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Abstract

The great environmental changes induced by anthropogenic activities reshaped many 
ecosystem processes. Thus, the previously natural landscapes have been turned into 
mosaics of natural and seminatural lands embedded into human-modified landscape. 
To understand effects of these landscape modifications on the anuran communities, we 
aimed to compare pond-breeding anuran communities in a well-preserved forest with 
communities in agricultural landscape. We tested the values of taxonomic, phylogenetic 
and functional diversity, by analyzing four data matrixes containing environmental, phy-
logenetic, morphological and abundance information from 15 anuran species along this 
environmental gradient. Our analysis showed that only the phylogenetic component of 
the diversity was linked to the changes on the gradient and that the loss of environmental 
quality generates enhanced phylogenetic diversity. We showed that the anthropogenic 
disturbance acts negatively on anuran communities, forcing the species to adapt and 
behave like generalist species in order to survive at the modified places now available, 
where there were well-preserved forests before the humans changed it.

Keywords: anuran diversity and conservation, landscape conversion, habitat loss, 
Atlantic rainforest, anthropogenic disturbance

1. Introduction

The great environmental changes induced by anthropogenic activities are, in general, dated 

from before the industrial revolution (~1860 AD) [1]. These activities have reshaped many 

ecosystem processes across the globe since the human populations have become persistent 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



in some places due the enhanced agricultural practices [2]. As a result of this growing phe-

nomenon, the previously natural landscapes have been turned into mosaics of natural and 

seminatural lands embedded into human-modified landscapes [3]. Actually, these mosaic 

conditions of non-used land represent, almost 90% of the world’s tropical forests which are 
inserted in reserves and parks within agricultural lands [4, 5]. Understanding the factors that 

affect the community assemblies has been the focus of many ecological studies [6–9]. Since 

the conversion of the previously undisturbed places is usually allied to unsustainable activi-

ties, which drives the ecosystem degradation throughout the loss of ecosystem services and 
the related cascade events [10] causing biodiversity loss across the globe and across spatial, 

temporal and organizational scales [11–13].

To understand these factors, some researchers have made use of a classical measure, the taxo-

nomic unit (e.g., species) [10, 14], but it does not take into account ecological and evolutionary 
attributes of species. However, some modern approaches are combining functional attributes of 
species (individual characteristics that can be measured and that affect the fitness) with phylo-

genetic relationships. This approach, in addition to the taxonomic diversity, can bring different 
answers of a species community in relation to its habitat conditions, being these a combination 
of ecological and evolutionary answers [15, 16]. Environmental degradation process can be 

observed by studying diversity measures that are affected by disturbance conditions [17], and 

for this, the usage of functional, phylogenetic and taxonomic diversity is a growing tool that has 
been changing the focus of researchers from the use of species diversity or species composition 

that take no account of differences in species’ life-history traits and ecological niches [17–19].

Although plenty of studies have shown strong relationships between community structure 
and environmental predictors and how the functional traits of species can match up with the 
environmental conditions [20], some adaptive processes remain unclear. This may be due the 

large number of traits presented by each species and/or the high species number existing in 

many habitats which generates an incomplete knowledge of which species traits can actually 
be an influence to the ecosystem processes [21]. Among all vertebrates, the amphibians are the 

group with highest proportion of species threatened with extinction [22], due to habitat loss, 

fragmentation [23], and other related environmental stressors like enhanced UV radiation inci-
dence [24, 25] and canopy coverage loss [26]. Furthermore, the complexity on amphibian life 

cycle and the differences in life-history strategies between species and also their habitat asso-

ciations generate a need for studies aiming to understand the true relationship between anthro-

pogenic disturbance and the structure and organization of amphibian communities [7, 8].

