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1. Introduction 

The performance of speech recognition systems degrades significantly when they are 
operated in noisy conditions. For example, the automatic speech recognition (ASR) front-
end of a speech-to-speech (S2S) translation prototype that is currently developed at IBM [11] 
shows noticeable increase in its word error rate (WER) when it is operated in real field noise. 
Thus, adding noise robustness to speech recognition systems is important, especially when 
they are deployed in real world conditions. Due to this practical importance noise 
robustness has become an active research area in speech recognition. Interesting reviews 
that cover a wide variety of techniques can be found in [12], [18], [19]. 
Noise robustness algorithms come in different flavors. Some techniques modify the features 
to make them more resistant to additive noise compared to traditional front-ends. These 
novel features include, for example, sub-band based processing [4] and time-frequency 
distributions [29]. Other algorithms adapt the model parameters to better match the noisy 
speech. These include generic adaptation algorithms like MLLR [20] or robustness 
techniques as model-based VTS [21] and parallel model combination (PMC) [9]. Yet other 
methods design transformations that map the noisy speech into a clean-like representation 
that is more suitable for decoding using clean speech models. These are usually referred to 
as feature compensation algorithms. Examples of feature compensation algorithms include 
general linear space transformations [5], [30], the vector Taylor series approach [26], and 
ALGONQUIN [8]. Also a very simple and popular technique for noise robustness is multi-
style training (MST)[24]. In MST the models are trained by pooling clean data and noisy 
data that resembles the expected operating environment. Typically, MST improves the 
performance of ASR systems in noisy conditions. Even in this case, feature compensation 
can be applied in tandem with MST during both training and decoding. It usually results in 
better overall performance compared to MST alone. This combination of feature 
compensation and MST is often referred to as adaptive training [22]. 
In this chapter we introduce a family of feature compensation algorithms. The proposed 
transformations are built using stereo data, i.e. data that consists of simultaneous recordings 
of both the clean and noisy speech. The use of stereo data to build feature mappings was 
very popular in earlier noise robustness research. These include a family of cepstral O

pe
n 

A
cc

es
s 

D
at

ab
as

e 
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Speech Recognition, Technologies and Applications, Book edited by: France Mihelič and Janez Žibert,  
ISBN 978-953-7619-29-9, pp. 550, November 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Speech Recognition, Technologies and Applications 

 

