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1. Introduction 

Improving speech recognition performance in the presence of noise and interference 
continues to be a challenging problem. Automatic Speech Recognition (ASR) systems work 
well when the test and training conditions match. In real world environments there is often 
a mismatch between testing and training conditions. Various factors like additive noise, 
acoustic echo, and speaker accent, affect the speech recognition performance. Since ASR is a 
statistical pattern recognition problem, if the test patterns are unlike anything used to train 
the models, errors are bound to occur, due to feature vector mismatch. Various approaches 
to robustness have been proposed in the ASR literature contributing to mainly two topics: (i) 
reducing the variability in the feature vectors or (ii) modify the statistical model parameters 
to suit the noisy condition. While some of the techniques are quite effective, we would like 
to examine robustness from a different perspective. Considering the analogy of human 
communication over telephones, it is quite common to ask the person speaking to us, to 
repeat certain portions of their speech, because we don’t understand it. This happens more 
often in the presence of background noise where the intelligibility of speech is affected 
significantly. Although exact nature of how humans decode multiple repetitions of speech is 
not known, it is quite possible that we use the combined knowledge of the multiple 
utterances and decode the unclear part of speech. Majority of ASR algorithms do not 
address this issue, except in very specific issues such as pronunciation modeling. We 
recognize that under very high noise conditions or bursty error channels, such as in packet 
communication where packets get dropped, it would be beneficial to take the approach of 
repeated utterances for robust ASR. We have formulated a set of algorithms for both joint 
evaluation/decoding for recognizing noisy test utterances as well as utilize the same 
formulation for selective training of Hidden Markov Models (HMMs), again for robust 
performance. Evaluating the algorithms on a speaker independent confusable word Isolated 
Word Recognition (IWR) task under noisy conditions has shown significant improvement in 
performance over the baseline systems which do not utilize such joint evaluation strategy. 
A simultaneous decoding algorithm using multiple utterances to derive one or more 
allophonic transcriptions for each word was proposed in [Wu & Gupta, 1999]. The goal of a O
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simultaneous decoding algorithm is to find one optimal allophone sequence W* for all input 
utterances U1, U2,. . ., Un. Assuming independence among Ui, according to the Bayes 
criterion, W* can be computed as 

 

(1) 

where P(X), stands for the probability of the event X occurring. 
From an information theoretic approach, consider two speech sequences U1 and U2. The 
joint entropy H(U1, U2) will be higher than either of their individual entropies H(U1) or 
H(U2) [Shannon, 1948]. We know that if U1 and U2 are completely independent of each 
other then the joint entropy H(U1,U2) will be equal to H(U1) + H(U2). If they are completely 
dependent H(U1,U2) = H(U1) = H(U2). When U1 and U2 come from the same class, there is 
a degree of correlation between them. Particularly when parts of U1 or U2 is corrupted, then 
the joint entropy would have a higher difference with respect to either of the individual 
entropies. This is because the noise is more random in nature. This applies to > 2 sequences 
also.. The goal of the pattern recognition task is to exploit this higher information entropy in 
a maximum likelihood (ML) framework for better recognition. 
One direct approach to simultaneous decoding is to use the N-best criteria [Nilsson, 1971, 
Schwartz & Chow, 1990, Soong & Hung, 1991]. In this, an individual N-best list for each 
input utterance is generated independently using the N-best search algorithm of statistical 
decoding. These individual N-best lists are merged and rescored using all the input 
utterances [Haeb-Umbach et al., 1995]; based on their joint likelihoods the transcriptions are 
re-ordered. However this solution is suboptimal unless N is very large [Wu & Gupta, 1999]. 
Simultaneous decoding for multiple input utterances can be done using a modified version 
of the tree-trellis search algorithm [Soong & Hung, 1991] (the same algorithm was used in 
[Holter et al., 1998]). A forward Viterbi beam search for each utterance is performed 
independently, and then a combined backward A* search [Bahl et al., 1983] for all the 
utterances is applied simultaneously. A word-network-based algorithm is also developed 
for simultaneous decoding. This algorithm has been shown to be computationally very 
efficient [Wu & Gupta, 1999]. 
Multiple utterances of same speech unit has been typically used in pronunciation estimation. 
Pronunciation determined using only one recording of a word can be very unreliable. So for 
more reliability, modeling multiple recordings of a word is used. However commonly used 
decoding algorithms are not suited to discover a phoneme sequence that jointly maximizes the 
likelihood of all the inputs.To arrive at the same solution, various alternative techniques have 
been proposed. One method is to produce recognition lattices individually from each of the 
inputs, and identify the most likely path in the intersection of these lattices. Another generates 
N-best hypotheses from each of the audio inputs and re-scores the cumulative set jointly with 
all the recordings [Singh et al., 2002, Svendson, 2004]. Alternately, the pronunciations may be 
derived by voting amongst the recognition outputs from the individual recordings [Fiscus, 
1997]. While all of these procedures result in outputs that are superior to what might be 
obtained using only one recorded instance of the word, they nevertheless do not truly identify 
the most likely pronunciation for the given set of recordings, and thus remain suboptimal. So it 
is important to jointly estimate the pronunciation from multiple recordings. 
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Dealing with multiple speech patterns occurs naturally during the training stage. In most, 
the patterns are considered as just independent exemplars of a random process, whose 
parameters are being determined. There is some work in the literature to make the ML 
training process of statistical model, such as HMM, more robust or better discriminative. For 
example, it is more difficult to discriminate between the words “rock” and “rack”, than 
between the words “rock” and “elephant”. To address such issues, there has been attempts 
to increase the separability among similar confusible classes, using multiple training 
patterns. 
In discriminative training, the focus is on increasing the separable distance between the 

models, generally their means. Therefore the model is changed. In selective training the 

models are not forced to fit the training data, but deemphasizes the data which does not fit 

the models well. In [Arslan & Hansen, 1996, Arslan & Hansen, 1999], each training pattern is 

selectively weighted by a confidence measure in order to control the influence of outliers, 

for accent and language identification application. Adaptation methods for selective 

training, where the training speakers close to the test speaker are chosen based on the 

likelihood of speaker Gaussian Mixture Models (GMMs) given the adaptation data, is done 

in [Yoshizawa et al., 2001]. By combining precomputed HMM sufficient statistics for the 

training data of the selected speakers, the adapted model is constructed. In [Huang et. al, 

2004], cohort models close to the test speaker are selected, transformed and combined 

linearly. Using the methods in [Yoshizawa et al., 2001, Huang et. al, 2004], it is not possible 

to select data from a large data pool, if the speaker label of each utterance is unknown or if 

there are only few utterances per speaker. This can be the case when data is collected 

automatically, e.g. the dialogue system for public use such as Takemaru-kun [Nishimura et 

al., 2003]. Selective training of acoustic models by deleting single patterns from a data pool 

temporarily or alternating between successive deletion or addition of patterns has been 

proposed in [Cincarek et al., 2005]. 

In this chapter, we formulate the problem of increasing ASR performance given multiple 

utterances (patterns) of the same word. Given K test patterns (K ≥ 2) of a word, we would 

like to improve the speech recognition accuracy over a single test pattern, for the case of 

both clean and noisy speech. We try to jointly recognize multiple speech patterns such that 

the unreliable or corrupt portions of speech are given less weight during recognition while 

the clean portions of speech are given a higher weight. We also find the state sequence 

which best represents the K patterns. Although the work is done for isolated word 

recognition, it can also be extended to connected word and continuous speech recognition. 

To the best of our knowledge, the problem that we are formulating has not been addressed 

before in speech recognition. 

Next, we propose a new method to selectively train HMMs by jointly evaluating multiple 
training patterns. In the selective training papers, the outlier patterns are considered 
unreliable and are given a very low (or zero) weighting. But it is possible that only some 
portions of these outlier data are unreliable. For example, if some training patterns are 
affected by burst/transient noise (e.g. bird call) then it would make sense to give a lesser 
weighting to only the affected portion. Using the above joint formulation, we propose a new 
method to train HMMs by selectively weighting regions of speech such that the unreliable 
regions in the patterns are given a lower weight. We introduce the concept of “virtual 
training patterns” and the HMM is trained using the virtual training patterns instead of the 
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original training data. We thus address all the three main tasks of HMMs by jointly 
evaluating multiple speech patterns. 
The outline of the chapter is as follows: sections 2 and 3 gives different approaches to solve 
the problem of joint recognition of multiple speech patterns. In section 4, the new method of 
selectively training HMMs using multiple speech patterns jointly is proposed. Section 5 
gives the experimental evaluations for the proposed algorithms, followed by conclusions in 
section 6. 

2. Multi Pattern Dynamic Time Warping (MPDTW) 

The Dynamic Time Warping (DTW) [Rabiner & Juang, 1993, Myers et al., 1980, Sakoe  & 
Chiba, 1978] is a formulation to find a warping function that provides the least distortion 
between any two given patterns; the optimum solution is determined through the dynamic 
programming methodology. DTW can be viewed as a pattern dissimilarity measure with 
embedded time normalization and alignment. We extend this formulation to multiple 
patterns greater than two, resulting in the multi pattern dynamic time warping (MPDTW) 
algorithm [Nair & Sreenivas, 2007,  Nair & Sreenivas, 2008 b]. The algorithm determines the 
optimum path in the multi-dimensional discrete space to optimally warp all the K number 
of patterns jointly, leading to the minimum distortion path, referred to as MPDTW path. As 
in standard DTW, all K patterns are warped with respect to each other. The MPDTW 
algorithm finds the least distortion between the K patterns and the MPDTW algorithm 
reduces to the DTW algorithm for K = 2. To find the MPDTW path, we need to traverse 
through the Kdimensional grid along the K time axes. Let the K patterns be 

, of lengths T1, T2,. . ., TK,  respectively, where 

 is the observation vector sequence of the ith pattern and 
i

i

tO  is the 

feature vector at time frame ti. 
Fig. 1 shows an example MPDTW path for K = 2; it is the least distortion path between the 
two patterns. We define a path P of grid traversing as a sequence of steps in the grid, each 
specified by a set of coordinate increments [Rabiner & Juang, 1993], i.e., 

 (2) 

where i

tp  is the increment at step t along utterance i (ith dimension). 

Let the t = 1 step correspond to (1, 1,. . ., 1), is the staring point in the grid where all the K 
patterns begin. Let us set . Let t = T correspond to (T1, T2, . . . , TK), 

which is the ending point of the multi-dimensional grid. φ1(t), φ2(t),. . ., φK(t) are K warping 

functions such that φi(t) = ti  for the ith pattern. Let us define: 

 
(3) 

The coordinate increments satisfy the constraints: 

 
(4) 

Endpoint constraints are: 
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Fig. 1. An example MPDTW path for K = 2. 

 
Fig. 2. An example Global Path Constraint for MPDTW for K = 2. 

 (5) 

 (6) 

Relaxed end pointing can also be introduced as in standard DTW. Various types of Local 
Continuity Constraints (LCC) and Global Path Constraints (GPC) as defined for DTW 
[Rabiner & Juang, 1993], can be extended to the K dimensional space. The LCC we used is 
similar to the simplest Type-1 LCC used in DTW, except that it has K dimensions. The point 
(t1, t2, . . . , tK) can be reached from any one of the points (t1 ʵ i1, t2 ʵ i2, . . . , tK ʵ iK) where ik = 0, 

1 for k = 1, 2, . . . ,K. This leads to (2K
 ʵ 1) predecessor paths, excluding the all-zero 

combination. One type of GPC for MPDTW when K = 2 is shown in Fig. 2. It can be 
extended for any K. For e.g., if K = 3 the GPC will look like a square cylinder around the 
diagonal. 
The important issue in MPDTW is the distortion measure between patterns being compared. 
Since the goal is to minimize an accumulated distortion along the warping path, we define a 
positive distortion metric at each end of the node of the grid traversing. We define a joint 
distance measure d(t1, t2,. . ., tK) between the K vectors  as follows: 

 
(7) 
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where Cφ(t) is the centroid of the K vectors  is the Euclidean 

distance between 
i

i

tO  and Cφ(t) and φ(t) = (t1, t2, . . . , tK) = (φ1(t), φ2(t), . . . , φK(t)). This measure 

is generalizable to any perceptually important measures such as the Itakura-Saito measure 
[Itakura & Saito, 1968] and a generalized centroid as defined in Vector Quantization [Gersho 
& Gray, 1992]. In Fig. 3, three vectors O1, O2, O3 and their Euclidean centroid C is shown. 
The joint distance measure between O1, O2, O3 is d(O1,C) + d(O2,C) + d(O3,C), where d(O,C) 
is the Euclidean distance between vector O and vector C.  
To discourage the optimum path close to the diagonal, the slope weighting function m(t) is 
utilized. The final accumulated distortion is normalized using 

 
(8) 

Thus the total distortion to be minimized is 

 
(9) 

 

 
Fig. 3. 3 vectors O1, O2, O3 and their centroid C. 

