sensitive-demodulation (PSD). The IFOG model is closed-

loop configuration with sinusoidal-bias and serrodyne-feedback phase-modulations.
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the rotation rate of the system. The control system, as a whole, acts as the principle of

phase nulling. The phase-nulling process consists of generating a phase displacement

(ϕm ¼ ϕbias þ ϕf ) in such a way that the phase-difference ϕf associated with the voltage output

signal (Vf) is equal and with opposite sign with regard to the Sagnac phase-shift induced by the

rotation rate, i.e., ϕf ¼ �ϕS. To achieve this, the feedback phase modulation circuit holds a

sample of the output signal VΩ. Note that this voltage signal is obtained at the end of low pass

filter (Block 6 on Figure 3) and is proportional to rotation-rate Ω. An integration operation is

needed for obtaining a linear ramp voltage to apply on phase modulator. Then, it integrates

and inverts this signal by means of an operational integrator-inverter circuit, turning this

signal into the following form:

V f ¼ �
1

RC

ðt
0

VΩ dt (6)

This way, the time variation of the voltage signal Vf is a linear ramp, being its slope propor-

tional to the rotation rate of the system (VΩ). Figure 3 represents clearly the optical and

electronic subsystems of the gyroscope, including the feedback phase-modulation and bias

phase-modulation circuits for getting phase nulling process, both applied together to PM

(Phase-Modulator). Referring now to Figure 3, then latter being the reference voltage for bias

phase-modulation, see Figure 2), i.e., Vm = Vbias + Vf.

Therefore, the output signal of the phase modulator will be the sum of the phase-difference

signals associated with the Vbias and Vf voltages, that is to say: ϕm ¼ ϕbias þ ϕf . The error signal

at the output of the comparator (Vε Δϕ) tends to be nulled in average-time, due to the phase-

cancellation (the average-time of the reference bias phase-modulation ϕbias is 0). The feedback

phase-modulation circuit consists of an AC sine-wave signal generator that produces a voltage

reference signal Vbias at 340.83 kHz for bias phase modulation (block 3 of Figure 3), an

analogical comparator circuit (differential-operational-amplifier, block 4 of Figure 3) that gen-

erates an error voltage signal Vε, an analogical Proportional-Integral (PI ) Controller followed

by one inverter-amplifier (block 5 of Figure 3), and a low-pass (LP) filter that yields a DC VΩ

voltage signal proportional to the rotation-rate (block 6 on Figure 3). The inverter-amplifier on

block 5 produces the inversion of the �Vγ signal, obtaining the Vγ voltage signal. The DC VΩ

output voltage after passive LP Filter on block 6 is integrated by integrator circuit on block 7

and then converted into the Vf feedback voltage signal, as calculated from Eq. (6), consisting on

constant frequency and variable amplitude serrodyne wave which is applied to one of the two

inputs of an analogical adder featured with a noninverter operational amplifier (the other

input is connected to AC signal generator, block 8 on Figure 3). Therefore, the voltage output

signal of this analogical adder is the Vm voltage signal that realizes the sum of the Vbias and Vf

voltage signals, as described previously. Figure 4 represents the detail block diagram of

electronic scheme for detection and phase sensitive demodulation (PSD) circuits. It consists

basically 12 functional blocks: (1) photodetector simulated output current, (2) transimpedance

amplifier (current to voltage converter), (3) low-pass Filter (LP-Filter, fc = 800 kHz), (4) band-

pass-filter (BP Filter, fcenter = 340.83 kHz), (5) analogical multiplier (AD630), (6) sinusoidal

Oscillator (f = 340.83 kHz), (7) analogical inverter amplifier, (8) low-noise adjustable-gain
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Figure 4. Detection and phase-sensitive-demodulation (PSD) circuits.
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amplifier, (9) Low-Pass-Filter (LP Filter, fc = 4.82 Hz) [28], (10) analogical integrator filter (for

rotation-angle determination), (11) inverter OPAMP; the output voltage Vtheta of this inverter

allows obtaining the draft experienced by the system from a certain time (initialization time);

and (12) DC power supplies. Figure 5 represents in detail the analog PI controller and feedback

phase modulation circuits. Figure 6 represents the Vgate voltage signal generator circuit.