In the present study, we aim to answer the following question: In relation to the anthropogenic 
disturbance in an agricultural-forest preserved gradient, would ponds in more preserved 
environment harbor higher taxonomic, functional and phylogenetic diversity patterns? So we 
tested the hypothesis that ponds located at most preserved and more heterogeneous environ-

ments would be taxonomically richest and would allow the coexistence of more function-

ally distinct species [27], expecting then a higher functional diversity and lower functional 
redundancy. We also expect an increase of the phylogenetic diversity (and thus a decrease 

in phylogenetic redundancy) at these sites, since more heterogeneous habitats can provide a 

wide range of microhabitat usage, diminishing the interspecific competition and allowing the 
coexistence of taxa with higher phylogenetic similarity [28, 29].
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2. Methods

2.1. Description of the study site

The sampling areas are located at the Parque Estadual do Turvo (PET) and its adjacencies, and 

both belong to the Atlantic Rainforest biome. The PET is located at the Rio Grande do Sul State 

(27° 07′–27° 16′ S, 53° 48′–54° 04′ W; 100–400 a.s.l), at the municipality of Derrubadas, covering 
an area of 17,491 ha with about 90 km of perimeter of semi-deciduous forest. The study site 
differs from the wet evergreen forests since it is dryer and presents more open areas, sharing 
this same vegetational classification with the Republic of Argentina by the Moconá Provincial 
Park (about 1000 ha) and the Yabotí International Biosphere Reserve (236,613 ha), as well the 
Brazilian state of Santa Catarina by the Uruguay River [30] (Figure 1).

The vast majority of the surrounding areas of PET were converted into intensively agricul-
tural landscapes dominated by crops of soybeans (~22.000 t/year), maize (7.560 t/year), wheat 
(6.840 t/year) and cattle (~8700 animals) pasture and where the legal buffer zones are not 
implemented or respected [31]. The climate is characterized as subtropical highly humid with 
average rainfall between 1.700 and 1.900 mm with reduction of precipitation at the winter 
season, and the average of temperature ranges from 20 to 23°C [32].

2.2. Data collection

The fieldwork was conducted during two anuran breeding seasons at southern Brazil, the 
first one from September 2013 to March 2014 and the second from September 2015 to March 
2016, which comprises the spring and summer seasons at the southern hemisphere. The field 

Figure 1. Map representing the sampling area on the extreme north-western of the Rio Grande do Sul State, Brazil. The 
white points on the map show location of the sampled ponds along the agricultural-preserved forest gradient at Parque 
Estadual do Turvo and surrounds. The study was performed at two consecutive breeding seasons of anurans between 
2014 and 2016.
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 campaigns were made monthly, for approximately 10 days, when we sampled 38 ponds 
following an environmental gradient. The gradient ranged from the agricultural landscape 
where 19 ponds were located (outside of the park borders) to a preserved undisturbed forest, 
the inner portion of the gradient, with 19 ponds too (Figure 1). We collected adult anurans by 

using the method of “survey at breeding sites” [33], recording the number of calling males 

along all perimeter of ponds. Then, the maximum abundance data from each species in each 

pond was used to construct the composition matrix to be used at the subsequent analysis.

We undertook a series of 14 measures (averages from the continuous values, chosen given 
their environmental and/or reproductive values) on morphological and ecological traits from 

eight individuals of each recorded species, to access data on functional diversity and redun-

dancy (Table 1). Since the sampling method is based on the calling males, the morphomet-

ric measures were taken only from adult males. The data acquisition was performed from 
anurans collected during the field campaigns and also on specimens already deposited at the 
Universidade Federal de Santa Maria collection (ZUFSM Appendix A) between the years of 
2010 and 2012 from the same area, to enlarge the database.

