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1. Introduction

Worldwide communities, governmental agencies or international research programs like 

Horizon2020 or Green Program2030, made huge concerted efforts to launch new visions in 
economy and society, [1]: green building, green cities, promoting the green transport develop-

ment [2], eco-labels for logistics, green economy—bioeconomy, new green energy resources, 

network on bio-products, green and cost efficient aircraft design and not in the last time—
smart, green and integrated electronics, [3]. The main pillar for a future green electronic 

industry is foreseen by the sustainable electronics that imply a feedback technological flow, to 
99.99% reuse of the output products transformed in wastes, back to the input, as raw material. 

In this scope, new insights must be assimilated for a green factory vision: lifecycle of electronic 

technologies, recycling electronics, green energy convertors, electronic wastes reconversion 

new technologies, materials reconversion, mobile phones eco-rating and the list rests opened.

On the other hand, the traditional electronics industries can redistribute their objectives to 

comply the green electronics targets: low power consumption, low voltage-low size, low 

quantities of raw materials and resources—suitable to nanotechnologies or nanoelectronics, 

biomaterials in electronics, green organic semiconductors [4], long life products, electronics 

applied in ecology, solar cells development, green energy generators, green energy accumula-

tors, nanoscale integrated electronics, hysteretic materials with memory property for smart 

electronics [5], integrated sensors and biosensors [6], environmental applications, sensors net-

work, bio-medical-eco-electronics [7]. For instance, a recent ecological solution for integrated 

electronic biosensors follows a simultaneously 22 blood tests, concentrating 22 separate 

devices in one, using low quantities of blood samples, due to the revolutionary technology 

of dry biochemistry with minimal wastes, [8]. Also, the medical electronics have to take care 

in the next future to avoid not only the environment pollution or agglomeration with dis-

carded equipments, but mainly to fulfill a green behavior face to the exposed human body. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Especially the Imagistics equipments that are extremely green with external environment, 

without wastes, without infected or contaminated rubbish, hardly interact with the human 

body, exposing at increased risk after multiple imagistic tests [9].

The general purpose products of low energy consumption as refrigerators, washing machines, 

laptops, etc. of A, A+, A+++ energetic class have an extraordinary success on market, offering 
advantage in the user pocket, but also consuming small resources from earth. Therefore, the 

green electronics must accompany the household goods industry, to produce extremely low 

power consumption components. Obviously, nanodevices that consume few femto-Watts are 
of primary interest, [10–12].

In the next sections, the integration technologies evolution and the electronic devices perfor-

mances are selectively presented to meet these general green electronic demands. Some appli-

cations of nanomaterials cross over the electronic frontiers and provide multidisciplinary 

applications, briefly presented. Finally, some particular directions for the next future, in the 
field of the green electronics, are presented.

2. The integration technologies evolution

The nanotechnologies applied in integrated circuits give new challenge in nanometric scale 

structures, launching new applications or new components [13]. The traditional CMOS is 

more than nanoelectronics, passing rapidly from the 22 nm technology in 2012 to 10 nm tech-

nology in 2017 and toward 5 nm in 2020. Therefore, some authors claim that the future solu-

tions require a diversification among nanocomponents, so that other devices than CMOS can 
restore or can be co-integrated together with CMOS circuitry to allow new functions, [14]. 

An extremely large palette of diversified devices is accomplished by the Silicon On Insulator 
(SOI) technologies [15]: from SOI-MOSFETs to radiation hardened circuits [16], up to micro-

machined NMEMS and sensors [17].

The classical High Temperature Annealing Separation by IMplanted OXygen (HTA SIMOX) 

technology still offers clean SOI wafers with 200 nm Si-film on 400 nm buried oxide (BOX), 
and fixed interface charges of Q

ox
 = 1010÷1012 e/cm2, [15]. These charges are dispersed inside 

a thin oxide slice. Any SOI device possesses two interfaces: Si-film with BOX, and BOX with 
Substrate and thirdly the superior interface near gate oxide with Si-film, [18]. The classical 

model considers the electric charge included in first two interfaces, [15]. These fixed charges 
are spatially expanded inside a volume in oxide. In ultrathin SOI structures, consequently this 

charges can be modeled by a surface charge density, [18].

There are some distinct methods of the electrical characterization of the SOI products. If the 

studied SOI transistor has an uniform film, thicker than 200 nm, the classical method can be 
applied. In this case, the effect of the interface charges is modeled by the classical physics by 
VFB−C, [19]:

   V  
FB−C   = −   

 Q  
i1
  
 ___  ε  

ox
     ⋅  x  ox   −   

 Q  
ox

  
 ______ 

2  ε  
Si
    qN  

A
  
    (1)

Green Electronics4



where N
A
 is the same doping concentration in film and substrate, Q

i1
 is the electric charge 

densities at upper interface, Q
ox

 is the fixed charges density, x
ox

 is the thickness of the buried 

oxide, ε
Si
, ε

ox
 are the dielectric permittivity respectively for silicon and for oxide, VFB-C is the 

classical model of the flat-band voltage. For a thick SOI film, the total charge density in BOX 
is Q

ox
 = Q

i1
 + Q

i2
, where Q

i1
 and Q

i2
 are the upper, respectively bottom interface charge density.