2.1 MPDTW Algorithm 
Let Dtotal = D(t1, t2, . . . , tK) be the accumulated cost function, which is to be minimized. 
a) Initialization 

 (10)

b) Recursion 

For 1 ≤ t1 ≤ T1, 1 ≤ t2 ≤ T2,. . ., 1 ≤ tK ≤ TK, such that t1, t2,. . ., tK lie within the allowable grid. 

 

(11)

where (t′1, . . . , t’K) are the candidate values as given by the LCC and 
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(12)

 where Ls being 

the number of moves in the path from (t′1, . . . , t′K) to (t1, . . . , tK) according to φ1,. . ., φK. A 
backtracking pointer I is defined to remember the best local choice in equation 11, which 
will be used for the global path backtracking. 

 

(13)

c) Termination 

 (14)

where  is the total distortion between the K patterns  

this is the best distortion measure under the constraints of the MPDTW algorithm. 
d) Path Backtracking 
 

 

Fig. 4. An example MPDTW path for K = 3 patterns. 

The optimum warping between the K patterns is obtained through backtracking, starting 
from the end point and “hopping” through the back-pointer grid, i.e., 

 (15)

 (16)

where (t1, . . . , tK) = (T1, . . . , TK), . . . , (1, . . . , 1). 
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Fig. 5. MPDTW path for 3 patterns P1, P2, P3 projected on P1-P2 plane. The first 30% of the 
frames (frame number 1 to 27) in P2 is noisy at -15 dB SNR. P1 and P3 are clean. 

The least distortion path, referred to as MPDTW path, gives us the most similar non linear 

time warping path between them. Let φ be the MPDTW path for K patterns. φ(t) = (t1, . . . , 

tK), where (t1, . . . , tK) is a point on the MPDTW path. φ (1) = (1, . . . , 1) and φ (T) = (T1, . . . , 

TK). So φ = (φ (1), φ (2),. . ., φ (t),. . . , φ (T)). 

An example MPDTW path for K = 3 patterns is shown in Fig. 4. A projection of an example 

MPDTW path for 3 speech patterns (P1, P2, P3) on the P1-P2 plane is shown in Fig. 5, where 

burst noise at -15 dB Signal to Noise Ratio (SNR) is added to the first 30% in the speech 

pattern P2. All the three patterns belong to the word “Voice Dialer” by one female speaker. 

The feature vector used to represent speech was Mel Frequency Cepstral Coefficients 

(MFCC), Δ MFCC, Δ2 MFCC without the energy component (36 dimension vector). Notice 

that the initial portion of the MPDTW path has a deviation from the diagonal path but it 

comes back to it. Fig. 6 shows the MPDTW path when burst noise at -5 dB SNR is added to 

10% frames in the beginning portion of pattern P2. We don’t see too much of a deviation 

from the diagonal path. This tells us that the MPDTW algorithm is relatively robust to burst 

noise using only 3 patterns (K= 3). This clearly shows that we can use the MPDTWalgorithm 

to align K patterns coming from same class even if they are affected by burst/transient 

noise. We will use this property to our advantage later. 

2.2 MPDTW for IWR 
Since MPDTW is a generalization of the DTW, it opens new alternatives to the basic 
problem of IWR. In a basic IWR, the test pattern and reference pattern are compared, 
resulting in an optimum warping path in 2-Dimension. But we have a solution in K 
dimensions. Hence, we can choose a variable number of test and reference patterns [Nair & 

Sreenivas, 2008 b]. Hence, let there be r reference patterns per class (word) and K ʵ r test 
patterns. We can compare the minimum distortion of the test patterns with respect to the 
reference patterns of different words using the MPDTW algorithm. Whichever word 
reference set gives the lowest distortion, it can be selected as the matched word. It should be 
noted that the recognition performance will be different from the 2D-DTW and likely more 
robust, because multiple patterns are involved both for testing and as reference templates. 
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Fig. 6. MPDTW path for 3 patterns of the word ”Voice Dialer”. The first 10% of pattern P2 is 
noisy at -5 dB SNR. Patterns P1 and P3 are clean. 

Case 1: Multiple Test Patterns and One Reference Pattern 

We have r = 1 and K ʵ r > 1. When the number of test patterns is more than 1, they together 

produce a “reinforcing” effect as there is more information. So when the K ʵ r test patterns 
are compared with the correct reference pattern, the distortion between the K patterns 
would be less, and when they are compared with the wrong reference pattern, the distortion 
is likely to be much higher. The discriminability between the distortions using the correct 
and wrong reference patterns and its robustness is likely to increase as we are using more 
than 1 test pattern. Therefore the recognition accuracy is likely to increase as the number of 

test patterns (K ʵr) increases. 

Case 2: One Test Pattern and Multiple Reference Patterns 

In this case we have multiple reference patterns but only one test pattern; i.e., r > 1 and K ʵr 
= 1. This MPDTWalgorithm will be repeated for different vocabulary to recognize the word. 
For the sake of simplicity consider an example that has only 2 reference patterns (R1 and R2) 
and one test pattern (P1). We find the MPDTWpath (least distortion path) in the multi 
dimensional grid between these 3 patterns using the MPDTW algorithm. Project this 
MPDTW path on any of the planes containing 2 patterns, say P1 and R1. (We know that the 
optimum least distortion path between P1 and R1 is given by the DTW algorithm.) The 
projected MPDTW path on the plane containing P1 and R1 need not be same as least 
distortion path given by the DTW algorithm. Hence it is a suboptimal path and the 
distortion obtained is also not optimal. So taking the distortion between P1 and R1 (or P1 and 
R2) using the DTW algorithm, leads to lower total distortion between the 2 patterns than 
using a projection of the MPDTW algorithm. This sub optimality is likely to widen with 
increasing r, the number of reference patterns. This property holds good for incorrectly 
matched reference patterns also. However, since the distortion is high, the additional 
increase due to joint pattern matching may not be significant. So it is likely that the MPDTW 
algorithm will give a poorer discriminative performance than the 2-D DTW algorithm, as 
the number of reference patterns (r) per class increase. The use of multiple templates is 
common in speaker dependent ASR applications, to model the pronunciation variability. 
When the templates of the same class (vocabulary word) are significantly different, the joint 
recognition is likely to worsen the performance much more than otherwise. 
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Case 3: Multiple Test and Reference Patterns 

This is the most general case of r > 1 and K ʵ r > 1. From the discussions mentioned in cases 

1, 2, and 3, we know that the recognition accuracy is likely to increase as K ʵ r increases and 
decrease when r increases. When both reference patterns and test patterns are likely to be 

noisy or distorted, r > 1 and K ʵ r > 1 will likely to lead to more robust performance. 

3. Joint likelihood of multiple speech patterns 

Considering left to right stochastic models of speech patterns, we now propose a new 
method to recognize K patterns jointly by finding their joint multi pattern likelihood, i.e., 

 We assume that the stochastic model is good, but some or all 
of the test patterns may be distorted due to burst/transient noise or even badly pronounced. 
We would like to jointly recognize them in an “intelligent” way such that the noisy or 
unreliable portions of speech are neglected and more weightage is given to the reliable 
portions of the patterns. Such a solution would be better than single pattern separate 
recognition. 
As before, we denote the K number of observed speech sequences (patterns)  

of lengths T1, T2 ,. . ., TK,respectively, where  is the feature 

vector of the ith pattern at time frame ti. Let each of these K sequences belong to the same 
pattern class (spoken word). They are repeated patterns of the same word. In the standard 
HMM decoding, we have a trellis structure in K + 1 dimensions, where K dimensions belong 
to the K patterns and one dimension belongs to the HMM states. Let q be any HMM state 
sequence jointly decoding the K patterns. N is the total number of HMM states. 

 
(17)

We can calculate the joint multi pattern likelihood only over the optimum HMM state 
sequence q* for K patterns as shown: 

 
(18)

We can find the optimum HMM state sequence q* as follows: 

 

(19)

Fig. 7 shows a schematic of two patterns  and  and the time alignment of the two 

patterns along the optimum HMM state sequence q* is shown. This is opposite to the case 
we see in [Lleida & Rose, 2000]. In [Lleida & Rose, 2000], a 3D HMM search space and a 
Viterbi-like decoding algorithm was proposed for Utterance Verification. In that paper, the 
two axes in the trellis belonged to HMM states and one axis belongs to the observational 
sequence. However, here (equation 19) we have K observational sequences as the K axis, and 
one axis for the HMM states. We would like to estimate one state sequence by jointly 
decoding the K patterns since we know that the K patterns come from the same class. They 
are conditionally independent, that is, they are independent given that they come from the 

www.intechopen.com



Algorithms for Joint Evaluation of Multiple Speech Patterns for Automatic Speech Recognition 

 

129 

same class. But, there is a strong correlation between the K patterns because they belong to 
the same class. The states in a Left to Right HMM roughly correspond to the stationary 
phonemes of the pattern and hence use of the same sequence is well justified. The advantage 
is this is that we can do discriminant operations like frame based voting, etc., as we will be 
shown later. This formulation is more complicated for Left to Right HMMs with skips or 
even more general ergodic HMMs. 

 

Fig. 7. A multi dimensional grid with patterns  forming a trellis along the q-axis, 

and the optimum state sequence q*. If N = 3 states, then an example q*could be [1 1 1 2 2 3 3 3]. 

To find the total probability of K patterns given - we have 

to traverse through a trellis of K+1 dimensions. This leads to a high-dimensional Viterbi 
search in which both the state transition probabilities as well as local warping constraints of 
multiple patterns have to be accommodated. We found this to be somewhat difficult and it 
did not yield consistent results. Hence, the problem is simplified by recasting it as a two 
stage approach of joint recognition, given the optimum alignment between the various 
patterns. This alignment between the K patterns can be found using the Multi Pattern 
Dynamic Time Warping (MPDTW) algorithm. This is followed by one of the Multi Pattern 
Joint Likelihood (MPJL) algorithms to determine the joint multi pattern likelihood and the 
best state sequence for the K patterns jointly [Nair & Sreenivas, 2007, Nair & Sreenivas,  
2008 a]. The twostage approach can also be viewed as a hybrid of both non-parametric ASR 
and parametric (stochastic) ASR, because we use both the non-parametric MPDTW and 
parametric HMM for speech recognition (Fig. 8). There is also a reduction in the 
computational complexity and search path from K + 1 dimensions to K dimensions, because 
of this two stage approach. We experimented with the new algorithms for both clean speech 
and speech with burst and other transient noises for IWR and show it to be advantageous. 
We note that similar formulations are possible for connected word recognition and 
continuous speech recognition tasks also. We thus come up with solutions to address the 
first two problems of HMMs using joint evaluation techniques. 
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Fig. 8. Joint Likelihood of K patterns. 

The MPDTW algorithm finds the least distortion mapping between the K patterns, referred 

to as the MPDTW path. MPDTW path gives us a handle to evaluate similar/dissimilar 

components of the K patterns visa-vis the HMM. Note that here all the K patterns are test 

patterns and there is no reference pattern (the three cases of section 2.2 does not apply). Let 

φ be the MPDTW mapping between K patterns and φ(t) = (t1, . . . , tK) where (t1, . . . , tK) is a K 

tuple coordinate sequence along the MPDTW optimum path, in the K dimensional 

rectangular grid. Endpoint errors are not considered here since the MPDTW algorithm can 

accommodate relaxed end point constraints separately. Since the MPDTW path is the least 

distortion path between K patterns of the same class, the path groups similar sounding 

portions from the K patterns. Each point on the MPDTW path represents K feature vectors, 

each coming from one pattern. 