2 

normalization algorithms that were proposed in [1] and extended in robustness research at 
CMU, a codebook based mapping algorithm [15], several linear and non-linear mapping 
algorithms as in [25], and probabilistic optimal filtering (POF) [27]. Interest in stereo-based 
methods then subsided, mainly due to the introduction of powerful linear transformation 
algorithms such as feature space maximum likelihood liner regression (FMLLR)[5], [30] 
(also widely known as CMLLR). These transformations alleviate the need for using stereo 
data and are thus more practical. In principle, these techniques replace the clean channel of 
the stereo data by the clean speech model in estimating the transformation. Recently, the 
introduction of SPLICE [6] renewed the interest in stereo-based techniques. This is on one 
hand due to its relatively rigorous formulation and on the other hand due to its excellent 
performance in AURORA evaluations. While it is generally difficult to obtain stereo data, it 
can be relatively easy to collect for certain scenarios, e.g. speech recognition in the car or 
speech corrupted by coding distortion. In some other situations it could be very expensive 
to collect field data necessary to construct appropriate transformations. In our S2S 
translation application, for example, all we have available is a set of noise samples of 
mismatch situations that will be possibly encountered in field deployment of the system. In 
this case stereo-data can also be easily generated by adding the example noise sources to the 
existing ”clean” training data. This was our basic motivation to investigate building 
transformations using stereo-data. 
The basic idea of the proposed algorithms is to stack both the clean and noisy channels to 
form a large augmented space and to build statistical models in this new space. During 
testing, both the observed noisy features and the joint statistical model are used to predict 
the clean observations. One possibility is to use a Gaussian mixture model (GMM). We refer 
to the compensation algorithms that use a GMM as stereo-based stochastic mapping (SSM). 
In this case we develop two predictors, one is iterative and is based on maximum a 
posteriori (MAP) estimation, while the second is non-iterative and relies on minimum mean 
square error (MMSE) estimation. Another possibility is to train a hidden Markov model 
(HMM) in the augmented space, and we refer to this model and the associated algorithm as 
the stereo-HMM (SHMM). We limit the discussion to an MMSE predictor for the SHMM 
case. All the developed predictors are shown to reduce to a mixture of linear 
transformations weighted by the component posteriors. The parameters of the linear 
transformations are derived, as will be shown below, from the parameters of the joint 
distribution. The resulting mapping can be used on its own, as a front-end to a clean speech 
model, and also in conjunction with multistyle training (MST). Both scenarios will be 
discussed in the experiments. GMMs are used to construct mappings for different 
applications in speech processing. Two interesting examples are the simultaneous modeling 
of a bone sensor and a microphone for speech enhancement [13], and learning speaker 
mappings for voice morphing [32]. HMMcoupled with an N-bset formulation was recently 
used in speech enhancement in [34]. 
As mentioned above, for both the SSMand SHMM, the proposed algorithm is effectively a 
mixture of linear transformations weighted by component posteriors. Several recently 
proposed algoorithms use linear transformations weighted by posteriors computed from a 
Gaussian mixture model. These include the SPLICE algorithm [6] and the stochastic vector 
mapping (SVM)[14]. In addition to the previous explicit mixtures of linear transformations, 
a noise compensation algorithm in the log-spectral domain [3] shares the use of a GMM to 
model the joint distribution of the clean and noisy channels with SSM. Also joint uncertainty 
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decoding [23] employs a Gaussian model of the clean and noisy channels that is estimated 
using stereo data. Last but not least probabilistic optimal filtering (POF) [27] results in a 
mapping that resembles a special case of SSM. A discussion of the relationships between 
these techniques and the proposed method in the case of SSM will be given. Also the 
relationship in the case of an SHMMbased predictor to the work in [34] will be highlighted. 
The rest of the chapter is organized as follows. We formulate the compensation algorithm in 
the case of a GMM and describe MAP-based and MMSE-based compensation in Section II. 
Section III discusses relationships between the SSM algorithm and some similar recently 
proposed techniques. The SHMM algorithm is then formulated in Section IV. Experimental 
results are given in Section V. We first test several variants of the SSM algorithm and 
compare it to SPLICE for digit recognition in the car environment. Then we give results 
when the algorithm is applied to large vocabulary English speech recognition. Finally 
results for the SHMM algorithm are presented for the Aurora database. A summary is given 
in Section VI. 

2. Formulation of the SSM algorithm 

This section first formulates the joint probability model of the clean and noisy channels in 
Section II-A, then derives two clean feature predictors; the first is based on MAP estimation 
in Section II-B, while the second is based on MMSE estimation in Section II-C. The 
relationships between the MAP and MMSE estimators are studied in Section II-D. 
A. The Joint Probability Gaussian Mixture Model 
Assume we have a set of stereo data {(xi, yi)}, where x is the clean (matched) feature 
representation of speech, and y is the corresponding noisy (mismatched) feature 
representation. Let N be the number of these feature vectors, i.e 1 ≤ i ≤ N. The data itself is an 
M-dimensional vector which corresponds to any reasonable parameterization of the speech, 
e.g. cepstrum coefficients. In a direct extension the y can be viewed as a concatenation of 
several noisy vectors that are used to predict the clean observations. Define z ≡ (x, y) as the 
concatenation of the two channels. The first step in constructing the mapping is training the 
joint probability model for p(z). We use Gaussian mixtures for this purpose, and hence write 

 

(1)

where K is the number of mixture components, ck, μz,k, and Σzz,k, are the mixture weights, 
means, and covariances of each component, respectively. In the most general case where Ln 

noisy vectors are used to predict Lc clean vectors, and the original parameter space is M-
dimensional, z will be of size M(Lc +Ln), and accordingly the mean μz will be of dimension 
M(Lc + Ln) and the covariance Σzz will be of size M(Lc + Ln) × M(Lc + Ln). Also both the mean 
and covariance can be partitioned as 