If the SOI structure has Si-film thickness less than 10 nm, the sheet interface charge belongs to 
a space and can be treated by the distribution theory, [20]. Assuming the Dirac δ-distribution 
as a limit of the regulates distribution string, I

x
, [21], where x

k
 is the spatial coordinate for Q

ik
, 

k = 1 or 2 and Δx
k
 → 0 stands for the spatial dispersion coefficients for Q

i1
, Q

i2
, the final flat-

band model with distributions, VFB−D, can be computed by:
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For this model, if the spreading coefficients reset to zero (Δx
1,2

 = 0), the distribution (Eq. (2)) 

becomes the conventional (Eq. (1)).

The accurate model with distribution (Eq. (2)) shows that the effect of a fixed charges about 
1012 e/cm2, at the back interface can be neglected in a classical SOI-MOSFET with more than 

200 nm Si/400 nm BOX sizes, but the same value is vital to characterize the SOI ultrathin tech-

nology of 10 nm Si/10 nm BOX.

3. Toward green electronic devices

Green electronic devices represent a new paradigm of recycling electronic nanodevices. 

Some revolutionary features are touched if bio-nanomaterials are used for integrated struc-

tures or combine organic semiconductors on organic insulators from non-toxic precursors 

for a green technological flow. Topic includes low voltage circuits and low size devices, 
recycling electronic bio-nanotechnologies, electronic re-conversion, solar cells as green 

energy provider and supra-capacitors as green accumulators and new solution of energy 

generation, coupled to almost zero electronic power consumption. Some devices reply 

to this demand, when we speak about Few—Electron Transistors or at limit the Single 

Electron Transistor that consumes current sub one electron per microsecond, possessing 

capacities sub 1atto-Farad, [22].

Some recent nanotechnologies could serve the green electronics purposes: Carbon Nano-Tube 

Field Effect Transistors (CNT-FET), [23], Nanowire-FETs, [24], Tunnel-FETs, Nanocore-shell 

technology for thin film transistors operated at 300 K temperature in white rooms, accompa-

nied by low wastes by nanotechnologies, [25].

Also, the ULSI integrated circuits work at low voltages, providing low power consumption in 

electronics. Nanodevices with thin films or with one atomic layer exhibit confinement effects 
that decrease the conduction current. Currently the leading technology nodes are FinFET, 

[26] transistors that exploit raised inversion channels, multiplying the MOSFET capabilities.
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Sometimes the SOI device studies go to other aims: devices suitable for high temperature work 

regime, micro-nanosensors, [27], low power consumption, atypical SOI-MOSFET transistors, 

[28]. Other materials than Silicon on insulator were also intensively approached in the last 

period, (e.g. Germanium on oxides thin layers). The germanium growth is starting from the 

silicon seed and continues by wetting the SiO2 film, producing mono-crystalline layers [29].

The Nothing On Insulator (NOI) transistor is another candidate to green electronic devices. 

Its technology can be rather based on room temperature processes. A sub-10 nm undulated 

polysilicon structure on insulator, [30] can be manufactured by the Secco etching that etches 

especially the boundaries of the polysilicon nanoclusters, providing nanoundulated films 
with top of 7 nm and valley of 3 nm thickness, Figure 1.

This undulation technology can be adapted for the NOI manufacturing, increasing the etch-

ing time, up to the Si valleys reaches the oxide. The NOI nanotransistor is a link device among 

vacuum transistors, SOI-MOSFETs, and Few Electron Transistors (FET), borrowing some 

characteristics from all of these, but being distinct.

In a mirror relation there is placed another representative of the SOI limit devices: the Silicon 

On Nothing transistor made by special etching techniques of the Si-membrane, [31].

4. Nanodevices based on SOI configuration of low consumption

The SOI structures stand for an alternative manufacturing technique for many nanodevices. 

An uniatomic semiconductor layer is able to be deposited onto an insulator support, since to 

be mechanical handled and to avoid the electrical leakage current thru substrate, [32].

When the film thickness is decreased sub-20 nm, a distinct nanostructure with a cavity was 
proposed. The upper source or drain zones that contain two higher undulations of the Si-n+ 

layer are placed onto the oxide substrate. The middle Si-p region is thinned down to 1 nm and 

then to 0.3 nm. The carriers transport is constrained to one by one carrier for 0.3 nm structure. 

Essentially, the device could be conceived as a Single Electron Transistor type, at the theoretical  

Figure 1. A manufactured SOI nanotransistor with maximum 7 nm.

Green Electronics6



limit. This cavity nanodevice is presented in Figure 2 and can associate a green implementa-

tion technology, by undulated polysilicon film. In this case, just two high rectangular undu-

lations of Silicon are preserved on the oxide layer. Therefore it was also called almost-NOI 

device, [33]. The substrate electrode acts as a back-gate terminal. Due to a vacuum distance 

under 4 nm (x
c
 < 4 nm), the tunneling probability between the islands - n+ – source / n+ – drain 

significantly increases, [34, 35].