Since our goal is to determine the joint likelihood of all the K patterns given the HMM, we 

can consider the MPDTW path φ (t), 1 ≤ t ≤ T as a 1-D evolution of the multiple patterns. Let 

T be the total number of distinct points in the MPDTW path and T ≥ maxk{Tk}. Thus, we can 

use φ (t) as a virtual path for the evolution of multiple patterns and construct the HMM 

trellis; the trellis comprises of N states × T sequence of K-vector sets. The joint likelihood of 

K vector sequences as seen along φ (t) is determined by using one of the MPJL algorithms. 

The MPJL algorithms are divided into two versions of determining either the total 

probability or the ML state sequence probability; Constrained Multi Pattern Forward 

Algorithm (CMPFA), Constrained Multi Pattern Backward Algorithm (CMPBA) determine 

total probability using either the forward or backward algorithm, and Constrained Multi 

Pattern Viterbi Algorithm (CMPVA) for the Viterbi score (ML state sequence). These 

algorithms are called “constrained” because their time path is fixed by the MPDTW 

algorithm. 

The main feature of the MPJL algorithms is to calculate the total probability in an 
“intelligent” manner such that we are making use of the “best” information available and 
avoiding (giving less weight) to the noisy or unreliable information among multiple 
patterns. 

3.1 Constrained Multi Pattern Forward and Backward algorithms (CMPFA and 
CMPBA) 
The CMPFA and CMPBA are used to calculate the total joint probability of the K patterns 

through all possible HMM state sequences. Following the terminology of a standard HMM 

[Rabiner & Juang, 1993] for the forward algorithm, we define the forward variable φ(t)(j) 

along the path φ (t); i.e., 
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 (20)

where qφ(t) is the HMM state at t → φ (t), Е is the HMM model with states j ∈1 : N. As in the 

forward algorithm, we can determine φ(t)(j) recursively leading to the total probability. 

3.1.1 CMPFA-1 
Let us define the MPDTW path transition vector,  

Depending on the local constraints chosen in the MPDTW algorithm, Δφ(t) can be a K 

dimensional vector of only 0’s and 1’s; e.g., Δφ (t) = [0, 1, 1, 0, . . . , 1]. Δφ (t) will comprise of 
at least one non-zero value and a maximum of K non-zero values. (The [0,1] values are due 
to the non-skipping type of local constraints in MPDTW. The skipping-type can introduce 
higher range such as [0,1,2] or [0,1,2,3].) Let  0, i = 1, 2, . . . ,K} be the set of 

vectors that have been mapped together by the MPDTW at φ(t). Let  

such that  are all the feature vectors in the set  is a subset of the 

vectors  retaining only those  are non-zero. The set Sφ(t) 

and {Oφ(t)} can have a minimum of one feature vector and a maximum of K feature vectors. 

Let The recursive equation for the evaluation of αφ(t)(j) 

along all the grid points of the trellis is given by (derivation given in appendix A1): 

 
(21)

t = 2, 3, . . . , T , j = 1, 2, . . . , N. aij is the state transition probability from state i to state j (as in 

standard HMM), bj({Oφ(t)}) is the joint likelihood of {Oφ(t)} being emitted by state j. It is the 
same as joint likelihood of all the vectors  emitted by state j, where 

 consist of all the feature vectors in a set Sφ(t). Thus, a HMM state-j can emit a 

variable number of vectors from the K patterns, corresponding to the number of non-zero 

values in the Δφ(t) vector. Thus, the number of feature vectors each state emits ranges from 1 

to K and it is a function of the MPDTW path. But, when the recursive computation of αφ(t) 

reaches αφ(T), each state j would have emitted the exact number of multi-pattern feature 
vectors = (T1 + T2 + . . . + TK), irrespective of the MPDTW path. 

We examine a few alternate methods to calculate the joint likelihood bj({Oφ(t)}), shown in 
section 3.3. We know from HMM theory, that a HMM state can emit one feature vector at 
any given time. However in our case, each HMM state emits 1 upto K feature vectors at each 

time coordinate φ(t) and a given state j. However, we calculate the joint likelihood bj({Oφ(t)}) 
by normalizing it (shown in section 3.3) such that it is comparable to a likelihood of a single 
vector emitted by a HMM state. This can be interpreted as inherently performing 
recognition for one virtual pattern created from the K similar patterns. Thus, we can 
consider the values of transition probability aij and state initial probability πi as the same as 
that used in single pattern recognition task. 
An example of MPDTW path, when there are only two patterns (K = 2) is shown in Fig. 9. 

The t1 time axis is for pattern  and t2 time axis is for pattern . We fit a layer of 

HMM states (of a class) on this path. For simplicity, let us consider that there is only one 

state j = 1. Now we traverse along this MPDTW path. In the trellis, for CMPFA-1, at time 

instant (1,1) feature vectors ( , ) are emitted by state j. At time instant (2,2) state j emits 
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vectors  and . At time (3,2) state j emits only one vector  and not , as  was 

already emitted at time (2,2). So we are exactly recognizing all the K patterns such that there 

is no reuse of feature vectors. The total number of feature vectors emitted at the end of the 

MPDTW path by each state in this example will be exactly equal to T1 + T2. 

3.1.2 CMPFA-2 
CMPFA-2 is an approximate solution for calculating the total probability of the K patterns 

given HMM λ but it has some advantages over CMPFA-1. In CMPFA-2, a recursive solution 

(equation (22)) is proposed to calculate the value of φ(t) (j). This solution is based on the 

principle that each HMM state j can emit a fixed (K) number of feature vectors for each 

transition. So, it is possible that some of the feature vectors from some patterns are reused 

based on the MPDTWpath. This corresponds to stretching each individual pattern to a fixed 

length T (which is ≥ maxk{Tk}) and then determining the joint likelihood for the given HMM. 

Thus, we are creating a new virtual pattern which is a combination of all the K patterns 

(with repetitions of feature vectors possible) of length equal to that of the MPDTWpath. The 

HMM is used to determine the likelihood of this virtual pattern. The total number of feature 

vectors emitted in this case is K.T . Considering the forward recursion as before, 

 
(22)

t = 2, 3, . . . , T , j = 1, 2, . . . , N, where N is the number of states in the HMM. aij is the state 
transition probability from state i to state j, πj is the state initial probability at state j,  
bj ( ) is the joint likelihood of the observations  generated by state j. 

The various methods to calculate this joint likelihood bj( ) is shown in section 

3.3. 
Let us consider again the example of Fig. 9. In CMPFA-2, each HMM state emits a fixed 
number (K) of feature vectors. In CMPFA-2, at time instant (1,1), feature vectors ( , ) are 
emitted by state j. At time instant (2,2), state j emits vectors  and . At time instant (3,2), 
state j emits vectors  and . At time instant (4,2), state j emits vectors  and . Here 
we see that vector  is emitted 3 times. So some feature vectors are repeated in CMPFA-2 
based on the MPDTW path. So by using CMPFA-2, the HMMs are not emitting the K 
patterns in an exact manner. 
 

The initialization for both CMPFA-1 and CMPFA-2 is the same, i.e., 

 (23)

where j = 1, 2, . . . ,N, Кj is the state initial probability at state j (and it is assumed to be same 
as the state initial probability given by the HMM), bj( ) is the joint likelihood of 
the observations  generated by state j. 

The termination of CMPFA-1 and CMPFA-2 is also same: 

 
(24)

where P* is the total joint likelihood of K patterns. 
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Fig. 9. An example path. 

3.1.3 CMPBA-1 and CMPBA-2 
We can easily construct backward recursion algorithms similar to the forward recursion of 

the previous section, which leads to CMPBA- 1 and CMPBA-2. We define ǃφ(t)(j) as in 

equation (25). 

 
(25)

For CMPBA-1 can write similar recursive equation as in CMPFA-1, by using the backward 

cumulative probability. 

 
(26)

t = T, . . . , 2, i = 1, 2, . . . ,N, where N is the number of states in the HMM, and the rest of the 

terms are as defined in section 3.1.1. Again, CMPBA-2 is an approximation to calculate ǃφ(t)(j) 

and is similar to CMPFA-2. We define the recursive solution for calculating ǃφ(t)(j) as follows. 

 
(27)

t = T, . . . , 2, i = 1, 2, . . . , N, where N is the number of states in the HMM. 

3.2 Constrained Multi Pattern Viterbi Algorithms (CMPVA-1 and CMPVA-2) 
Unlike the CMPFAs and CMPBAs which consider all state sequences through the HMM 

trellis, the CMPVA is evaluated for the probability along the maximum likelihood (ML) 

state sequence:  is the optimum state at time φ(t). We 
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define φ(t)(j) as the log likelihood of the first φ (t) observations of the K patterns through the 

best partial state sequence up to the position φ (t ʵ 1) and qφ(t) = j along the path φ (t); i.e., 

 

(28)

where qφ(1):φ(T) = qφ(1), qφ(2), . . . , qφ(T). The recursive equation for CMPVA-1 (similar to CMPFA-
1) is: 

 
(29)

with t = 2, 3, . . . , T and j = 1, 2, . . . ,N, N is the number of HMM states. The terminology is 
similar to that used in equation (21). The recursive solution for CMPVA-2 (similar to 
CMPFA-2) is: 

 
(30)

t = (2, 3, . . . , T ), j = 1, 2, . . . ,N 
Initialization for both CMPVA-1 and CMPVA-2 is done as follows: 

 (31)

The path backtracking pointer ψφ (t)(j) for CMPVA-1 and CMPVA-2 is: 

 (32)

where t = 2, 3, . . . , T and j = 1, 2, . . . ,N. 
The ML joint likelihood for both CMPVA-1 and CMPVA-2 is determined by: 

 (33)

Path Backtracking is done to find the optimum state sequence. 

 (34)

An example of a HMM state sequence along the MPDTW path is shown in Fig. 10. 
For robust IWR, we use either CMPFA or CMPBA or CMPVA to calculate the probability P* 
of the optimal sequence. For simplicity let us group CMPFA-1, CMPBA-1, CMPVA-1 as 
CMP?A-1 set of algorithms; and CMPFA-2, CMPBA-2, CMPVA-2 as CMP?A-2 set of 
algorithms. 

3.3 Feature vector weighting 
In missing feature theory [Cooke et al., 1994, Cooke et al., 2001], we can identify the 
unreliable (noisy) feature vectors, and either ignore them in subsequent processing, or they 
can be filled in by the optimal estimate of their putative value [Raj & Stern, 2005]. Similar to 
this approach we determine the joint likelihoods for any of the six algorithms discussed 
earlier, by differentiating as to which portions of the speech patterns are unreliable. We can 
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give a lesser or zero weighting to the unreliable (noisy) feature vectors and a higher 
weighting to the corresponding reliable ones from the other patterns. Fig. 11 shows an 
example of two speech patterns affected by burst noise. The strategy is to give a lesser 
weight to the regions of speech contaminated by burst noise and the corresponding clean 
speech in the other pattern should be given a higher weight. This can be interpreted as a 
form of voting technique which is embedded into HMM decoding. We have considered 
alternate criteria for weighting the feature vectors, to achieve robustness to transient, bursty 
noise in the test patterns. 
 

 

Fig. 10. Example of a HMM state sequence along MPDTW path for Left-Right HMM. 

 

Fig. 11. Two speech patterns  and  affected by burst noise. 

To determine the joint likelihood of emitting the set of feature vectors in a given state, we 
can resort to alternate formulations. Since the path traversed along the K-dimensional time 
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axes is already optimized, how we choose bj({Oφ(t)}) (or bj( )) affects only the 

total/ML joint likelihood P* (of equations 24 and 32) and the ML state sequence (of equation 

33). We define various discriminant criteria for calculating bj({Oφ(t)}) (in equations 21, 26, 29) 
and bj( ) (in equations 22, 27, 30) as follows: 

3.3.1 Discriminant Criteria - average (DC-avg) 

We know that  are different speech patterns which come from the 

same class (word) and uttered by the same speaker. Given that they come from the same 
class, and uttered independently, we don’t use any discriminating criteria, and simplify use 
of the vectors as they are. Even though the feature vectors  come from the 

same class, we can assume that they are independent if it is given that they occur from the 
same state j, so as to compute the joint likelihood of the vectors being emitted from the 
HMM. So, we can express the joint probability term in CMP?A-1 

 (35)

where are all the feature vectors in the set Sφ(t) as mentioned in section 3.1.1 

and bj ( ) is the state-j emission probability for the HMM (probability of vector  emitted 

by state j given the HMM) and r is the cardinality of the set Sφ(t). 
Similarly, CMP?A-2, since all the patterns are used at each time, the following equation is 
proposed. 