 

(2)
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(3)

where subscripts x and y indicate the clean and noisy speech respectively. 
The mixture model in Equation (1) can be estimated in a classical way using the expectation-
maximization (EM) algorithm. Once this model is constructed it can be used during testing 
to estimate the clean speech features given the noisy observations. We give two 
formulations of the estimation process in the following subsections. 
B. MAP-based Estimation 
MAP-based estimation of the clean feature x given the noisy observation y can be 
formulated as: 

 
(4)

The estimation in Equation (4) can be further decomposed as 

 

 
 

(5)

Now, define the log likelihood as L(x) ≡ logΣk p(x, k|y) and the auxiliary function Q(x, x ) ≡ 

Σk p(k| x , y) log p(x, k|y). It can be shown by a straightforward application of Jensen’s 

inequality that 

 
(6)

The proof is simple and is omitted for brevity. The above inequality implies that iterative 
optimization of the auxiliary function leads to a monotonic increase of the log likelihood. 
This type of iterative optimization is similar to the EM algorithm and has been used in 
numnerous estimation problems with missing data. Iterative optimization of the auxiliary 
objective function proceeds at each iteration as follows 

 

 
 
 
 
 
 
 

(7)
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where x  is the value of x from previous iteration, and x|y is used to indicate the statistics of 

the conditional distribution p(x|y). By differentiating Equation (7) with respect to x, setting 

the resulting derivative to zero, and solving for x, we arrive at the clean feature estimate 

given by 

 
(8)

which is basically a solution of a linear system of equations. p(k| x , y) are the usual 

posterior probabilities that can be calculated using the original mixture model and Bayes 
rule, and the conditional statistics are known to be 

 
(9)

 
(10)

Both can be calculated from the joint distribution p(z) using the partitioning in Equations (2) 

and (3). A reasonable initialization is to set x  = y, i.e. initialize the clean observations with 

the noisy observations. 

An interesting special case arises when x is a scalar. This could correspond to using the ith noisy 
coefficient to predict the ith clean coefficient or alternatively using a time window around the ith 

noisy coefficient to predict the ith clean coefficient. In this case, the solution of the linear system 
in Equation (8) reduces to the following simple calculation for every vector dimension. 

 

(11)

where  is used instead of   to indicate that it is a scalar. This simplification will be 

used in the experiments. It is worth clarifying how the scalar Equation (11) is used for SSM 

with a time-window as mentioned above. In this case, and limiting our attention to a single 

feature dimension, the clean speech x is 1-dimensional, while the noisy speech y has the 

dimension of the window say Ln, and accordingly the mean  and the variance  

will be 1-dimensional. Hence, everything falls into place in Equation (11). 

The mapping in Equations (8)-(10) can be rewritten, using simple rearrangement, as a 

mixture of linear transformations weighted by component posteriors as follows: 

 
(12)

where Ak = CDk, bk = Cek, and 

 

(13)
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(14)

 
(15)

C. MMSE-based Estimation 
The MMSE estimate of the clean speech feature x given the noisy speech feature y is known 
to be the mean of the conditional distribution p(x|y). This can be written as: 

 (16)

Considering the GMM structure of the joint distribution, Equation (16) can be further 
decomposed as 

 

 
 
 
 
 
 

(17)

In Equation (17), the posterior probability term p(k|y) can be computed as 

 

(18)

and the expectation term E[x|k, y] is given in Equation (9). 
Apart from the iterative nature of the MAP-based estimate the two estimators are quite 
similar. The scalar special case given in Section II-B can be easily extended to the MMSE 
case. Also the MMSE predictor can be written as a weighted sum of linear transformations 
as follows: 

 
(19)

where 

 
(20)

 
(21)

From the above formulation it is clear that the MMSE estimate is not performed iteratively 
and that no matrix inversion is required to calculate the estimate of Equation (19). More 
indepth study of the relationships between the MAP and the MMSE estimators will be given 
in Section II-D. 
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D. Relationships between MAP and MMSE Estimators 
This section discusses some relationships between the MAP and MMSE estimators. Strictly 

speaking, the MMSE estimator is directly comparable to the MAP estimator only for the first 

iteration and when the latter is initialized from the noisy speech. However, the following 

discussion can be seen as a comparison of the structure of both estimators. 