We also constructed a phylogenetic matrix based on the phylogenetic information of the 

 species to access data on phylogenetic diversity and redundancy. We manually inserted six 

Trait type Variable Trait

Snout vent length Continuous Total size of the body, from the tip of the nose to the cloaca

Mouth ratio Continuous Distance between the rear edge of the jaw joint and the tip 
of the snout, divided by the snout vent length

Forelimb ratio Continuous Greater distance from the “shoulder” to the tip of the 

“hand,” divided by the snout vent length

Hind limb ratio Continuous Distance between the cloaca and the tip of the “foot,” 
divided by the snout vent length

Perched Binary Place of activity/or vocalization

Ground Binary Place of activity/or vocalization

Water Binary Place of activity/or vocalization

Prolonged breeding Binary Time of breeding season

Explosive breeding Binary Time of breeding season

Reproductive Mode 1* Binary Reproductive mode

Reproductive Mode 2* Binary Reproductive mode

Reproductive Mode 11* Binary Reproductive mode

Reproductive Mode 24* Binary Reproductive mode

Reproductive Mode 30* Binary Reproductive mode

*Reproductive modes based on [43].

Table 1. Description of the ecomorphological traits of the anurans recorded in ponds monitored at Parque Estadual do 

Turvo and adjacencies between 2014 and 2016.
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species (Elachistocleis bicolor, Ololygon aromothyella, Physalaemus aff. gracilis, Rhinella ornata, 

Scinax granulatus and S. perereca) not present at Pyron and Wiens’ work [34]. The position of 

these insertions (missing species) was defined according to the position of the closest species 
or closest species group [35–38].

2.3. Statistical analysis

We calculated the functional and phylogenetic patterns by using Rao’s quadratic entropy and 
the taxonomic diversity by using the Gini-Simpson’s index [39, 40]. These analyses were based 
on [15, 16] by constructing a dataset composed by four matrices. The first one (matrix B) con-

tains the species functional traits, the second one (matrix W) contains the abundance of species 

in each sampled pond, the third one (matrix E) with the environmental filter (distance from 
the nearest border of PET, negative values for outside and positive values for inside) and the 

fourth (matrix F) with the phylogenetic information (transformed then into a matrix of phy-

logenetic distance) of the recorded species. To perform these analyses, we used the software 
Phylocom [41] and SYNCSA (available at http://ecoqua.ecologia.ufrgs.br/SYNCSA.html).

As a way to explore our database and better understand the effects of richness and equa-

bility of the species distributed along the measured gradient of distance, we constructed a 
Whittaker diagram (or dominance diagram). After these procedures, we tested the relation of 
the obtained values of functional diversity and redundancy, taxonomic diversity and redun-

dancy and phylogenetic diversity and redundancy of each pond with its distance from PET’s 
nearest border (positive values represented the ponds inside PET’s area and negative val-
ues represented ponds outside PET’s boundaries). In addition, we also tested the relation 
of the components of the community weighted means matrix (CWM matrix containing the 
weighted functional traits) with the distance from the PET’s nearest borders (Vegan Package, 
lm function, [42]).

3. Results

We found 15 anuran species from five families: Hylidae (four species), Leptodactylidae (four 
species), Bufonidae (two species), Phyllomedusidae, Microhylidae and Ranidae, both with 
one species each. We registered all the 15 species in the inner portion of gradient (the portion 

inside the PET) and only 10 species in the outside portion. The most conspicuous species were 
Dendropsophus minutus and Scinax granulatus both occurring at 31 of the 38 sampled ponds, 

respectively (Table 2). We found, based on the abundance distribution curve, that the ponds 

located at inner portion of the gradient have the species abundance more equally distributed 

(equability) than the ponds located at the outside portion (Figure 2).

Regarding the taxonomic, functional and phylogenetic patterns of diversity that we analysed, 
only the phylogenetic diversity and phylogenetic redundancy were related to the studied 
gradient (r2 = 0.14, p > 0.05 and r2 = 0.20, p < 0.05, respectively). The phylogenetic diversity 

(opposed to what we assumed) decreased at the inner portion of the gradient, while the phy-

logenetic redundancy increased (see Figure 3A and B).
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Figure 2. Whittaker diagram, showing the distribution of abundance of 15 anuran species recorded along an agricultural- 
preserved forest gradient at the Parque Estadual do Turvo, Rio Grande do Sul, southern Brazil. Black triangles represent 
the inner portion of the gradient, and the gray triangles represent the outside portion.