 (36)

The independence assumption is justified because successive vectors in a pattern are only 
linked through the underlying Markov model and the emission densities act only one 
symbol at a time. The geometric mean using power of 1/r or 1/K normalizes the use of r or 
K vectors emitted by a HMM state, comparable to a single vector likelihood. Therefore we 

can use aij ’s and πi’s that are defined as in single-pattern HMM. If  is emitted from its 

actual state j from the correct HMM model λ, we can expect that bj ( ) to have a higher 

value than that if  is emitted from state j of the wrong model. And taking the product of 

all the bj( ) brings in a kind of “reinforcing effect”. Therefore, while doing IWR, the values 

of joint likelihood P* using the correct model and the P* using the mismatched models, is 
likely to widen. Therefore we can expect better speech recognition accuracy to improve. 
Even if some of the K vectors are noisy, the reinforcing effect will improve speech 
recognition because the rest of the vectors are clean. 

3.3.2 Discriminant Criteria - maximum (DC-max) 
In the first discriminant criteria DC-avg, we estimate the output probability by considering 
the vectors emitted at each state, in an average sense; i.e., geometric mean of the 
independent vector probabilities is considered. Instead of the average, we consider the 

maximum of the independent probabilities from the set Sφ(t). Of course, Sφ(t) itself would be 
different for the two classes of algorithms for grid traversing (CMP?A-1 and CMP?A-2). 
Thus, we can express 

 (37)
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 (38)

Because of the maximum (max) operation, we can expect the likelihoods in DC-max to be 

higher than the respective ones using DC-avg. In terms of the virtual pattern interpretation, 

the sequence of the T length patterns are composed of the most probable vectors 

corresponding to the HMM-λ. If the speech patterns are affected by noise, we expect DC-

max to give better discrimination than DCavg. However, for the case of clean speech, it is 

possible that DC-max will reduce speech recognition accuracy than DC-avg because the max 

operation will also increase the likelihood P* for the mismatched model and bring it closer 

to the P* of the correct model. Also, this reinforcing effect will be absent in DC-max. So we 

would prefer to use DC-max when the speech patterns are noisy or badly spoken, and for 

the clean speech case we would prefer DC-avg. 

3.3.3 Discriminant Criteria - threshold 1 (DC-thr1) 
Instead of using SNR, to determine which feature vectors are reliable or unreliable as in 
missing feature theory, we propose a novel distortion measure called the joint distance 
measure. For CMP?A-1 set of algorithms, the joint distance measure is defined as, 

 is the centroid of all the vectors in Sφ(t) as 

in section 3.1, and  is the Euclidean distance between  and . We define 

bj({Oφ(t)}) as: 

 

(39)

where Ǆ is a threshold, r is the cardinality of the set Sφ(t). 

In equation (39), if we choose Ǆ = ∞, then bj({Oφ(t)}) is always equal to  

(product operation), and when Ǆ < 0, then it is always equal to  (max 

operation). The first option of d(φ(t)*) < Ǆ is provided to take care of the statistical variation 

among the patterns, even without noise. If the distortion is low (< Ǆ) it implies no noise 

among the patterns; then we consider all the vectors to be reliable data and set Sφ(t) come 

from the same class, we can assume that bj({Oφ(t)}) is determined as in DC-avg. When the 

distortion is high (> Ǆ), it could be due to misalignment as well as distortion in the patterns. 

So, we choose only one vector out of all the possible r vectors, which gives the maximum 

probability in state j. The rest of the r ʵ 1 vectors are not considered for joint likelihood. This 

is expressed as the max operation. 

For CMP?A-2 set of algorithms, the set Sφ(t) includes all the vectors from the K patterns at φ(t) 

and accordingly, the joint distance measure is defined as,  

where  is the centroid of the K vectors  and  is the 

Euclidean distance between  and  . Rest are similar to equation 39. 

If the speech patterns are affected by noise, we would expect that the max operation to give 
better recognition results and for the case of well articulated clean speech, we expect the 
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product operation to give better results. We need to select the threshold such that it is 
optimum for a particular noisy environment. 
 

 

Fig. 12. MPDTW path for K = 2; vector  is clean and vectors   and  are noisy 

3.3.4 Discriminant Criteria - threshold 2 (DC-thr2) 
In DC-thr1, while doing the max operation, we are taking only the best pattern. In practice a 

variable number of patterns could be noisy and we would like to use the max operation only 

to omit the noisy patterns and use the product operation for the rest of the patterns. So we 

choose only pairwise distortion between two vectors at a time and define a new criteria for 

the joint likelihood. 

Let 1 ≤ a, b ≤ K be the indices of vectors belonging to the K patterns. For the CMP?A-1 set, we 

define the clean (undistorted) set of vectors as Z, such that a, b ∈ Z  iff d( , ) < Ǆ, where 

d( , ) is the Euclidean distance between  and  . Let Z be the set of remaining 

vector indices, such that . Let R is the cardinality of the set Sφ(t) 

and we can search all pairs of vectors among R exhaustively, i.e., R(R − 1)/2 combinations, 

since R is usually small (R ~ 2, 3). 

 

(40)

where r is the cardinality of set Z, and 0 stands for null set. 

For the CMP?A-2 set of algorithms Sφ(t) =  be the full set of K-pattern 

vectors and all the steps to compute equation 40 is followed exactly. 
Note that DC-thr2 becomes same as DC-thr1 if number of patterns K is equal to 2. There is 
one disadvantage in this criteria. Consider three vectors  ,  ,  . Let  and  be 

affected by similar kind of noise and let  be clean. Then it is possible that the noisy 
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vectors  and  are pooled together in set Z and the clean vector  is ejected. This can 

affect speech recognition performance in a negative way. Thus the clean vectors may be 
removed from probability computation. However this would be a very rare possibility. 

3.3.5 Discriminant Criteria - weighted (DC-wtd) 
The previous two criteria DC-thr1 and DC-thr2 have one difficulty of choosing a proper 
threshold Ǆ. We consider a new weighting criteria without the need for the threshold. For 
the CMP?A-1 set of algorithms, the joint probability is defined as follows: 

 

(41)

For CMP?A-2 set of algorithms, bj ( ) is defined as follows: 

 

(42)

In this discriminant weighting, the individual probabilities are weighted according to the 

proportion of their probability value compared with that of all the vectors in Sφ(t). Thus 
distinctly higher probability values are magnified and distinctly lower probabilities are 

penalized. The above equations are basically a weighted geometric mean of the bj( )’s. 

Thus, when the values of bj ( )’s are close to each other, then DC-wtd becomes close to the 

product operation of DC-thr1 and if the various values bj( )’s are very different, then DC-

wtd becomes close to max operation of DC-thr1. DC-wtd behaves somewhat similar to DC-
thr1 (when DC-thr1 is set with optimum threshold). The main advantage of using DC-wtd is 
that we don’t need to set any threshold. We expect this type of soft-thresholding may be 
useful in some applications. 

3.4. Analysis of CMP?A-1 versus CMP?A-2 
Now we analyze which of these two set of algorithms, CMP?A-1 and CMP?A-2, is better 
and under what conditions. An example of MPDTW path, when there are only two patterns 

(K = 2) is shown in Fig. 12. The t1 time axis is for pattern  and t2 time axis is for pattern 

. We fit a layer of HMMstates (of a class) on this path. For simplicity, let us consider 

that there is only one state j = 1. Now we traverse along this MPDTWpath. In the example 
shown in Fig. 12, we assume that the vector  is clean and the vectors  and  are noisy 

or badly articulated. Let us use DC-thr1 to calculate joint probability and choose a low value 
for the threshold, so that the max operation dominates. Using CMP?A-2, since  is re-

emitted (by state j) at time instants (3,2) and (4,2), the max operation will be most likely used 
as the joint distortion measure will most likely be above the threshold. So only the clean  

vector will be used to calculate joint probability. However in the case of CMP?A-1, since  

is emitted only once at time instant (2,2) and not emitted at time instants (3,2) and (4,2), only 
the noisy vectors  and , contribute to the calculation of joint probability. This affects P*. 

So in this case the recognition accuracy is likely to decrease if we use CMP?A-1 when 
compared to CMP?A-2. 
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Now we consider an other case (Fig. 13) when we are using DC-thr1 and the value of the 
threshold is very high, so that the product operation dominates. Let vector O22 be noisy or 
badly articulated and vectors  and  be clean. Since the product operation will mostly be 

used, using CMP?A-2, the noisy vector  will affect the calculation of the joint probability 

at time instants (3,2) and (4,2) as it is re-emitted. Now using CMP?A-1, as vector  is not 

re-emitted, only the clean vectors  and  contribute to the calculation of joint 

probability. So CMP?A-1 is expected to give better speech recognition accuracy than 
CMP?A-2. 
For the case of clean, well articulated speech, CMP?A-1 is expected to perform better than 
CMP?A-2 as it does not reuse any feature vector. This is true when we use DC-thr1 at lower 
values of threshold. At higher (sub optimal) values of threshold, CMP?A-2 could be better. If 
DC-wtd is used, we expect that using CMP?A-1 would give better recognition accuracy than 
CMP?A-2 for well articulated clean speech and worse values for speech with burst/transient 
noise or speech with bad articulation. This is because DC-wtd behaves similar to DC-thr1 
when the threshold of DC-thr1 is optimum. Finally we conclude that if we look at the best 
performances of CMP?A-1 and CMP?A-2, CMP?A-2 is better than CMP?A-1 for noisy 
speech (burst/transient noise), and CMP?A-1 is better than CMP?A-2 for clean speech. 
The recognition accuracy is expected to increase with the increase in the number of test 
patterns K. 
 

 

Fig. 13. MPDTW path for K = 2; vector  is noisy and vectors  and  are clean 

 

 
Fig. 14. Standard HMM Training. 

4. Selective HMM training (SHT) 

This is the next part of the joint multi-pattern formulation for robust ASR. We have first 
addressed evaluation and decoding tasks of HMM for multiple patterns. Now we consider 
the benefits of joint multi-pattern likelihood in HMM training. Thus, we would have 
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addressed all the three main tasks of HMM, to utilize the availability of multiple patterns 
belonging to the same class. In the usual HMM training, all the training data is utilized to 
arrive at a best possible parametric model. But, it is possible that the training data is not all 
genuine and therefore have labeling errors, noise corruptions, or plain outlier examples. In 
fact, the outliers are addressed explicitly in selective HMM training papers. We believe that 
the multi-pattern formulation of this chapter can provide some advantages in HMM 
training also. 
Typically, in HMM training the Baum-Welch algorithm [Baum & Petrie, 1966, Baum & Egon, 
1967, Baum & Sell, 1968, Baum et al., 1970, Baum, 1972] is used (Fig. 14). We would like to 
extend it to use the concepts of joint multi-pattern likelihood. Let us refer to this as selective 
training, in which the goal is to utilize the best portions of patterns for training, omitting any 
outliers. In selective training, we would like to avoid the influence of corrupted portions of 
the training patterns, in determining the optimum model parameters. Towards this, virtual 
training patterns are created to aid the selective training process. The selective training is 
formulated as an additional iteration loop around the HMM Baum-Welch iterations. Here 
the virtual patterns are actually created. The virtual patterns can be viewed as input training 
patterns that have been subjected to “filtering” to deemphasize distorted portions of the 
input patterns. The filtering process requires two algorithms that we have proposed earlier, 
viz., MPDTW and CMPVA. The CMPVA uses the MPDTW path as a constraint to derive the 
joint Viterbi likelihood of a set of patterns, given the HMM λ. CMPVA is an extension of the 
Viterbi algorithm [Viterbi, 1967] for simultaneously decoding multiple patterns, given the 
time alignment. It has been shown in [Nair & Sreenivas, 2007, Nair & Sreenivas, 2008 a] that 
these two algorithms provide significant improvement to speech recognition performance in 
noise. 
 

 

Fig. 15. Selective HMM Training. 