To highlight the iterative nature of the MAP estimator we rewrite Equation (12) by adding 
the iteration index as 

 

(22)

where l stands for the iteration index. First, if we compare one iteration of Equation (22) to 

Equation (19) we can directly observe that the MAP estimate uses a posterior p(k| x (l−1), y) 

calculated from the joint probability distribution while the MMSE estimate employs a 

posterior p(k|y) based on the marginal probability distribution. Second, if we compare the 

coefficients of the transformations in Equations (13)-(15) and (20)-(21) we can see that the 

MAP estimate has the extra term 

 

(23)

which is the inversion of the weighted summation of conditional covariance matrices from 
each individual Gaussian component and that requires matrix inversion during run-time1. 
If we assume the conditional covariance matrix Σx|y,k in Equation (23) is constant across k, 

i.e. all Gaussians in the GMM share the same conditional covariance matrix Σx|y, Equation 

(23) turns to 

 

(24)

and the coefficients Ak and bk for the MAP estimate can be written as 

 

(25)

                                                 
1 Note that other inverses that appear in the equations can be pre-computed and stored. 
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(26)

The coefficients in Equations (25) and (26) are exactly the same as those for the MMSE 
estimate that are given in Equations (20) and (21). 
To summarize, the MAP and MMSE estimates use slightly different forms of posterior 
weighting that are based on the joint and marginal probability distributions respectively. 
The MAP estimate has an additional term that requires matrix inversion during run-time in 
the general case, but has a negligible overhead in the scalar case. Finally, one iteration of the 
MAP estimate reduces to the MMSE estimate if the conditional covariance matrix is tied 
across the mixture components. Experimental comparison between the two estimates is 
given in Section V. 

3. Comparison between SSM and other similar techniques 

As can be seen from Section II, SSM is effectively a mixture of linear transformations 
weighted by component posteriors. This is similar to several recently proposed algorithms. 
Some of these techniques are stereo-based such as SPLICE while others are derived from 
FMLLR. We discuss the relationships between the proposed method and both SPLICE and 
FMLLR-based methods in Sections III-A and III-B, respectively. Another recently proposed 
noise compensation method in the log-spectral domain also uses a Gaussian mixture model 
for the joint distribution of clean and noisy speech [3]. Joint uncertainty decoding [23] 
employs a joint Gaussian model for the clean and noisy channels, and probabilistic optimal 
filtering has a similar structure to SSMwith a time window. We finally discuss the 
relationship of the latter algorithms and SSM in Sections III-C,III-D, and III-E, respectively. 
A. SSM and SPLICE 
SPLICE is a recently proposed noise compensation algorithm that uses stereo data. In 

SPLICE, the estimate of the clean feature x̂  is obtained as 

 

(27)

where the bias term rk of each component is estimated from stereo data (xn, yn) as 

 

(28)

and n is an index that runs over the data. The GMM used to estimate the posteriors in 
Equations (27) and (28) is built from noisy data. This is in contrast to SSM which employs a 
GMM that is built on the joint clean and noisy data. 
Compared to MMSE-based SSM in Equations (19), (20) and (21), we can observe the 
following. First, SPLICE builds a GMM on noisy features while in this paper a GMM is built 
on the joint clean and noisy features (Equation (1)). Consequently, the posterior probability 
p(k|y) in Equation (27) is computed from the noisy feature distribution while p(k|y) in 
Equation (19) is computed from the joint distribution. Second, SPLICE is a special case of 
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SSM if the clean and noisy speech are assumed to be perfectly correlated. This can be seen as 
follows. If perfect correlation is assumed between the clean and noisy feature then Σxy,k = 
Σyy,k, and p(k|xn)=p(k|yn). In this case, Equation (28) can be written as 

 