Family/species Inside Outside Number of ponds (total 38)

Bufonidae

Rhinella icterica 01 04 04

Rhinella ornata 34 00 07

Hylidae

Dendropsophus minutus 74 40 31

Hypsiboas faber 30 24 18

Ololygon aromothyella 17 00 03

Scinax fuscovarius 04 00 01

Scinax granulatus 58 23 31

Scinax perereca 24 00 10

Leptodactylidae

Leptodactylus latrans 27 13 12

Leptodactylus mystacinus 28 19 21

Physalaemus cuvieri 45 37 25

Physalaemus aff. gracilis 31 04 15

Microhylidae

Elachistocleis bicolor 12 24 15

Phyllomedusidae

Phyllomedusa tetraploidea 18 00 08

Ranidae

Lithobates catesbeianus* 50 28 23

*Exotic species.

Table 2. Anuran species, place of occurrence, frequency of occurrence and maximum abundance recorded in ponds 

monitored at Parque Estadual do Turvo and adjacencies between 2014 and 2016.
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Despite the total functional diversity not showing statistical significance, when evaluated 
alone with the distance gradient, the attributes (CWM matrix) showed that the individuals 
from the inner portion of the gradient presented higher values of the forelimb ratios (hind 

limbs r2 = 0.13, p < 0.05, forearms r2 = 0.11, p < 0.05) and mouth size ratio (r2 = 0.12, p < 0.05) 

than the individuals found at the outside portion of the gradient. The results also showed that 
the reproductive mode number 4 (eggs laid on small ponds constructed by the males) [43], 

exhibited by Hypsiboas faber, is more commonly found at the outside than the inner portion 

(r2 = 0.12, p < 0.05; see Figure 4A–D).

Figure 3. Regression results between anuran functional, phylogenetic (p < 0.05) and taxonomic diversities and 
redundancy along the agricultural-preserved forest gradient (environmental filter) at Parque Estadual do Turvo and 
adjacencies, southern Brazil between 2014 and 2016.
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The phylogeny generated concerning the anurans showed the formation of two distinct clades 
(Figure 5). The first, the oldest clade (about 90 million years), is formed by two genera with 
one species each (Lithobates catesbeianus and Elachistocleis bicolor); the second clade is formed 

Figure 4. Regression results between the ratios of the morphological characteristics of anurans and their reproductive 
modes along the agricultural-preserved forest gradient (environmental filter) at Parque Estadual do Turvo and 
adjacencies, southern Brazil between 2014 and 2016.

Figure 5. Phylogeny of the anurans recorded at waterbodies monitored along an environmental gradient ranging from 
an agricultural landscape to a well-preserved forest at the southern Brazil. Generated based in Pyron and Wiens [34], 

Narvaes and Rodrigues [37], Faivovich (2002), Nascimento et al. [36], de Sá et al. (2012), [38] and Vieira (2010). We 
defined the branch length based on the estimative of the age of the clades, given by the TimeTree (Hedges et al., 2006).
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by eight genera (Physalaemus [two species], Leptodactylus [two species], Rhinella [two species], 
Phyllomedusa [one species], Dendropsophus [one species], Scinax [three species], Ololygon [one 

species] and Hypsiboas [one species]).