A block diagram of the new selective HMM training scheme using virtual patterns is shown 
in Fig. 15. Let there be D number of training patterns (tokens) in the training data, all of 
them labeled as belonging to the same class (e.g. words). Let us choose K subset of patterns 
from these D patterns (here 2 ≤ K ≤ D). We know that the K patterns come from the same 
class and there is strong correlation between them, although they are uttered independently. 
The K patterns are used to create one virtual pattern by taking advantage of the fact that 
they are correlated. Then the next K patterns we choose from the pool of D patterns are used 
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to create another virtual pattern. Let the total maximum number of virtual patterns we can 
create be equal to J. These virtual patterns are now considered independent with respect to 
every other virtual pattern. All these virtual patterns together constitute the training pattern 
set which is used for HMM training instead of the original patterns directly. The maximum 

number of virtual patterns (J) given D training patterns is equal to  (the 

number of training combinations with at least two in the set), where  and K! 

stands for K factorial ( ). However since this value can be very high for a large 

database, we can choose a subset of E patterns from J patterns, in an intelligent way. These E 
patterns form the virtual training data. The higher the value of E the better would be the 
statistical stability of the estimation and also the various speech variabilities is likely to be 
modeled better. 
Let  be the K patterns selected from the D pattern training data. We 

apply the MPDTW algorithm to find the MPDTW path. The MPDTW path now acts as an 

alignment to compare similar sounds. Using this MPDTW path we find the HMM state 

sequence using the CMPVA. It may be noted that even the virtual patterns have different 

lengths, depending on the MPDTW path. 

4.1 Virtual pattern creation 
The MPDTW path and the CMPVA decoded HMM state sequence are used as inputs to 

create a virtual pattern. An initial HMM is found out using the HMM training algorithm on 

the original training data and the HMM parameters are used to start the iterations. The 

virtual pattern is created by aligning the K patterns and weighting the feature vectors of the 

different patterns such that the more likely vectors are given a higher weighting and the less 

reliable vectors are given a lower weighting. The MPDTW path is a global alignment of the 

input patterns, which does not change through the selective iterations. Let φ  be the MPDTW 

mapping between one set of K patterns and φ (t) = (t 1, . . . , tK) = (φ1(t), φ2(t), . . . , φK(t)), where 

(t 1, . . . , tK) is a K tuple coordinate sequence belonging to the K patterns along the MPDTW 

optimum path, and φi(t) = t i, such that φi(t) is the projection of the MPDTW path φ(t) onto 

the t i axis. φ= (φ(1), φ(2), . . . , φ(Tp)), where Tp is the number of points in the MPDTW path 

such that Tp ≥ max{T1, T2, . . . , TK}. Since the MPDTW path provides the least distortion 

alignment between the K patterns we are able to compare all the similar sounds from the 

multiple patterns and weight them appropriately to create a virtual pattern. The length of 

the virtual pattern is equal to the length of the MPDTW path. The HMM state sequence 

emitting K patterns jointly is given by the CMPVA. Let q = qφ(1), qφ(2), . . . , qφ (
pT

) be the jointly 

decoded HMM state sequence, where qφ(t) is the HMM state at time φ (t) which is jointly 

emitting the feature vectors ( ). We define a virtual pattern to be created as 

below: 

 (43)

where
 
is the pth virtual pattern of length Tp, 1 ≤ p ≤ E; f(.) is a function which maps 

the K patterns to one virtual pattern.  is the 

feature vector of the pth virtual pattern at time φ(t). Each feature vector in the virtual pattern 
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is defined as a weighted combination of the feature vectors from the K patterns (of the 

subset of training data), determined through the K tuple of the MPDTW path, i.e. 

 

(44)

where φ(t) = (t 1, . . . , tK) = (φ1(t), φ2(t), . . . , φK(t)), φi(t) = ti, and wi(φ (t)) is the weight for 

.  is the feature vector of the ith pattern which lies on the time frame ti (  is 

same as  defined before). wi(φ (t)) is itself defined as: 

 

(45)

where  is the likelihood of feature vector  emitted from state qφ(t) of the 

current HMM λ. The above weighting factor is similar to the geometric weighting proposed 

in DC-wtd, but used differently in equation 44. 
Similarly, we consider the next K subset of training patterns from the database and create 
another virtual pattern, and so on till E virtual patterns are created. All the E virtual patterns 
together are used to train the HMMparameters, using the Baum-Welch algorithm. After 
Baum-Welch convergence, the updated model is used iteratively for the re-creation of the 
virtual patterns as shown in Fig. 15. For each SHT iteration, a new set of virtual training 
patterns are created because the weights in equation 45 get modified because of the updated 

HMM parameters. However, the warping path is φ(t) for each virtual pattern is not a 
function of HMM parameters and hence does not vary with SHT iterations. We define a 
distortion measure to stop the SHT iterations. The number of features in the pth virtual 
pattern path is fixed by the MPDTWpath and does not vary with iterations. Therefore, we 
can define convergence of the virtual patterns themselves as a measure of convergence. The 

change in the virtual pattern vector  of the pth virtual pattern,  is 

defined as the Euclidean distance between  at iteration number m and  at iteration 

number m ʵ 1. The total change at iteration m for the pth virtual pattern sequence is 

 

(46)

where p = 1, 2, . . . ,E. The average distortion  for all the E virtual patterns at the mth 

iteration is calculated and if it is below a threshold the SHT iterations are stopped.  

The virtual pattern has the property that it is “cleaner” (less distorted) compared to the 
original patterns. Let us take an example when one (or all) of the original training patterns 
have been distorted by burst noise. The virtual pattern is created by giving less weighting to 
the unreliable portions of the original data through DC-wtd and the weight parameters 

wi(φ(t)) of equation 45. When most of the training patterns are not outliers, the initial HMM 

is relatively noise free. So  of equation 45 can be expected to be higher for 

reliable values of . Hence, wi(φ(t)) has a higher value for reliable feature vectors and 

lower for the unreliable ones. With each SHT iteration, the virtual patterns become more 
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and more noise free leading to a better HMM. In the standard HMM training, the model 
converges optimally to the data. In the SHT, the model and the data are both converging. 
Since the data is moving towards what is more likely, it is possible that the variance 
parameter of the Gaussian mixture model (GMM) in each HMM state gets reduced after 
each iteration. This could deteriorate the generalizability of HMM and hence its speech 
recognition performance for the unseen data, as the new HMMs might not be able to capture 
the variability in the test patterns. So we have chosen to clamp the variance after the initial 
HMM training and allow only the rest of the HMM parameters to adapt. Also we have 
considered some variants to the formulation of the virtual pattern given in equation 44. 
Through the experiments, we found that there may be significant variation of the weight 

parameter wi(φ(t)) for each φ(t), and also across iterations. Therefore we propose below two 

methods of smoothing the wi(φ(t)) variation, which leads to better convergence of HMM 
parameters. 
A weighted averaging in time for the weights wi(φ (t))s is done by placing a window in time 
as shown below: 

 

(47)

where 2P + 1 is the length of the window placed over time φ (t ʵ P) to φ (t + P); li(φ (t + j))  

is the weighting given to the weight wi(φ (t + j)) at time φ (t + j), such that 

 
Smoothing of the weights wi(φ (t)) allows the reduction of some 

sudden peaks and also uses the knowledge of the neighboring vectors. This improved ASR 
accuracy. Weighted averaging can also be done for the weights over successive iterations: 

 

(48)

where m is the iteration number, and P + 1 is the window length over iterations for the 

weights.  is the value of weight wi(φ (t)) at iteration m.  is the weighting 

given to the weight  at iteration m ʵ j, such that  

5. Experimental evaluation 

5.1 MPDTW experiments 
We carried out the experiments (based on the formulation in section 2) using the IISc-BPL 
database1 which comprises a 75 word vocabulary, and 36 female and 34 male adult 

                                                 
1 IISc-BPL database is an Indian accented English database used for Voice Dialer application. 
This database consists of English isolated words, English TIMIT sentences, Native language 
(different for different speakers) sentences, spoken by 36 female and 34 male adult speakers 
recorded in a laboratory environment using 5 different recording channels: PSTN-telephone 
(8 kHz sampling), Cordless local phone (16 kHz sampling), Direct microphone (16 kHz 
sampling), Ericsson (GSM) mobile phone (8 kHz sampling), Reverberant room telephone 
(Sony) (8 kHz sampling). 
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speakers, with three repetitions for each word by the same speaker, digitized at 8 kHz 
sampling rate. The vocabulary consists of a good number of phonetically confusing words 
used in Voice Dialer application. MFCCs, Δ MFCCs, and Δ2 MFCCs is used without their 
energy components (36 dimensions) as feature vector. The experiment is carried out for 
speaker dependent IWR for 20 speakers and 75 word vocabulary. 

The slope weighting function m(t) is set equal to 1. The global normalization factor Mφ 

(equation 8) that we used is Mφ = T1 + T2 + . . . + TK. (In this section 5.1, K stands for the sum 
of the number of test and template patterns.) Through the experiments we found that 
normalization using only the sum of the total frames of reference patterns in each class gives 
worse recognition than the normalization we used. In an experiment where each speaker 
utters 2 test patterns of the same class (of lengths T1 and T2 frames) and 1 reference pattern 
(of length T3 frames) per class per speaker for 20 speakers, the percentage ASR accuracy 

using Mφ = T1 + T2 + T3 is 96.47%. If Mφ = T3 then the percentage accuracy reduces to 89.07%. 
Table 1 summarizes the results based on the formulation of section 2. In the table, the 
experiment-1 DTW-1 test-1 templ, corresponds to standard DTW algorithm applied when 
there is 1 test pattern spoken by each speaker for each word and it’s distortion is compared 
with the reference patterns (1 reference pattern per speaker per word for 20 speakers) of 
each word in the vocabulary. In experiment-2 DTW-2 test-1 templ each speaker utters 2 
patterns of a word. Each one of them is compared separately with the reference patterns (1 
template per speaker per word). In experiment-3 DTW-2 test-1 templ (minimum of two), the 
minimum of the two distortions of the two test patterns (of the same word by a speaker) 
with the reference patterns, is considered to calculate recognition accuracy. In experiment-4 
MPDTW-2 test-1 templ, each speaker utters 2 test patterns. The MPDTW algorithm is 
applied on the 2 test patterns and 1 reference pattern at a time (1 reference pattern per 
speaker per word) to find the distortion between them. In experiment-5 DTW-1 test-2 templ, 
1 test pattern, each speaker speaks 1 test pattern and 2 reference patterns. The test pattern is 
now compared with the reference patterns (2 reference patterns per speaker per word for 20 
speakers). In experiment-6 MPDTW-1 test-2 templ, the MPDTW algorithm is applied on 1 test 
pattern and 2 reference patterns (2 reference patterns per speaker per word) and then IWR is 
done. In this experiment K is equal to the sum of the number of test and template patterns. 
 

 

Table 1. Comparison of ASR percentage accuracy for clean and noisy test pattern. For noisy 
speech, burst noise is added for 10% of test pattern frames at -5 dB SNR (local). Reference 
patterns (templ) are always clean. IWR is done for 20 speakers. 

We see from the results that when there are 2 test patterns uttered by a speaker and 1 
reference pattern (case 2) and the MPDTW algorithm (for K = 3) is used, the speech 
recognition word error rate reduced by 33.78% for clean speech and 37.66% for noisy test 
speech (10% burst noise added randomly with uniform distribution at -5 dB SNR (local) in 
both the test patterns), compared to the DTW algorithm (same as MPDTW algorithm when 
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K = 2) for only 1 test pattern. Even when using the minimum distortion among two test 
patterns (experiment-2 DTW-2 test-1 templ (minimum of two)), we see that the MPDTW 
algorithm works better. However, when we use only 1 test pattern and 2 reference patterns 
and when the MPDTWalgorithm (for K = 3) is used, the percentage accuracy reduces as 
predicted in section 2.2. Hence we see that use of multiple test repetitions of a word can 
significantly improve the ASR accuracy whereas using multiple reference patterns can 
reduces the performance. 