(29)

The latter estimate will be identical to the MMSE estimate in Equations (20) and (21) when 
Σxy,k = Σyy,k. 
To summarize, SPLICE and SSM have a subtle difference concerning the calculation of the 
weighting posteriors (noisy GMM vs. joint GMM), and SSM reduces to SPLICE if perfect 
correlation is assumed for the clean and noisy channels. An experimental comparison of 
SSM and SPLICE will be given in Section V. 
B. SSM and FMLLR-based methods 
There are several recently proposed techniques that use a mixture of FMLLR transforms. 
These can be written as 

 
(30)

where p(k|y) is calculated using an auxiliary Gaussian mixture model that is typically 
trained on noisy observations, and Uk and vk are the elements of FMLLR transformations that 
do not require stereo data for their estimation. These FMLLR-based methods are either 
applied during run-time for adaptation as in [28], [33], [16] or the transformation parameters 
are estimated off-line during training as in the stochastic vector mapping (SVM) [14]. Also 
online and offline transformations can be combined as suggested in [14]. SSM is similar in 
principle to training-based techniques and can be also combined with adaptation methods. 
This combination will be experimentally studied in Section V. 
The major difference between SSM and the previous methods lies in the used GMM (again 
noisy channel vs. joint), and in the way the linear transformations are estimated (implicitly 
derived from the joint model vs. FMLLR-like). Also the current formulation of SSM allows 
the use of a linear projection rather than a linear transformation and most these techniques 
assume similar dimensions of the input and output spaces. However, their extension to a 
projection is fairly straightforward. In future work it will be interesting to carry out a 
systematic comparison between stereo and non-stereo techniques. 
C. SSM and noise compensation in the log-spectral domain 
A noise compensation technique in the log-spectral domain was proposed in [3]. This 
method, similar to SSM, uses a Gaussian mixture model for the joint distribution of clean 
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and noisy speech. However, the model of the noisy channel and the correlation model are 
not set free as in the case of SSM. They are parametrically related to the clean and noise 
distributions by the model of additive noise contamination in the log-spectral domain, and 
expressions of the noisy speech statistics and the correlation are explicitly derived. This 
fundamental difference results in two important practical consequences. First, in contrast to 
[3] SSM is not limited to additive noise compensation and can be used to correct for any 
type of mismatch. Second, it leads to relatively simple compensation transformations during 
run-time and no complicated expressions or numerical methods are needed during 
recognition. 
D. SSM and joint uncertainty decoding 
A recently proposed technique for noise compensation is joint uncertainty decoding 
(JUD)[23]. Apart from the fact that JUD employs the uncertainty decoding framework[7], 
[17], [31]2 instead of estimating the clean feature, it uses a joint model of the clean and noisy 
channels that is trained from stereo data. The latter model is very similar to SSM except it 
uses a Gaussian distribution instead of a Gaussian mixture model. On one hand, it is clear 
that a GMM has a better modeling capacity than a single Gaussian distribution. However, 
JUD also comes in a model-based formulation where the mapping is linked to the 
recognition model. This model-based approach has some similarity to the SHMM discussed 
below. 
E. SSM and probabilistic optimal filtering (POF) 
POF [27] is a technique for feature compensation that, similar to SSM, uses stereo data. In 
POF, the clean speech feature is estimated from a window of noisy features as follows: 

 

(31)

where i is the vector quantization region index, I is the number of regions, z is a 
conditioning vector that is not necessarily limited to the noisy speech, Y consists of the noisy 
speech in a time window around the current vector, and Wi is the weight vector for region i. 
These weights are estimated during training from stereo data to minimize a conditional 
error for the region. 
It is clear from the above presentation that POF bears similarities to SSM with a time 
window. However, some differences also exist. For example, the concept of the joint model 
allows the iterative refinement of the GMM parameters during training and these 
parameters are the equivalent to the region weights in POF. Also the use of a coherent 
statistical framework facilitates the use of different estimation criteria e.g. MAP and MMSE, 
and even the generalization of the transformation to the model space as will be discussed 
below. It is not clear how to perform these generalizations for POF. 