4. Discussion

The anuran community of the PET is characterized as a mixture of species (from several fami-

lies and genera) [44] given their distribution patterns. From the 15 species found at our study, 
five occurred only at the inner portion of the gradient (Ololygon aromothyella, Phyllomedusa 

tetraploidea, Rhinella ornata, S. fuscovarius and S. perereca), and four of them are quite dependent 

of the arboreal strata or the different types of vegetation at water surface (O. aromothyella, 

P. tetraploidea, S. fuscovarius and S. perereca) [43, 45, 46].

The pattern observed at the Whittaker’s diagram (Figure 2) showed the dominance of a low 
number of species at the inside and outside portions of the gradient. This kind of pattern is 
considerably recurrent; other studies already showed the decrease of richness and enhancing on 
dominance at places affected by anthropogenic disturbance [47–49]. In the present case, at both 

portions of the studied gradient, the native species Dendropsophus minutus and S. granulatus and 

the exotic species Lithobates catesbeianus presented higher abundances when compared to other 
species. These two native and abundant species share not just the reproductive mode but are 
also highly tolerant to human induced disturbances, being found close to human dwelling (or 
inside of them, like S. granulatus) and man-made water bodies. However, L. catesbeianus presents 

a high invasive potential, and as explained by Madalozzo et al. [50], its distribution is facilitated 

by the influence of the edge effect and the man-made water bodies along the borders of PET.

Our results show that despite the initial assumption of a higher taxonomic and functional 
diversity at the inner portions of the gradient, there is no significant difference between the two 
sampling sites. The great number of man-made water bodies available outside of PET area may 
explain the similarity on the taxonomic and functional diversity given the high number of gen-

eralist species that inhabit both agriculture and forest environments (e.g. D. minutus, S. granu-

latus, L. catesbeianus, and Physalaemus spp.) and their reproductive modes, associated to both 

permanent and temporary ponds. This pattern of occurrence is commonly found at studies on 
Atlantic rainforest lato sensu (with exception of the wet evergreen forest), mainly at locations 
that present ecotonal characteristics (given the recent anthropogenic modifications). This land-

scape feature may exert influence on anuran reproductive behavior and physiology, given the 
unpredictability of variables like temperature and evaporation at these places, enhancing the 
establishment of more plastic species which can respond differently and maybe more efficiently 
to disturbed environmental conditions [51, 52]. In this way, it is expected to find similar species 
(with similar functional traits) when thinking only on the pond-dwelling anurans, both, in and 
outside of the gradient, since they have to deal with the diversity of microhabitat of both places, 
diminishing the difference of this diversity patterns. However, when adding the stream (e.g. 
Vitreorana uranoscopa, Hypsiboas curupi, Crossodactylus schmidti) the marsh-dwelling anurans (e.g. 
Odontophrynus americanus, Proceratophrys avelinoi and P. bigibosa) and the extremely ephemeral 

pond-dwelling anurans (e.g. Melanophryniscus), we can expect to see greater differences.
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Despite the lack of difference on taxonomic and functional diversities (and also functional 
redundancy), we found evidence of a decrease on the phylogenetic component of diversity 
toward the interior of the park. This result suggests that the environmental filter (distance) 
has influence on the phylogenetic structure of the assemblages and also suggests low phy-

logenetic competition, opposing to what can be seen outside of the park [53, 54]. However, 
another possibility may arise (concerning the decrease of phylogenetic diversity) with the 
presence of strong competitors (clades); in this case the competition would be also a biotic 
influence on these assemblages [55, 56]. These two non-excluding possibilities agree with the 
hypothesis of the niche conservatism [56, 57], so the similar ecological traits shared by the 

phylogenetically close species would allow them to coexist and the conservative similarity on 
niche usage by these species would have shaped the actual clustering or over dispersion (e.g. 
outside portion of the gradient).

In this way, it is expected that species occupying the same habitat (e.g. inner portion or outside 
portion of the gradient) will show similar morphological traits in response to the environment 
[58]. However, under a more competitive scenario, it would be expected that they show differ-

ences on morphology and, then, show the existence of some degree of niche specialization [59]. 