5.2 MPJL experiments 
Based on the formulations in section 3, we conducted experiments - A1M, A1P, A2, A3 for 
speaker independent IWR along with the base line system of standard Forward Algorithm 
(FA) or Viterbi Algorithm (VA) for a single pattern, for the cases of both clean and noisy 
speech. Since the normal FA/VA uses one pattern to make a recognition decision and the 
proposed algorithms use K patterns to make a decision, the comparison of results may not 
be fair. For a fairer comparison we formulated the experiment A1M, which also uses K 
patterns using the standard FA/VA and the best (max) likelihood of the K patterns is 
chosen. Experiment A1P uses the product of the K likelihoods of the K patterns. So we 
compare the new algorithms (experiment A2 and A3) with the experiments A1M, A1P also. 
(In this section 5.2, K stands for the total number of test patterns of a word spoken by a 
speaker.) 
The experiment A1M is as described. Given  as the individual 

patterns belonging to the same class, we can obtain the joint likelihood score as 
 where λj are the clean word models and the FA/VA is used to 

calculate  We select the pattern as j* = argmaxj θj . We are actually doing a 

voting, where the pattern which has the highest likelihood is chosen. Experiment A1P when 

the joint likelihood score  For the experiments, we have 

restricted to two or three patterns per test speaker. When K = 2, for each word of a test 
speaker, A1M and A1P are done for pattern 1 and pattern 2, pattern 2 and 3, pattern 3 and 1. 
When K = 3, all the 3 patterns are considered. Experiment A2 is the MPDTW algorithm 
followed by CMP?A-2. Experiment A3 is the MPDTW algorithm followed by CMP?A-1. In 
all joint recognition experiments, we have restricted to two or three pattern joint recognition 
and compared the performance with respect to single pattern recognition. When K = 2, for 
each word of a test speaker, pattern 1 is jointly recognized with pattern 2, pattern 2 with 3, 
pattern 3 with 1. When K = 3 all the three patterns are jointly recognized. Please note that in 
the noisy case, all the three patterns are noisy. As the number of test patterns K = 2, for the 
new experiments we chose the Local Continuity Constraints for MPDTW as (1,0) or (0,1) or 
(1,1) and the slope weighting function m(t) = 1. Similar extensions are done for K = 3. 
The IISc-BPL database was used for experimentation. Left to Right HMMs are trained for 
clean speech using the Segmental K Means (SKM) algorithm [Rabiner et al., 1986, Juang & 
Rabiner, 1990]. 25 male and 25 female speakers are used for training, with three repetitions 
of each word by each speaker. We tested the algorithm for 20 unseen speakers (11 female 
and 9 male) in both clean and noisy cases. Test words are three patterns for each word by 
each speaker, at each SNR. 
We first run the experiment for speech affected by burst noise. Burst noise was added to 
some percentage of the frames of each word at -5 dB, 0 dB, 5 dB SNRs (local) to all the three 
patterns. (The remaining frames are clean; the range of -5 dB to +5 dB indicates severe to 
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mild degradation of the noise affected frames.) The burst noise can occur randomly 
anywhere in the spoken word with uniform probability distribution. MFCCs, Δ MFCC, and 
Δ2 MFCC is used without their energy components (36 dimensions). Energy components are 
neglected and Cepstral Mean Subtraction was done. Variable number of states are used for 
each word model; i.e. proportional to the average duration of the training patterns, for each 
second of speech, 8 HMM states were assigned, with 3 Gaussian mixtures per state. 
We experimented for various values of the threshold Ǆ in DC-thr1 and found that there is 

indeed an optimum value of Ǆ where the performance is maximum. When K = 2, for the 

noisy patterns with burst noise added to 10% of the frames at -5 dB SNR, Ǆ = 0.5 is found to 

be optimum. It is also clear that Ǆ < 0 provides closer to optimum performance than Ǆ = ∞, 

indicating that the max operation is more robust than the product operation. Using DC-wtd 

was shown to have similar results to using DC-thr1 with optimum threshold. 
 

 

Table 2. Comparison of ASR percentage accuracy (ASRA) for clean and noisy speech (10% 
burst noise) for FA, A1M, A1P, A2, and A3. FA - Forward Algorithm, Experiment A1M, K = 
2 - best (max of likelihoods) of two patterns using FA, Experiment A1P, K = 2 - product of 
the likelihoods (using FA) of two patterns, Experiment A2 - MPDTW algorithm + CMPFA-2, 
Experiment A3 – MPDTW algorithm + CMPFA-1. K is the number of test patterns used. 

The results for clean and noisy speech for FA and CMPFA is given in Table 2. We have not 
shown the results of CMPBA as it is similar to CMPFA. In the table, ASRA (Clean) stands for 
ASR accuracy for clean speech. In the tables, for experiment A2, in the ASRA column, the 
ASR percentage accuracy is written. Note that DC-thr1 is equivalent to DC-avg when Ǆ = ∞ 
(product operation) and it is equivalent to DC-max when Ǆ < 0 (max operation). Also, DC-
thr1 is same as DC-thr2 when K = 2. When K = 2, two patterns are recognized at a time, 
while K = 3 stands for 3 patterns being recognized at a time. In the table, -5 dB ASRA stands 
for ASR accuracy for noisy speech which has 10% burst noise at SNR -5 dB. It can be seen 
that the baseline performance of FA for clean speech is close to 90%. For example, for noisy 
case at -5 dB SNR, for speech with 10% burst noise, it decreases to ≈ 57%. Interestingly, the 
experiment A1M (for K = 2 patterns) provides a mild improvement of 0.2% and 3.2% for 
clean and noisy speech (at -5 dB SNR burst noise) respectively, over the FA benchmark. This 
shows that use of multiple patterns is indeed beneficial, but just maximization of likelihoods 
is weak. Experiment A1P (for K = 2 patterns) works better than A1M clearly indicating that 
taking the product of the two likelihoods is better than taking their max. The proposed new 
algorithms (experiment A2 and A3) for joint recognition provides dramatic improvement for 
the noisy case, w.r.t. the FA performance. For example at -5 dB SNR 10% burst noise, for  
K = 2 patterns, the proposed algorithms (experiments A2 and A3) using DC-thr1 at 
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threshold Ǆ = 0.5, gave an improvement of 22.60% speech recognition accuracy (using 
CMPFA-2) and 20.31% speech recognition accuracy (using CMPFA-1) compared to FA 
performance. For K = 3 patterns, the recognition accuracy increases by 31.20% (using 
CMPFA-2) and 29.86% (using CMPFA-1). So there was almost a 10% improvement in speech 
recognition accuracy from K = 2 to K = 3. We also see that as the SNR improves, the gap in 
the speech recognition accuracy between performance of DC-thr1 at threshold Ǆ = ∞ and Ǆ < 
0 reduces. In fact as SNR approaches to that of clean speech, Ǆ = ∞ is better than Ǆ < 0. 
 

 

Fig. 16. Percentage accuracies for experiments FA, A1M, A2 for different levels of burst 
noises. FA - Forward Algorithm, A1M - best of two patterns using FA, A2 - MPDTW 
algorithm + CMPFA-2 algorithm. Results for A2 using DC-thr1 (at threshold Ǆ = 0.5) and 
DC-wtd are shown. 

For clean speech, the speech recognition accuracy when K = 2, improved by 2.26% using 

CMPFA-2 and 2.57% using CMPFA-1 (DC-thr1) over that of FA. This improvement could be 

because some mispronunciation of some words were be taken care of. It is also better than 

experiment A1M. We also see CMPFA-1 is better than CMPFA-2 for clean speech. However, 

experiment A1P works the best for clean speech (when K = 2). This could be because in the 

proposed methods, the K patterns are forced to traverse through the same state sequence. 

Doing individual recognition on the two patterns and then multiplying the likelihoods has 

no such restrictions. And in clean speech there is no need for selectively weighting the 

feature vectors. So experiment A1P works slightly better than experiments A2 and A3 for 

clean speech. 

We also see that as per our analysis in section 3.4 and the results shown in Table 2, using 
DC-thr1 for CMPFA-1 algorithm (experiment A3) for clean speech at lower thresholds gives 
better recognition results than using it for CMPFA-2 algorithm (experiment A2). At higher 
thresholds CMPFA-2 algorithm is better. For noisy speech (speech with burst noise) it is 
better to use CMPFA-2 than CMPFA-1. 
From the table, it is seen that as K increases 2 to 3, there is an improvement in recognition 
accuracy. We also see that for K = 3, the performance does vary much, whether the burst 
noise is at -5 dB SNR or +5 dB SNR. This is because the noise corrupted regions of speech is 
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almost completely neglected during recognition (whether noise is at -5 dB SNR or +5 dB 
SNR) and the clean portion of the other patterns are given a higher weight. 
A graph showing variation of IWR percentage accuracy versus the burst noise at some SNR 
is shown in Fig. 16. In this figure the experiment A2 using DC-thr1 is plotted at threshold  
Ǆ = 0.5, where DC-thr1 works very well for speech with burst noise. We see that using DC-
wtd gives us optimum or near optimum values. The performance of DC-wtd is equal to to 
the optimum performance of DC-thr1, as we predicted in section 3.4. And the advantage of 
DC-wtd is that we don’t need any threshold. We also see that as per our analysis in section 
3.4 and the results shown in Table 2, using DC-thr1 for CMPFA-1 algorithm (experiment A3) 
for clean speech at lower thresholds gives better recognition results than using it for 
CMPFA-2 algorithm (experiment A2). At higher thresholds CMPFA-2 algorithm is better. 
For noisy speech (speech with burst noise) it is better to use CMPFA-2 than CMPFA-1. 
The results for clean and noisy speech for VA and CMPVA is given in Table 3. It is seen that 
CMPVA-1 performs similarly to CMPFA-1 and CMPVA-2 performs similar to CMPFA-2. 
 

 

Table 3. Comparison of ASR percentage accuracy (ASRA) for clean and noisy speech (10% 
noise) for VA, A1M, A1P, A2, and A3. VA - Viterbi Algorithm, Experiment A1M, K = 2 - best 
of two patterns using VA, Experiment A1P, K = 2 - product of the likelihoods (using VA) of 
two patterns, Experiment A2 - MPDTW algorithm + CMPVA-2, Experiment A3 - MPDTW 
algorithm + CMPVA-1. 

 

Table 4. Comparison of ASR percentage accuracy (ASRA) for noisy speech (burst) for FA 
and CMPFA-1 (for K = 2 patterns). DC-wtd is used. Different percentages of burst noise 
(10%, 20%, 30%, 50%) noises added to the speech pattern form the test cases. Additive White 
Gaussian Noise (AWGN) is added to 100% of the speech pattern is also a test case. 

So far we have shown the results of burst noise added to only 10% of the speech patterns. 

Now different percentage of burst noise is added randomly to the patterns. The results for 

FA and CMPFA-1 (for K = 2 patterns) is shown in Table 4. DC-wtd is used. We see that 

speech is affected with 10%, 20%, 30% burst noise, the ASR performance using CMPFA-1 

(for K = 2 patterns) is much better than using just using FA. However when noise is added 

to 50% of the frames, there is only a marginal increase in performance. This is because many 

www.intechopen.com



 Speech Recognition, Technologies and Applications 

 

150 

regions of both the patterns will be noisy and the CMPFA-1 does not have a clean portion of 

speech to give a higher weighting. When 100% of the speech are affected by additive white 

Gaussian noise (AWGN), then just using FA is better than CMPFA-1. Similar results are 

given in Table 5 for VA and CMPVA-1. 
 

 

Table 5. Comparison of ASR percentage accuracy for noisy speech (burst) for VA and 
CMPVA-1 (for K = 2 patterns). DC-wtd is used. Different percentages of burst noise (10%, 
20%, 30%, 50%) noises added to the speech pattern form the test cases. Additive White 
Gaussian Noise (AWGN) is added to 100% of the speech pattern is also a test case. 
 

 

Table 6. Comparison of ASR percentage accuracy for noisy speech (babble noise or machine 
gun noise) for FA, VA, CMPFA-1 and CMPVA-1 (for K = 2 patterns). SNR of the noisy 
speech is 5 dB or 10 dB. DC-wtd is used. 