4. Mathematical formulation of the stereo-HMM algorithm 

In the previous sections we have shown how a GMM is built in an augmented space to 
model the joint distribution of the clean and noisy features, and how the resulting model is 

                                                 
2 In uncertainty decoding the noisy speech pdf p(y) is estimated rather than the clean speech 
feature. 
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used to construct feature compensation algorithm. In this section we extend the idea by 
training an HMM in the augmented space and formulate an appropriate feature 
compensation algorithm. We refer to the latter model as the stereo-HMM (SHMM). 
Similar to the notation in Section II, denote a set of stereo features as {(x, y)}, where x is the 
clean speech feature vector, y is the corresponding noisy speech feature vector. In the most 
general case, y is Ln concatenated noisy vectors, and x is Lc concatenated clean vectors. 
Define z ≡ (x, y) as the concatenation of the two channels. The concatenated feature vector z 
can be viewed as a new feature space where a Gaussian mixture HMM model can be built3. 
In the general case, when the feature space has dimension M, the new concatenated space 
will have a dimension M(Lc + Ln). An interesting special case that greatly simplifies the 
problem arises when only one clean and noisy vectors are considered, and only the 
correlation between the same components of the clean and noisy feature vectors are taken 
into account. This reduces the problem to a space of dimension 2M with the covariance 
matrix of each Gaussian having the diagonal elements and the entries corresponding to the 
correlation between the same clean and noisy feature element, while all other covariance 
values are zeros. 
Training of the above Gaussian mixture HMM will lead to the transition probabilities 
between states, the mixture weights, and the means and covariances of each Gaussian. The 
mean and covariance of the kth component of state i can, similar to Equations (2) and (3), be 
partitioned as 

 

(32)

 

(33)

where subscripts x and y indicate the clean and noisy speech features respectively. 
For the kth component of state i, given the observed noisy speech feature y, the MMSE 
estimate of the clean speech x is given by E[x|y, i, k]. Since (x, y) are jointly Gaussian, the 
expectation is known to be 

 

(34)

                                                 
3 We will need the class labels in this case in contrast to the GMM. 
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The above expectation gives an estimate of the clean speech given the noisy speech when 

the state and mixture component index are known. However, this state and mixture 

component information is not known during decoding. In the rest of this section we show 

how to perform the estimation based on the N-best hypotheses in the stereo HMM 

framework. 

Assume a transcription hypothesis of the noisy feature is H. Practically, this hypothesis can 
be obtained by decoding using the noisy marginal distribution p(y) of the joint distribution 

p(x, y). The estimate of the clean feature, x̂ , at time t is given as: 

 

(35)

where the summation is over all the recognition hypotheses, the states, and the Gaussian 
components. The estimate in Equation (35) can be rewritten as: 

 

(36)

where  is the posterior probability of staying at mixture 

component k of state i given the feature sequence  and hypothesis H. This posterior can 

be calculated by the forward-backward algorithm on the hypothesis H. The expectation term 

is calculated using Equation (34).  is the posterior probability of the hypothesis H 

and can be calculated from the N-best list as follows: 

 

(37)

where the summation in the denominator is over all the hypotheses in the N-best list, and υ 
is a scaling factor that need to be experimentally tuned. 

By comparing the estimation using the stereo HMM in Equation (36) with that using a GMM 

in the joint feature space as shown, for convenience, in Equation (38), 
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(38)

we can find out the difference between the two estimates. In Equation (36), the estimation is 
carried out by weighting the MMSE estimate at different levels of granularity including 

Gaussians, states and hypotheses. Additionally, the whole sequence of feature vectors,  = 

(y1, y2, · · · , yT ), has been exploited to denoise each individual feature vector xt. Therefore, a 
better estimation of xt is expected in Equation (36) over Equation (38). 
Figure (1) illustrates the whole process of the proposed noise robust speech recognition 
scheme on stereo HMM. First of all, a traditional HMM is built in the joint (clean-noisy) 
feature space, which can be readily decomposed into a clean HMM and a noisy HMM as its 
marginals. For the input noisy speech signal, it is first decoded by the noisy marginal HMM 
to generate a word graph and also the N-best candidates. Afterwards, the MMSE estimate of 
the clean speech is calculated based on the generated N-best hypotheses as the conditional 
expectation of each frame given the whole noisy feature sequence. This estimate is a 
weighted average of Gaussian level MMSE predictors. Finally, the obtained clean speech 
estimate is re-decoded by the clean marginal HMM in a reduced searching space on the 
previously generated word graph. 
 