Figure 5. Analog controller circuit (includes blocks #1, #2, #3, and #4) and Serrodyne feedback phase-modulation circuit

(includes blocks # 5, #6, and #7).
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3. Calculations and estimations

This design has been simulated using Matlab-Simulink™ The MathWorks® and MultiSim™

National Instruments®. (Note that Synopsys® OptSim™ original version software only allows

implementing APD-type photodetectors on optical circuit design, consequently an APD-PIN

equivalent current-conversion will be necessary for connecting the simulation results to IFOG

prototype designed in this article, which owes PIN photodetector). The open-loop scale factor

K0 can be calculated (being c ≈ 3 � 108 m/s the speed of light in vacuum) as:

K0 ¼
LD

λ c
(7)

The parameters of the model were chosen as fiber coil length L = 300 m, fiber coil diameter

D = 80 mm, number of turns in the coil N = 1194, and light source wavelength λ = 1310 nm. The

average optical-power at detector optical-input is Pd = 145.61 μW, and the responsivity of the

InGaAs photodetector is R = 0.68678 μA/μW. The beat length of the optical fiber, Lb, can be

calculated from its optical birefringence (B) as:

Lb ¼
λ

B
¼

λ

nx � ny
�

�

�

�

(8)

Figure 6. Vgate voltage signal generator (Astable pulse generator + J-K Flip-flop + analog inverter).
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where nx and ny are the refractive indexes of the two orthogonally polarized modes along the x

and y directions. For this model, the following performance parameters have been analyzed:

sensitivity threshold [29], dynamic range, and scale factor (SF) [30]. The values calculated

(using the formulae) and estimated (by the results of the simulations) for such parameters are

shown in Table 1. In this table, the third column shows the value calculated directly by the

formula, and the fourth shows estimated results from the optical and electronic simulations.

The threshold sensitivity considers the SNR at photodetector optical input provided by the

optical simulation, and the dynamic range and scale factor are determined by the sine function

nonlinearity (assuming the maximum value ϕS ¼ �π=6). In the formulae, h is the h-parameter of

the optical-fiber and t is the average integration time.

4. Simulation results

Three different kinds of computer simulations have been realized. First, the control system

simulation has been realized using Matlab-Simulink™ for determining the 2% settling-time

ts of the complete electro-optic system. Second, an optical system simulation has been reali-

zed using Synopsys® OptSim™ for obtaining the optical interference signal at the PIN photo-

detector optical input and its main and representative values: average optical power and

Signal-to-Noise-Ratio (SNR). Third and finally, the electronic circuit simulation made with

MultiSim™ National Instruments® to obtain the VΩ DC voltage as image of the rotation rate

of the system and then for obtaining the output graph-response of gyroscope unit.

Table 1. Performance parameters of the designed IFOG prototype (analog closed-loop configuration).
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Figure 7 represents the parametric model of IFOG´ electro-optical system. It is depicted as a

parameterized block diagram corresponding to electro-optical system equivalent to the gyro-

scopic sensor. Here, it is taking into account the values of the parameters identified on its

optical and electronics circuits. The system’s step-response curve (obtained with Matlab-

Simulink®) is shown in Figure 8. A settling time ts (2%) of 1.39 ms is obtained. This value can

be used to estimate a value for the initialization time of the final gyroscope unit. Results of

optical subsystem simulation (realized by means of OptSim™ software) are represented on

Figures 9–14. Figure 9 represents the optical schematic circuit of the designed model for

Figure 7. Parameterized block-diagram of the designed IFOG model considered as a continuous linear system (parame-

ters: L = 300 m, D = 0.08 m, λ = 1310 nm, Pd = 145.61 μW, R = 0.69 μA/μW).

Figure 8. Time-response of the complete closed-loop system obtained for step-stimulus input signal (for step-stimulus

input the ts 2% settling time obtained is 1.39 ms).
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obtaining its optical performance. Figure 10 represents the sinusoidal electrical signal pro-

vided by the AC signal generator and applied to the PM (Phase-Modulator) as bias phase-

modulation signal. Figure 11 represents the optical-power spectrum at the photodetector

optical input (central frequency is 288.844 THz).

Figure 9. Optical circuit setup of the designed IFOG gyroscope for computer simulation (OptSim™).