Now we compare the results of the proposed algorithms with other kinds of transient noises 

like machine gun noise and babble noise. Machine gun and babble noise from NOISEX 92 

was added to the entire speech pattern at 5 dB or 10 dB SNR. The results are given in Table 

6. The HMMs are trained using clean speech in the same way as done before. We see that for 

speech with babble noise at 10 dB SNR, the percentage accuracy using FA is 59.64%. It 

increases to 64.36% when CMPFA-1 (when K = 2 patterns) is used, which is rise of nearly 

5%. When K = 3, the accuracy is further improved. When machine gun noise at 10 dB SNR is 

used the FA gives an accuracy of 71.36%, while the CMPFA-1 when K = 2 patterns gives an 

accuracy of 81.33% and when K = 3 the accuracy is 84.20%. We see an increase of nearly 10% 

when K = 2 and 13% when K = 3. We see from the results that the more transient or bursty 

the noise is, the better the proposed algorithms work. Since machine gun noise has a more 

transient (bursty) nature compared to babble noise it works better. In the case of machine 

gun noise, if there is some portion of speech affected by noise in , there could be a 
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corresponding clean speech portion in . This clean portion will be given a higher 

weight by the proposed algorithms during recognition. However this is not possible if the 

entire speech is affected by white Gaussian noise or babble noise. When both the patterns 

are affected by similar noise at the same portion, then there is no relatively clean portion of 

speech for the proposed algorithms to choose. Hence they work worse. We see that as K 

increases from 2 to 3 patterns, the ASR accuracy improves significantly for machine gun 

noise, while for babble noise, the effect is small (in fact at 5 dB the ASR accuracy slightly 

reduces from K = 2 to K = 3). 

5.3 Selective HMM training experiment 
Here again, we carried out speaker independent IWR experiments (based on the 
formulation in section 4), using the IISc-BPL database. Left to Right HMMs are trained using 
the Baum-Welch training algorithm. MFCC, Δ MFCC, and Δ2 MFCC are used without the 
energy components (total 36 dimension vector). Cepstral mean subtraction is done. 25 male 
and 25 female speakers are used for training, with three repetitions of each word by each 
speaker. So the total number of training patterns (D) for each word is 150. 5 HMM states per 
word is used with 3 Gaussian mixtures per state. Both clean speech and speech with a burst 
noise of 10% at -5 dB SNR (local) was used for HMM training. The burst noise can occur 
randomly anywhere in the spoken word with uniform probability distribution. Note that in 
the noisy case all the training patterns have burst noise in them. We used CMPVA-2 for our 
experiments. (In this section 5.3, K stands for the number of training patterns used to create 
one virtual pattern.) 
We first consider an example to gain insight into the working of SHT. Four clean patterns of 
the word “Hello”, O1, O2, O3, O4, by a speaker are considered. Noise at -5 dB SNR is added to 
the first 10% of the frames in pattern O3. For this example, the initial HMM was found using 
the Baum-Welch algorithm using only these 4 patterns. One virtual pattern is created (using 
equation 43) from the 4 patterns (K = 4). Fig. 17 shows the decrease in the distortion measure 
with each SHT iteration showing clear convergence. However, for all the patterns this decrease 
is not always monotonic in nature and there may be small fluctuations at higher iterations. 
 

 

Fig. 17. Distortion with each iteration. 

Fig. 18 shows the weights w3(φ(t)) given to each frame of the virtual pattern for pattern O3 

for the first and ninth iteration. We can see the amount of contribution of O3, i.e., to the 

virtual pattern: i.e., the all the initial frames are given a low weight as O3 is noisy in this 
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region. And this weighting decreases with every iteration as the virtual pattern converges. 

Similarly Fig. 19 gives the weights of O2. We see that the initial few frames do not have less 

weighting, contrasting with O3. 

Fig. 20 shows the difference in likelihood of O1, O2, O4 with O3 given the HMMλ are 

shown. P(O1/λ)ʵP(O3/λ), P(O2/λ)ʵ P(O3/λ), P(O4/λ) ʵ P(O3/λ) are the three curves shown in 
that figure. These probabilities are computed using the Forward algorithm. In Fig. 20, at 
iteration 0, the HMMs is the Baum-Welch algorithm run on the original training data. 
P(O2/λ) and P(O4/λ) are greater than P(O3/λ). After each SHT iteration the HMM is updated 

and the differences of P(O2/λ) ʵP(O3/λ) and P(O4/λ) ʵ P(O3/λ) increases. This happens 
because the HMM is updated by giving less weightage to the noisy portion of O3. We also 
see that although some portion of O3 is noisy, P(O1/λ) is less than P(O3/λ). This is because 
the HMM is trained using only 4 patterns out of which one HMM pattern (O3) is partially 
noisy. So the initial HMM using the Baum-Welch algorithm is not very good. We see that 

after the iterations the difference P(O1/λ) ʵ P(O3/λ) reduces. This indicated that after each 
iteration the HMM parameters are updated such that the unreliable portions of O3 is getting 
a lesser weight. 
 

 

Fig. 18. Weight of O3 for creating of virtual pattern at iterations numbers 1 and 9. Noise at -5 
dB SNR is added to the first 10% of the frames in pattern O3. 

 

Fig. 19. Weight of O3 for creating of virtual pattern at iterations numbers 1 and 9. Noise at -5 
dB SNR is added to the first 10% of the frames in pattern O3. 
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Fig. 20. Difference between Likelihood of patterns O1, O2, O4 with O3 given HMM λ. 

While the above results are promising in terms of the functioning of the SHT algorithm, the 

level of improvement in HMM performance for test data could be limited, depending on the 

nature and size of the test data. Using the small size pilot experiment, the HMM 

performance is tested using Forward algorithm (FA) for 20 unseen speakers (11 female and 9 

male) using clean speech. There are 3 test patterns per speaker. The experimental setup used 

for training was done as mentioned in the first paragraph of this sub-section. Each of the 150 

training patterns (3 training patterns per speaker, for 50 speakers) are affected by 10% burst 

noise at -5 dB SNR. The covariance matrix for the Gaussian mixtures for each HMM state 

was fixed to that of the initial Baum-Welch algorithm run on the original training data. The 

number of patterns to create one virtual pattern (K) is 3. The 3 patterns spoken by the same 

speaker are considered for creating one virtual pattern as the MPDTW path alignment may 

be better for the same speaker. So we have a total of 50 virtual patterns (E = D/K) per word 

since the total number of training patterns (D) per word is 150 (number of speakers is 50). 

The virtual patterns are created using equation 44. We used CMPVA-2 for the experiments. 

When Baum-Welch (BW) algorithm is used to train speech with 10% burst noise at -5 dB 

then for the clean test data the ASR percentage accuracy is 88.36%. It increases to 88.76% 

using the new SHT (using equation 44 to create virtual patterns) when the covariance matrix 

of each HMM state is kept constant (covar − const). Let this experiment be called SHT − 2. If 

the covariance matrix is allowed to adapt (covar − adapt), the covariance decreases 

(determinant value) after each iteration as the virtual patterns are converging to what is 

more likely and this may reduce the ability of the recognizer to capture the variabilities of 

the test patterns. (Let such an experiment be called experiment SHT − 1.) When the 

covariance matrix is not kept constant the percentage accuracy reduces to 86.04%. So we 

keep the covariance constant. 

We now experiment by keeping averaging the weights over time and iterations (see equations 
47, 48). When averaging the weights over time (equation 47) keeping the covariance matrix 

constant, the percentage accuracy increases to 88.84%. Let this be experiment be called SHT ʵ 

3. In equation 47, we set P = 1, li(φ(t)) = 0.5, li(φ (tʵ 1)) = li(φ (t+ 1)) = 0.25. This shows that 

smoothing the weights wi(φ(t))’s improves ASR accuracy. For averaging the weights over 
iterations (equation 48),  However, the 

ASR accuracy reduces to 73.38%. Let this experiment be called SHT ʵ 4. 

www.intechopen.com



 Speech Recognition, Technologies and Applications 

 

154 

Now we increase the number of virtual patterns used for training. In the database used, the 
number of patterns of a word spoken by a speaker is 3. Let the patterns be O1, O2, O3. We 
can create 1 virtual pattern using O1, O2, O3 (K = 3). We can also create 3 other virtual 
patterns using O1-O2, O2-O3, O3-O1 (K = 2 for each). Thus we have 4 virtual patterns 
created using training patterns O1, O2, O3. We do this for very speaker and every word. So 
the total number of virtual patterns per word is 200 (since the number of training patterns 
per word is 150). HMMs are trained on these virtual patterns. The covariance matrix is kept 
constant and equation 44 is used for calculating the virtual patterns. Let this be called 

experiment SHT ʵ 5. The ASR accuracy using FA increases to 89.07%. The more number of 
virtual patterns we use to train the HMMs, the better the test data variability is captured. 
We see from the experiments that as the number of virtual patterns per word (using 
equation 44) increases from 50 to 200, the percentage accuracy also increases from 88.76% to 
89.07%, clearly indicating that it helps using more virtual patterns as training data. However 

in this case, by averaging over time (called experiment SHT ʵ 6), using equation 47, the 
accuracy remained at 89.07%. The results are summarized in Table 7. Thus it was shown that 
the word error rate decreased by about 6.1% using the proposed SHT training method over 
the baseline Baum-Welch method. 
 

 

Table 7. Comparison of Percentage ASR percentage accuracy for different algorithms. The 
training patterns have 10% of their frames affected by burst noise at -5 dB SNR. Testing was 
done on clean speech using FA. BW - Baum-Welch algorithm. SHT −1 - SHT using 1 virtual 
patterns per word per speaker and adapting covariance. SHT − 2 - SHT using 1 virtual 
patterns per word per speaker and constant covariance. SHT − 3 - SHT using 1 virtual 
patterns per word per speaker and constant covariance; averaging of weights across time is 
done. SHT − 4 - SHT using 1 virtual patterns per word per speaker and constant covariance; 
averaging of weights across iterations is done. SHT − 5 - SHT using 4 virtual patterns per 
word per speaker and constant covariance. SHT − 6 – SHT using 4 virtual patterns per word 
per speaker and constant covariance; averaging of weights across time is done. 

HMMs were also trained using clean speech. Testing is also done on clean speech on unseen 
speakers using the Forward algorithm. Using Baum-Welch algorithm, we get an ASR 

accuracy of 91.18%. Using the proposed SHT algorithm (experiment SHT ʵ 5), we get an 

accuracy of 91.16%. When averaging over time is done (experiment SHT ʵ6), the ASR 
accuracy remains at 91.16%. Thus we see that using the proposed SHT training method does 
not reduce the ASR performance for clean speech. 
HMMs were also trained using training patterns corrupted with machine gun noise (from 
NOISEX 92 database) at 10 dB SNR. The experimental setup is same as used before. Totally 
there are 150 training patterns (3 per speaker for 50 speakers). Testing was done on unseen 
clean speech using the FA. Using normal Baum-Welch training the ASR accuracy was 
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85.56%. However it reduced to 85.20% using 200 virtual training virtual patterns 

(experiment SHT ʵ 5). Using averaged weights over time (experiment SHT ʵ 6), the 
percentage accuracy increased to 85.29%. However it is still lower compared to the Baum-
Welch training algorithm. The performance could have been better if there were more 
virtual patterns created from the training data set of 150 patterns. 

6. Conclusions 

We have formulated new algorithms for joint evaluation of the likelihood of multiple speech 

patterns, using the standard HMM framework. This was possible through the judicious use 

of the basic DTW algorithm extended to multiple patterns. We also showed that this joint 

formulation is useful in selective training of HMMs, in the context of burst noise or 

mispronunciation among training patterns. 

Although these algorithms are evaluated in the context of IWR under burst noise conditions, 
the formulation and algorithm can be useful in different contexts, such as connected word 
recognition (CWR) or continuous speech recognition (CSR). In spoken dialog systems, if the 
confidence level of the test speech is low, the system can ask the user to repeat the pattern. 
However, in the continuous speech recognition case, a user cannot be expected to repeat a 
sentence/s exactly. But still the proposed methods can be used. Here is one scenario. For 
booking a railway ticket, the user says, “I want a ticket from Bangalore to Aluva”. The 
recognition system asks the user, “Could you please repeat from which station would you 
like to start?”. The user repeats the word “Bangalore”. So this word “Bangalore” can be 
jointly recognized with the word “Bangalore” from the first sentence to improve speech 
recognition performance. 
One of the limitations of the new formulation is when the whole pattern is noisy, i.e., when 

the noise is continuous not bursty; the proposed algorithms don’t work well. Also, for the 

present, we have not addressed the issue of computational complexity, which is high in the 

present implementations. Efficient variations of these algorithms have to be explained for 

real-time or large scale CSR applications. 

Finally we conclude that jointly evaluating multiple speech patterns is very useful for 

speech training and recognition and it would greatly aid in solving the automatic speech 

recognition problem. We hope that our work will show a new direction of research in this 

area. 