Despite the assumption of a similar response in morphology trait from closely related species 

(evolutionary), the difference found on the size of some morphological traits (e.g. hind limbs, 
forearms and mouth), greater from individuals from inside and smaller to individuals from out-

side, here, this pattern occurs following the premises of adaptive radiation, showing that when 
the species (or lineages) adapt themselves to explore new or different niches, the changes can be 
rapid [60–62]. The individuals present at the inner portion of the gradient are adapted to cope 

with some barriers of dispersion (e.g. fallen trees, streams) and/or make use of a larger number 
of habitats than the individuals present on the outside portion that are susceptible to preda-

tion, to desiccation and to pesticides (given the anthropic nature of the landscape). This is also 

corroborated when we see that species that construct nests that can hold water (reproductive 
mode 4) could be better distributed or more frequently found at places with hydrological deficit.

It is widely known that land-use intensification is one of the major threats to biodiversity 
in local and global perspectives. Several studies have shown that anthropogenic influence can 
cause a decline in several aspects of diversity in natural assemblages [22]. In this way, these 
modifications would not allow the species to track their optimum environment, forcing them 
to adapt in situ to avoid extinction [63]. These adaptations can be seen when the functional 
traits (functional diversity) from individuals of a highly preserved area, show similarity from 
individuals of a highly converted area; it is the phenotypical plasticity of these individuals 
that seems to be needed at these places. In the present study, we found evidence of a strong 
influence of the environmental conditions shaping the assemblages, given the phylogenetic 
clustering and the lack of difference on functional diversity.
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Appendix I. Examined anuran specimens from the Herpetological 

Collection of Universidade Federal de Santa Maria (ZUFSM). 

Missing numbers are individuals measured in field and from 
didactic collection

Dendropsophus minutus: ZUFSM4540, ZUFSM4558, ZUFSM4621, ZUFSM4622, ZUFSM4630 
and ZUFSM4632; Elachistocleis bicolor: ZUFSM4575; Hypsiboas faber: ZUFSM 4476, 

ZUFSM4619 and ZUFSM4661; Leptodactylus fuscus: ZUFSM4585, ZUFSM4628 and ZUFSM 

4660; Leptodactylus latrans: ZUFSM4557 and ZUFSM4604; Leptodactylus mystacinus:  

ZUFSM4473, ZUFSM4526 and ZUFSM4551; Ololygon aromothyella: ZUFSM4547, 

ZUFSM4566, ZUFSM4596, ZUFSM4598, ZUFSM4616, ZUFSM4623, ZUFSM4633, ZUFSM4634 

and ZUFSM4635; Phyllomedusa tetraploidea: ZUFSM4533, ZUFSM4580 and ZUFSM4581; 

Physalaemus cuvieri: ZUFSM4555, ZUFSM4563, ZUFSM4578 and ZUFSM4579; 

Physalaemus aff. gracilis: ZUFSM4356, ZUFSM4358, ZUFSM4359, ZUFSM4368, ZUFSM4553, 

ZUFSM4572 and ZUFSM4609; Rhinella icterica: ZUFSM4529, ZUFSM4518, ZUFSM4516, 
ZUFSM4515, ZUFSM10000, ZUFSM10009, ZUFSM10010 and ZUFSM10011; Rhinella ornata: 

ZUFSM4477, ZUFSM4496, ZUFSM4497, ZUFSM4498, ZUFSM4499, ZUFSM4527, ZUFSM4659, 
ZUFSM10005, ZUFSM10006 and ZUFSM10007; Scinax fuscovarius: ZUFSM4549, ZUFSM4556, 
ZUFSM4576 and ZUFSM4610; Scinax granulatus: ZUFSM4550, ZUFSM4559, ZUFSM4594 
and ZUFSM4607; Scinax perereca: ZUFSM2810, ZUFSM2956, ZUFSM4513, ZUFSM4597, 
ZUFSM4599, ZUFSM4606, ZUFSM4613, ZUFSM4617, ZUFSM4627 and ZUFSM4808.
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