Figure 10. Sinusoidal voltage signal provided by AC signal generator and applied to PZT phase-modulator (PiezoZer-

amicTube).
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Figure 13. Interferometric signal at electrical output of APD-equivalent-photodetector (after electrical BP filter,

fcenter = 340.83 kHz) when Ω = � 20�/s is applied to system.

Figure 11. Optical-power spectrum obtained at photodetector optical-input.

Figure 12. Interferometric signal at electrical output of APD-equivalent-photodetector (after electrical BP filter,

fcenter = 340.83 kHz) when Ω = � 10�/s is applied to system.
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Considering an input value of 210 μW as the average optical power value providing by light

source, 145.61 μW were obtained at the optical input of photodetector, which means a power

loss of�9.837808 dBm. Calculation of photon-shot-noise photocurrent at photodetector, taking

into account 100 μA for average real value of photocurrent at its electrical output, is the

following:

Isn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 q λ

h c
Pmax�detectorΔ f

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:6� 10�19
� �2

� 0:65� 1310� 10�9
� �

6:624� 10�34
� �

� 3� 108
� � � 100� 10�6

� �

� 1

v

u

u

t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:096940� 10�23
p

¼ 3:312008� 10�12 A

Note that lower the photon-shot-noise photocurrent value, lower is the threshold sensitivity of

IFOG sensor and therefore also higher is its accuracy. On the other hand, it is needed to say

that for low level of optical power coupled into photodetector, the main optical noise source of

IFOG-sensor is photon shot noise (excess RIN can be neglected). This way, in accordance with

photon-shot-noise photocurrent above calculated, the threshold sensitivity of gyro sensor (that

is to say, the minimum rotation-rate which is able to measure) can be calculated as shown next

(this value is collected in Table 1):

Ωlim ffi
hc2

π eqLDPmax

� �

Isn ¼
6:624� 10�34 � 3� 108

� �2

π� 1:6� 10�19
� �

� 0:65� 300� 0:08� 100� 10�6
� �

" #

� 3:312� 10�12
≈ 2:5180234� 10�7 rad= sec½ �

¼ 2:5180234� 10�7 �
180º

π

� �

�
3600 sec

1 hour

� �

¼ 0:05193796
�

=hour
�

�

Figures 12–14 represents the electrical interferometric signal (in APD photo-current form, after

electrical BP filtering, fcenter = 340.83 kHz) detected by an APD equivalent photodetector, when

Ω = � 10�/s, Ω = � 20�/s, and Ω = � 30�/s, respectively, are applied to the system. This is

because the block-mode simulation only offers measurements realized by an APD equivalent

Figure 14. Interferometric signal at electrical output of APD-equivalent-photodetector (after electrical BP filter,

fcenter = 340.83 kHz) when Ω = � 30�/s is applied to system.
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photodetector as optical output of the system. The average mean values of APD photo-

currents are, respectively, 1649.20 μA, 1643.30 μA and 1633.80 μA, which correspond to

99.873 μA, 99.515 μA and 98.940 μA for PIN-equivalent photodiode. Note that in this interval,

the average current decreases almost linearly as rotation-rate increases linearly. These curves

agree with theoretical interferometric curves as calculated on optical input photodetector.

The results of electronic circuits’ simulation (realized by MultiSim™ software) collect the

waveforms voltage on the following test-point voltage: Vdetection, Vfilter, Vmultiplier, Vtheta, Vserrodyne,

and Vgate (referring to Figures 4–6). All these values are obtained on electronic circuits when

Ω = + 30�/s rotation-rate is applied to system and are gathered on Figures 15–20. Figure 15

shows the detected output voltage after transimpedance amplifier (Vdetection, see Figure 4).

Figure 16 represents the output voltage after BP Filter (Vfilter, see Figure 4). Figure 17 repre-

sents output voltage after analog Multiplier (Vmultiplier, Figure 4). Figure 18 represents output

voltage after Angle analog integrator (Vtheta, Figure 4). Figure 19 represents output voltage

after analog integrator (Vserrodyne: a sawtooth-voltage with constant frequency and variable

amplitude, this amplitude depending on VΩ voltage value). Finally, Figure 20 represents Vgate

Figure 15. Vdetection voltage signal (after transimpedance amplifier) for Ω = + 30�/s when Ω = � 30�/s is applied to system.