Other recent research studies, in the field of the electron device with low power consumption, 
indicated an elevated interest for the pin devices as tunneling transistor or Tunnel-pin-FETs 

with extremely low sub-threshold slope, less than 60 mV/dec—the MOSFET physical limit, 

[36]. They are also based on the tunneling conduction mechanism, as a direct band to band 

tunneling, [37]. Other authors claimed in 2014 “Introducing the vacuum transistor: a device 

made of Nothing”, “Transistorizing the Vacuum Tube”, “A vacuum-channel transistor closely 

resembles an ordinary MOSFET”, [38]. This NASA research group fabricated and measured 

a vacuum nanotransistor, [39]. However, this experimental device gets weaker performances 

(SS = 4 V/dec, V
DS

 = 20 V) versus the simulated NOI characteristics, [40, 41] (SS = 650 mV/dec, 

V
DS

 = 10 V). Obviously, the NOI nanotransistor has a similar work principle as these nanotran-

sistors with vacuum that incited the international interest, [38].

5. Nanomaterial, smart biomaterials and organic electronics

One direction in the organic thin film transistor (OTFT) optimization consists in alternative 
OTFT technologies by new organic nanocomposites, selecting green routes.

A starting semiconductor of OTFT structure, suitable for optimization, is the pentacene. It pos-

ses the additional advantage to be already fully depicted inside the Atlas library. The simulated 

static characteristics prove the transistor effect, ensuring the drain current saturation, [42].

A special phenomenon observed by simulations is the volume conduction channel onset—a 

transport way that avoids interfaces vicinities, [43], Figure 3a. In an opposite manner, apply-

ing a low drain voltage, a weak conduction way occurs thru the channel, Figure 3b.

Figure 2. The conceptual architecture of the a-NOI nanotransistor sub-10 nm with a cavity.
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The optimization process is starting from simulation firstly and is passing to producing secondly 
some Organic-TFT transistors, fabricated at room temperatures, avoiding expensive white rooms. 

Also, their applications are useful in green industries, with the huge advantage of low cost, a high 

economical impact and green eco-technologies of fabrication. Traditional organic semiconduc-

tors based on polynuclear aromatic hydrocarbons like pentacene [44] are susceptible to process-

ing problems related to the high toxicity/carcinogenic of the precursors [45]. Therefore, there are 

strongly envisaged OTFTs with green polymers grafted on the Nano-Core-Shells (NCS) struc-

tured materials or alternative nanocomposites, appealing to green chemistry synthesis routes.

For the experimental synthesis of semiconductors are considered those green polymers with-

out carcinogenic precursors, suitable for multi-shell assembling on ferrite nanocore. A surface 

polymerization of polymer attaches a multi-shell structures of type Fe3O4 /Cu/Ag/Au-shell of 
stabilization-shell conductor polymer. The polymer grafting of the np’s surface can be dem-

onstrated by FT-IR and RAMAN tests.

On the other hand, the nanomaterials that are suitable to assemble smart bio-film, can be 
adapted to assemble organic semiconductors, too. In this sense, the Gold nanoparticles are 

very promising due to their applications, as catalysts, biosensing, photodynamic therapy, 

drugs delivery, and also in electronics [46]. The optoelectronics applicability occurs due to 

their quantum size effect, under the interaction between light and electrons onto the surface 
of the gold nanoparticles, [47]. Gold nanoparticles—AuNP - dendrimer structures match the 

therapeutic properties of AuNP with the dendrimers reactivity offering special properties for 
the cellular membrane transport.

6. Conclusions

The chapter presented a general vision on the nowadays green electronics products and 

technologies. The topic includes but not limited to low voltage circuits and low size devices,  

Figure 3. (a) The simulation results of a OTFT biased at V
S
 = 0 V, V

D
 = 40 V, V

TG
 = −10 V and VBG ≤ 0V, emphasizing the 

conduction by a volume electron conduction channel; (b) the potential distribution in OTFT biased at V
S
 = 0 V, V

D
 = 4 V, 

V
TG

 = −10 V and VBG = −30 V emphasizing a weak conduction regime.
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recycling electronic, bio-nanotechnologies, electronic reconversion, solar cells, supra-capaci-

tors, new solution of energy generation, coupled to almost zero electronic power consump-

tion. Fortunately, the microelectronic technology evolves to nanotechnology that means lower 

sizes and by default the energy consumption decreases.

Among representatives, few promising candidates were touched: the SOI, NOI and SON tran-

sistors, the tunnel-FETs and vacuum nanotransistors. The targeted nanostructured materials 

for Organic Thin Film Transistors are green polymers attached to nanocomposite. From the 
green industry point of view, these OTFTs are associated with a room temperature technol-

ogy, in absence of any expensive clean room.
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