Appendix A1 - Proof for the recursive equation in CMPFA-1 

We shall derive the recursive equation for CMPFA-1 (equation 21) using the example shown 

in Fig. 9. Consider two patterns  and . The MPDTW algorithm gives the time 

alignment (MPDTW path) between these two patterns (as shown in Fig. 9). We now fit a 

layer of HMM states on this MPDTW path. 

 (49)

where qφ(t) is the HMM state at φ(t) and λ is the HMM model with state j ∈ 1 : N, where N is 

the total number of states in the HMM. In the given example φ(1) = (1, 1), φ(2) = (2, 2),  

φ(3) = (3, 2). Each state j can emit a variable number of feature vectors varying from 1 to K. 
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(50)

where bi( , ) is the probability of feature vectors  and  emitted given state i,  

πi = P(qφ (1) = i/λ) which is the state initial probability. It is assumed to be same as the state 

initial probability given by the HMM. This can be done because the value of bj(  , ) is 

normalized as shown in section 3.3, such that the probability of K (here K = 2) vectors being 

emitted by a state is comparable to the probability of a single vector being emitted by that 

state. So we are inherently recognizing one virtual pattern from K test patterns. 

 

(51)

where aij = P(φ(t) = j/φ(t ʵ 1) = i). It is the transition probability of moving from state i to state 
j and is assumed to be same as that given by the HMM. 

(52)

We assume a first order process. Here state j at φ(3) emits only  and not , as  was 

already emitted at φ (2) by the HMM state. So we don’t reuse vectors. 

What was done in this example can be generalized to K patterns given the MPDTWpath φ 
between them and we get the recursive equation in equation 21. Since CMPVA-1 is similar 
to CMPFA-1, almost the same derivation (with minor changes) can be used to derive the 
recursive relation of CMPVA-1. 

7. References 

[Arslan & Hansen, 1996] Arslan, L.M. & Hansen, J.H.L. (1996). “Improved HMM training 
and scoring strategies with application to accent classification,” Proc. IEEE Int. Conf. 
Acoustics, Speech, Signal Processing. 

www.intechopen.com



Algorithms for Joint Evaluation of Multiple Speech Patterns for Automatic Speech Recognition 

 

157 

[Arslan & Hansen, 1999] Arslan, L.M. & Hansen, J.H.L. (1999). “Selective Training for 
Hidden Markov Models with Applications to Speech Classication,” IEEE Trans. on 
Speech and Audio Proc., vol. 7, no. 1. 

[Bahl et al., 1983] Bahl, L.R.; Jelinek, F. & Mercer, R.L. (1983). “A maximum likelihood approach 
to continuous speech recognition”, IEEE Trans. PAMI, PAMI-5 (2), pp. 179-190. 

[Baum & Petrie, 1966] Baum, L.E. & Petrie, T. (1966). “Statistical inference for probabilistic 
functions of finite state Markov chains,” Ann. Math. Stat., 37: pp. 1554-1563. 

[Baum & Egon, 1967] Baum, L.E.& Egon, J.A. (1967). “An inequality with applications to 
statistical estimation for probabilistic functions of aMarkov process and to a model 
for ecology,” Bull. Amer. Meteorol. Soc., 73: pp. 360-363. 

[Baum & Sell, 1968] Baum, L.E. & Sell, G.R. (1968). “Growth functions for transformations on 
manifolds,” Pac. J. Math.,, 27 (2): pp. 211-227. 

[Baum et al., 1970] Baum, L.E., Petrie, T., Soules, G. & Weiss, N. (1970). “A maximization 
technique occurring in the statistical analysis of probabilistic functions of Markov 
chains,” Ann. Math. Stat., 41 (1): pp. 164-171. 

[Baum, 1972] L.E. Baum, “An inequality and associated maximization technique in statistical 
estimation for probabilistic functions of Markov processes,” Inequalities, 3: pp. 1-8, 1972. 

[Cincarek et al., 2005] Cincarek, T.; Toda, T.; Saruwatari, H. & Shikano, K. (2005). “Selective 
EM Training of Acoustic Models Based on Sufficient Statistics of Single 
Utterances,” IEEE Workshop Automatic Speech Recognition and Understanding.. 

[Cooke et al., 1994] Cooke, M.P.; Green, P.G. & Crawford, M.D. (1994). “Handling missing 
data in speech recognition,” Proc. Int. Conf. Spoken Lang. Process., pp. 1555-1558. 

[Cooke et al., 2001] Cooke, M.; Green, P.; Josifovski, L. & Vizinho, A. (2001). “Robust 
automatic speech recognition with missing and unreliable acoustic data,”Speech 
Commun. 34(3), pp. 267-285. 

[Fiscus, 1997] Fiscus, J.G. (1997). “A Post-Processing System to Yield Reduced Word Error 
Rates: Recognizer Output Voting Error Reduction (ROVER)”, Proc. IEEE ASRU 
Workshop, Santa Barbara. 

[Gersho & Gray, 1992] Gersho, A. & Gray, R.M. (1992). Vector Quantization and Signal 
Compression, Kluwer Academic Publishers. 

[Haeb-Umbach et al., 1995] Haeb-Umbach, R.; Beyerlein, P. & Thelen, E. (1995). “Automatic 
Transcription of Unknown Words in A Speech Recognition System,” Proc. IEEE Int. 
Conf. Acoustics, Speech, Signal Processing, pp. 840-843. 

[Holter et al., 1998] Holter, T. & Svendsen, T. (1998). “Maximum Likelihood Modeling of 
Pronunciation Variation,” Proc, of ESCA Workshop on Modeling Pronunciation 
Variation for ASR, pp. 63-66. 

[Huang et. al, 2004] Huang, C.; Chen, T. & Chang, E. (2004). “Transformation and 
Combination of Hidden Markov Models for Speaker Selection Training,” Proc. Int. 
Conf. on Spoken Lang. Process., pp. 10011004. 

[Itakura & Saito, 1968] Itakura, F. & Saito, S. (1968). “An Analysis-Synthesis Telephony 
Based on Maximum Likelihood Method,” Proc. Int’l Cong. Acoust., C-5-5. 

[Juang & Rabiner, 1990] Juang, B.-H. & Rabiner, L.R. (1990). “The segmental K-means 
algorithm for estimating parametersof hidden Markov models,” IEEE Trans. Audio, 
Speech, and Signal Process., vol. 38, issue 9, pp. 1639-1641. 

[Lleida & Rose, 2000] Lleida, E. & Rose, R.C. (2000). “Utterance verification in continuous 
speech recognition: decoding and training procedures”, IEEE Trans. on Speech and 
Audio Proc., vol. 8, issue: 2, pp. 126-139. 

[Myers et al., 1980] Myers, C., Rabiner, L.R. & Rosenburg, A.E. (1980). “Performance 
tradeoffs in dynamic time warping algorithms for isolated word recognition,” IEEE 
Trans. Acoustics, Speech, Signal Proc., ASSP-28(6): 623-635. 

www.intechopen.com



 Speech Recognition, Technologies and Applications 

 

158 

[Nair & Sreenivas, 2007] Nair, N.U. & Sreenivas, T.V. (2007). “Joint Decoding of Multiple 
Speech Patterns For Robust Speech Recognition,” IEEE Workshop Automatic Speech 
Recognition and Understanding, pp. 93-98, 9-13 Dec. 2007. 

[Nair & Sreenivas, 2008 a] Nair, N.U. & Sreenivas, T.V. (2008). “Forward/Backward 
Algorithms For Joint Multi Pattern Speech Recognition,” Proceeding of 16th European 
Signal Processing Conference (EUSIPCO-2008). 

[Nair & Sreenivas, 2008 b] Nair, N.U. & Sreenivas, T.V. (2008). “Multi Pattern Dynamic Time 
Warping for Automatic Speech Recognition,” IEEE TENCON 2008. 

[Nilsson, 1971] Nilsson, N. (1971). Problem-Solving Methods in Artificial Intelligence, NY, NY, 
McGraw Hill. 

[Nishimura et al., 2003] Nishimura, R.; Nishihara, Y.; Tsurumi, R.; Lee, A.; Saruwatari, H. & 
Shikano, K. (2003). “Takemaru-kun: Speech-oriented Information System for 
RealWorld Research Platform,” International Workshop on Language Understanding 
and Agents for RealWorld Interaction, pp. 7078. 

[Rabiner et al., 1986] Rabiner, L.R.; Wilpon, J.G. & Juang, B.H. (1986). “A segmental K-means 
training procedure for connected word recognition,” AT & T Tech. J., vol. 64. no. 3. 
pp. 21-40. 

[Rabiner, 1989] Rabiner, L.R. (1989). “A tutorial to Hidden Markov Models and selected 
applications in speech recognition”, Proceedings of IEEE, vol. 77, no. 2, pp. 257-285. 

[Rabiner & Juang, 1993] Rabiner, L.R. & Juang, B.H. (1993). Fundamentals of Speech 
Recognition., Pearson Education Inc. 

[Raj & Stern, 2005] Raj B. & Stern, R.M. (2005). “Missing-feature approaches in speech 
recognition,” IEEE Signal Proc. Magazine., vol. 2, pp. 101-116. 

[Sakoe & Chiba, 1978] Sakoe, H. & Chiba, S. (1978). “Dynamic programming optimization for 
spoken word recognition,” IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-26 (1): 43-49. 

[Schwartz & Chow, 1990] Schwartz, R. & Chow, Y.-L. (1990). “The N-best algorithms: an 
efficient and exact procedure for finding the N most likely sentence hypotheses”, 
Proc. IEEE ICASSP, vol.1, pp. 81-84. 

[Shannon, 1948] Shannon, C.E. (1948). “A Mathematical Theory of Communication”, Bell 
System Technical Journal, vol. 27, pp. 379-423, 623-656. 

[Singh et al., 2002] Singh, R.; Raj, B. & Stern, R.M. (2002). “Automatic Generation of 
Subword Units for Speech Recognition Systems,” IEEE Transactions on Speech and 
Audio Processing, vol. 10(2), 89-99. 

[Svendson, 2004] Svendsen, T. (2004). “Pronunciation modeling for speech technology,” 
Proc. Intl. Conf. on Signal Processing and Communication (SPCOM04). 

[Soong & Hung, 1991] Soong, F.K.& Hung, E.-F. (1991). “A Tree-Trellis Based Fast Search for 
Finding the N Best Sentence Hypotheses in Continuous Speech Recognition,” Proc. 
IEEE ICASSP 91, vol 1, pp. 705-708. 

[Viterbi, 1967] Viterbi, A. (1967). “Error bounds for convolutional codes and an 
asymptotically optimum decoding algorithm”, IEEE Trans. Inf.Theory, vol. IT-13, 
no.2, pp. 260-269. 

[Wu & Gupta, 1999] Wu, J. & Gupta, V. (1999). “Application of simultaneous decoding 
algorithms to automatic transcription of known and unknown words”, Proc. IEEE 
ICASSP, vol. 2, pp. 589-592. 

[Yoshizawa et al., 2001] Yoshizawa, S.; Baba, A.; Matsunami, K.; Mera, Y.; Yamada, M.; Lee, 
A. & Shikano, K. (2001). “Evaluation on unsupervised speaker adaptation based on 
sufficient HMM statistics of selected speakers,” Proc. European Conference on Speech 
Communication and Technology, pp. 1219-1222. 

www.intechopen.com



Speech Recognition

Edited by France Mihelic and Janez Zibert

ISBN 978-953-7619-29-9

Hard cover, 550 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Chapters in the first part of the book cover all the essential speech processing techniques for building robust,

automatic speech recognition systems: the representation for speech signals and the methods for speech-

features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space,

and multimodal approaches to speech recognition. The last part of the book is devoted to other speech

processing applications that can use the information from automatic speech recognition for speaker

identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing

applications that are able to operate in real-world environments, like mobile communication services and smart

homes.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nishanth Ulhas Nair and T.V. Sreenivas (2008). Algorithms for Joint Evaluation of Multiple Speech Patterns for

Automatic Speech Recognition, Speech Recognition, France Mihelic and Janez Zibert (Ed.), ISBN: 978-953-

7619-29-9, InTech, Available from:

http://www.intechopen.com/books/speech_recognition/algorithms_for_joint_evaluation_of_multiple_speech_pa

tterns_for_automatic_speech_recognition



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