Figure 16. Vfilter output voltage after BP filter for Ω = + 30�/s.
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Figure 17. Vmultiplier output voltage after AD630 analog multiplier for Ω = + 30�/s.

Figure 18. Vtheta output voltage after angle analog integrator for Ω = + 30�/s.

Figure 19. Vserrodyne at analog integrator output (feedback-voltage signal to phase-modulator) for Ω = + 30�/s.
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generated by pulse generator circuit and applied to gate of J2 N4858 FET transistor (see the

circuit on Figure 6).

The expansion of Eq. (5) with only the contribution of first two time-component harmonics

allows obtaining an approximate value for detected Id tð Þ photo-current. The result of this

approximation is:

Id tð Þ ffi
I0
2

1þ J0 ϕm

� �

cosϕS

� �

þ I0 J2 ϕm

� �

cos 2ωm tð Þ cosϕS � I0 J1 ϕm

� �

sin ωm tð Þ sinϕS (9)

being I0 the maximum value of detected photo-current and ϕm the amplitude of differential

phase-modulation. Assuming the ϕm ¼ 1:80 value, this value corresponding to the maximum

value of function J1 ϕm

� �

, the following Bessel functions calculations are obtained:

J0 1:80ð Þ ffi 0:33999, J1 1:80ð Þ ffi 0:58150 and J2 1:80ð Þ ffi 0:30611:

then, taking into account 100 μA as the DC average detected photodetector-current and after

some numerical adjusts, Eq. (9) yields the following analytical value:

Id tð Þ ffi 74:63 1þ 0:34 cosϕS

� �

þ 45:69 cos 2ωm tð Þ cosϕS � 86:79 sin ωm tð Þ sinϕS μA
� �

(10)

This analytical expression allows to calculate for every rotation-rate Ω value (i.e., ϕS Sagnac

phase shift) the DC term and the first and second harmonics terms. These terms can later be

introduced as current DC and AC generators on MultiSim™ circuit simulation program (block 1

on Figure 4). By this means, VΩ can be measured on simulated circuit (see Figure 4), so that a

table with VΩ value versusΩ [�/s] value can be made. Table 2 lists the correlation data obtained

from the electronic demodulation circuit for the measured output-voltage signal VΩ [mV] versus

input rotation rate Ω [�/s] of the system for full dynamic range (0 to �78.19 ≈ �80 [�/s]) with a

step of 10�/s. Figure 21 shows the graphic relationship between both variables corresponding

to mentioned data table. After performing the appropriate calculations, taking into account the

theoretical value of the SF (Scale Factor) of the gyroscope that appeared on Table 1, a linear

Figure 20. Vgate voltage generated by pulse generator circuit (fixed frequency f = 32.59 kHz).
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function can be obtained for the best fitting of the output response curve. This way, it is

possible to evaluate the linearity of this graphic and then assuming this value as scale factor

linearity of the IFOG-model. Tables 3 and 4 are constructed to obtain detailed scale-factor

linearity analysis in more restricted dynamic ranges.

Ω [�/s] 0 �10 �20 �30 �40 �50 �60 �70 �80

VΩ [mV] 0 �305 �613 �931 �1280 �1609 �1970 �2337 �2708

(VΩ)lin [mV] 0 �338.7 �677.5 �1016 �1355 �1694 �2032 �2371 �2710

|Δ(VΩ)| [mV] 0 33.73 64.46 85.19 74.92 84.65 62.38 34.11 1.834

|Δ(VΩ)/ (VΩ) lin | % 0 9.959 9.514 8.385 5.529 4.997 3.070 1.439 0.068

Table 2. Output data and linear fitting for 0 ÷ �80�/s (full dynamic range), step = 10�/s.

Figure 21. Output response curve VΩ [mV] versus Ω [�/s] (in red color) and linear fitting (in green color) for 0 to �80�/s

(full dynamic range).