 

Fig. 1. Denoising scheme of N-best hypothesis based on stereo acoustic model. 

A word graph based feature enhancement approach was investigated in [34] which is 
similar to the proposed work in the sense of two pass decoding using word graph. In [34], 
the word graph is generated by the clean acoustic model on enhanced noisy features using 
signal processing techniques and the clean speech is actually “synthesized” from the HMM 
Gaussian parameters using posteriori probabilities. Here, the clean speech is estimated from 
the noisy speech based on the joint Gaussian distributions between clean and noisy features. 

5. Experimental evaluation 

In the first part of this section we give results for digit recognition in the car environment 
and compare the SSM method to SPLICE. In the second part, we provide results when 
SSMis applied to large vocabulary spontaneous English speech recognition. Finally, we 
present SHMM results for the Aurora database. 
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A. SSM experiments for digit recognition in the car 
The proposed algorithm is evaluated on a hands-free database (CARVUI database) recorded 

inside a moving car. The data was collected in Bell Labs area, under various driving 

conditions (highway/city roads) and noise environments (with and without radio/music in 

the background). About 2/3rd of the recordings contain music or babble noise in the 

background. Simultaneous recordings were made using a close-talking microphone and a 

16-channel array of 1st order hypercardioid microphones mounted on the visor. A total of 56 

speakers participated in the data collection, including many non-native speakers of 

American English. Evaluation is limited to the digit part of the data base. The speech 

material from 50 speakers is used for training, and the data from the 6 remaining speakers is 

used for test, leading to a total of about 6500 utterances available for training and 800 

utterances for test. The test set contains about 3000 digits. The data is recorded at 24kHz 

sampling rate and is down-sampled to 8kHz and followed by MFCC feature extraction step 

for our speech recognition experiments. The feature vector consists of 39 dimensions, 13 

cepstral coefficients and their first and second derivatives. Cepstral mean normalization 

(CMN) is applied on the utterance level. CMN is considered, to a first order approximation, 

as compensating for channel effects, and hence a channel parameter is not explicitly 

included in the compensation algorithm. The recognition task consists of simple loop 

grammar for the digits. In our experiments, data from 2 channels only are used. The first one 

is the close-talking microphone (CT), the second one is a single channel from the 

microphone array, referred to as Hands-Free data (HF) henceforward. 10 digit models and a 

silence model are built. Each model is left to right with no skipping having six states, and 

each state has 8 Gaussian distributions. Training and recognition is done using HTK [35]. A 

baseline set of results for this task are given in Table I. 
 

 

Table I Baseline word error rate (WER) results (in %) of the close-talking (CT) microphone 
data and hands-free (HF) data 