Ω [�/s] 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

VΩ [mV] 0 �30 �59 �90 �120 �150 �180 �210 �240 �270 �305

(VΩ)lin [mV] 0 �30.13 �60.26 �90.39 �120.52 �150.65 �180.78 �210.91 �241.04 �271.17 �301.30

|Δ(VΩ)| [mV] 0 0.13 1.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 3.70

|Δ(VΩ)/ (VΩ) lin | % 0 0.431 2.091 0.431 0.431 0.431 0.431 0.431 0.431 0.431 1.228

Table 3. Output data and linear fitting for 0 ÷ �10�/s (restricted dynamic range), step = 1�/s.
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Table 3 shows data obtained for 0 to�10 [�/s] dynamic range with a step of 1�/s, and Figure 22

shows the corresponding VΩ versus Ω graphical representation. Table 4 shows data obtained

for 0 to �1 [�/s] dynamic range with a step of 0. 10�/s, and Figure 23 shows the corresponding

VΩ versus Ω graph. Tables 2–4 also includes the values (VΩ)lin [mV] of the correspondent

linear fitting, the module of the differential valuesΔ(VΩ) [mV], and the module |Δ(VΩ)/ (VΩ) lin |

of the ratio values.

The Δ(VΩ) [mV] value is defined as:

ΔVΩ ¼ VΩ � VΩð Þ
lin

mV½ � (11)

from correlation values of both curves (output data curve and linear fitting curve), it can be

determined the non-linearity percentage coefficient of the SF, defined as the percentage of the

standard deviation, which can be calculated by the following expression:

Ω [�/s] 0 �0.1 �0.2 �0.3 �0.4 �0.5 �0.6 �0.7 �0.8 �0.9 �1.0

VΩ [mV] 0 �3 �6 �9 �12 �15 �18 �21 �24 �27 �30

(VΩ)lin [mV] 0 �3 �6 �9 �12 �15 �18 �21 �24 �27 �30

|Δ(VΩ)| [mV] 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

|Δ(VΩ)/ (VΩ) lin | % 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Output data and linear fitting for 0 ÷ �1 �/s (restricted dynamic range), step = 0.1�/s.

Figure 22. Output response curve VΩ [mV] versus Ω [�/s] (in red color) and linear fitting (in green color) for 0 to �10�/s

(restricted dynamic range).
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SF�NonLinearity %ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

ΔVΩð Þi
VΩ linð Þi

� 100

�

�

�

�

�

�

�

�

2

v

u

u

t (12)

so that in our case, for full dynamic range with N = 17 and taking the values obtained from

Table 2, this expression yields a value of 4.386%. For Table 3 Eq. (12) reaches the value of

0.838% and for Table 4 its value is 0.0%. This values agree with these obtained for commercial

IFOG units of similar characteristics.

5. Discussion of simulation results

The results obtained for the performance parameters of the gyroscope model designed in this

article (threshold sensibility = 0.052�/h, dynamic range = �78.19�/s, scale factor nonlinearity =

4.836%) are sufficient for intermediate grade gyroscopic applications, such as stabilization,

pointing, and positioning of mobile platforms or inertial-navigation systems for terrestrial robots

and automotive vehicles [31–36].

The effects of the different types of optical noise [37–50] which take place are not critical in the

specific design of this sensor, since its operation works in a medium level of optical-power and

the signal-to-noise-ratio (SNR) is relatively high at photodetector’s optical-input (SNR > 100 dB).

The most important type of optical-noise for this sensor is photon-shot-noise on photodetector,

with a 3.31 pA noise-equivalent-current value, this value being much less than 100 μA that

is the average photocurrent value for photodetector electrical output signal, in zero rotation-

rate conditions. This type of noise is not susceptible of correction, since it owes to intrinsic

Figure 23. Output response curve VΩ [mV] versus Ω [�/s] and linear fitting (in green) for 0 to �1�/s).
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quantum-mechanical mechanism of photoconductivity (electron–hole production by photonic

shoot).

The relative intensity noise (RIN) is an important issue in this design, since it works at a

medium-level of average optical-power coupled to photodetector optical-input (145.61 μW

average optical-power value). This type of noise stems from two causes: (1) the two interfering

optical waves do not come to photodetector with the same optical power level, due to polari-

zation crosstalk between the two orthogonal polarizations states along the entire length of

sensing fiber-coil (due to fiber-birefringence phenomenon), and (2) the light source is low-

coherence (broadband source), thereby producing several beat wavelengths, which add at

photodetector optical-input, causing a variation in relative intensity on every point of photo-

detector’s response-curve. This noise can be minimized by reducing the optical power emitted

by light source. But a very large reduction in optical power also lowers the SNR at the

photodetector, so that to maintain it at a high level, the optical power emitted by light source

cannot be reduced greatly.

The noise associated with the fiber nonlinear Kerr effect is based on the electro-optical phenom-

enon which consists in changes experienced by refractive index of the optical fiber caused when

it is excited by an optical wave that varies in amplitude. This occurs by the fluctuation of the

optical power level of light source. In the case of the gyroscopic system, this optical power

variation coupled to the fiber coil causes changes on its refractive index, which results in a phase

change in the optical wave propagated along the length of the optical fiber coil. This change can

be evaluated as a phase-equivalent noise and could be diminished efficiently using a low

coherence light source (broadband source). Another important aspect is providing the light

source with a thermal stabilization system to achieve a constant level of optical power emission.

The Shupe thermal effect is due to local temperature gradients along the fiber coil length.

These temperature gradients induce phase changes in the optical waves traveling through the

fiber. This effect can be minimized performing an appropriate winding of fiber-coil, so that a

uniform temperature distribution is achieved throughout its entire length. The quadrupolar

winding (number of turns in each layer of coil equal to an integer multiple of four) fulfills this

condition. Other minor optical noise sources with less effect on the optical signal detected by

photodetector are due to backscattering and reflections phenomena along the length of the

sensing fiber-coil. A serious disadvantage for this model design is that the results of optical

simulation do not allow realizing the evaluation of the main sources of optical noise.

Regarding the electrical noise generated by the electronic circuits, the most important is white

noise (thermal-noise or Johnson noise), which spreads equally over all the frequencies. An

appropriate way for overcoming this noise source is performing a selective filtering at the

frequency of the desired signal and fitting later the gain of the amplification stages to increase

the electrical SNR at the output. In the case of the designed IFOG circuits, a strict design of LPF

(Low-Pass-Filter) and BPF (Band-Pass-Filter) is necessary after photodetector-amplifier. It is

crucial for obtaining a good scale-factor linearity of designed IFOG-model. It is due to the fact

that it depends on linearity of the obtained VΩ versusΩ graphical representation derived from

signal demodulation process.
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6. Conclusions

An IFOG prototype was theoretically designed by means of simulating tools. The conventional

IFOG design with sinusoidal phase modulation is based on open-loop configuration. The main

innovation of IFOG-design presented here is the use of a simple closed-loop electro-optical

configuration, realized by means of optical and electronic cost competitive components. Fur-

thermore, the proposed design also allows to reach substantial progress in stability and

linearity of the Scale Factor (SF), dynamic range and threshold sensitivity of the gyroscope,

compared to previous models proposed with the same fiber-optic coil length (L = 300 m). The

cost advantage in optical subsystem is obtained by means of a design with depolarization of

optical waves, by using two Lyot depolarizers, both realized in optical fiber. This allows using

a sensing coil made in optical standard fiber, instead of a special polarization maintaining

fiber, which is much more expensive. On the other hand, the electronic circuit subsystems

(detection, demodulation, and feedback signal processing) is based on a conventional analog

design, using classic electronic components which are high precision and cost competitive, so

that it also contributes to achieving a reasonable cost and at the same time optimizing quality/

price ratio of final device. An interesting observation regarding to cost is that if the entire

volume occupied by the device does not suppose a major restriction (this condition is fulfilled

in certain applications), it is possible to get an additional saving cost by means of a particular

design of optical subsystem. This design can be based on a suitable selection of bulk optical

components: the Integrated Optical Circuit (IOC) can be replaced with two 2 � 2 fiber optical

couplers (SMF fiber), a fiber polarizer, and a fiber-based electro-optic phase modulator (PZT),

since until the day the IOC is not standard-manufacture. The same way, for light source it is

possible using a low-power and limited-consumption laser, as an Erbium-Doped-Fiber-

Amplifier (EDFA), and for depolarization of the optical wave a new solution based on bulk

optics can be adopted, such as crystal Lyot depolarizers.
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