The first three lines refer to train/test conditions where the clean refers to the CT and noisy 
to the HF. The third line, in particular, refers to matched training on the HF data. The fourth 
and fifth lines correspond to using clean training and noisy test data that is compensated 
using conventional first order vector Taylor series (VTS) [26], and the compensation method 
in [3]. Both methods use a Gaussian mixture for the clean speech of size 64, and no explicit 
channel compensation is used as CMN is considered to partially account for channel effects. 
It can be observed from the table that the performance is clearly effected, as expected, by the 
addition of noise. Using noisy data for training improves the result considerably but not to 
the level of clean speech performance. VTS gives an improvement over the baseline, while 
the method in [3] shows a significant gain. More details about these compensation 
experiments can be found in [3] and other related publications. 
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The mapping is applied to the MFCC coefficients before CMN. After applying the 
compensation, CMN is performed followed by calculating the delta and delta-delta. Two 
methods were tested for constructing the mapping. In the first, a map is constructed 
between the same MFCC coefficient for the clean and noisy channels. In the second, a time 
window, including the current frame and its left and right contexts, around the ith MFCC 
noisy coefficient is used to calculate the ith clean MFCC coefficient. We tested windows of 
sizes three and five respectively. Thus we have mappings of dimensions 1 × 1, 3 × 1, and 5 × 
1 for each cepstral dimension. These mappings are calculated according to Equation (11). In 
all cases, the joint Gaussian mixture model p(z) is initialized by building a codebook on the 
stacked cepstrum vectors, i.e. by concatenation of the cepstra of the clean and noisy speech. 
This is followed by running three iterations of EMtraining. Similar initialization and training 
setup is also used for SPLICE. In this subsection only one iteration of the compensation 
algorithm is applied during testing. It was found in initial experiments that more iterations 
improve the likelihood, as measured by the mapping GMM, but slightly increase the WER. 
This comes in contrast to the large vocabulary results of the following section where 
iterations in some cases significantly improve performance. We do not have an explanation 
of this observation at the time of this writing. 
In the first set of experiments we compare between SPLICE,MAP-SSMand MMSE-SSM, for 
different GMM sizes. No time window is used in these experiments. The results are shown in 
Table II. It can be observed that the proposed mapping outperforms SPLICE for all GMM sizes 
with the difference decreasing with increasing the GMM size. This makes sense because with 
increasing the number of Gaussian components, and accordingly the biases used in SPLICE, 
we can theoretically approximate any type of mismatch. Both methods are better than the VTS 
result in Table I, and are comparable to the method in [3]. The mapping in [3] is, however, 
more computationally expensive than SPLICE and SSM. Also, MAP-SSM and MMSE-SSM 
show very similar performance. This again comes in cotrast to what is observed in large 
vocabulary experiments where MMSE-SSMoutperforms MAP-SSM in some instances. 
 

 

Table II Word error rate results (in %) of hands-free (HF) data using the proposed map-
based mapping (MAP-SSM), SPLICE, and MMSE-SSM for different GMM sizes. 

Finally Table III compares the MAP-SSM with and without the time window. We test 
windows of sizes 3 and 5. The size of the GMM used is 256. Using a time window gives an 
improvement over the baseline SSM with a slight cost during runtime. These results are not 
given for SPLICE because using biases requires that both the input and output spaces have 
the same dimensions, while the proposed mapping can be also viewed as a projection. The 
best SSM configuration, namely SSM-3, results in about 45% relative reduction in WER over 
the uncompensated result. 
 

 

Table III Word error rate results (in %) of hands-free (HF) data using three different 
configurations of MAP-SSM for 256 GMM size and different time window size. 
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B. SSM experiments for large vocabulary spontaneous speech recognition 
In this set of experiments the proposed technique is used for large vocabulary spontaneous 
English speech recognition. The mapping is applied with the clean speech models and also 
in conjunction with MST. The speech recognition setup and practical implementation of the 
mapping are first described in Section V-B.1. This is followed by compensation experiments 
for both the MAP and MMSE estimators in Section V-B.2. 
B.1 Experimental setup 
Experiments are run for a large vocabulary spontaneous speech recognition task. The 
original (clean) training data has about 150 hours of speech. This data is used to build the 
clean acoustic model. In addition to the clean model an MST model is also trained from the 
MST data. The MST data is formed by pooling the clean training data and noisy data. The 
noisy data are generated by adding humvee, tank and babble noise to the clean data at 15 
dB. Different noise types are randomly added to different parts of each utterance. These 
three types of noise are chosen to match the military deployment environments in the 
DARPA Transtac Project. Thus, there are about 300 hours of training data in the MST case 
corresponding to the clean and 15 db SNR. When SSM is applied in conjunction with MST, 
the MST models are trained from SSM compensated data. This is done as follows. The SSM 
mapping is first trained as will be detailed below. It is then applied back to the noisy 
training data to yield noise-compensated features. Finally, the clean and noise compensated 
features are pooled and used to train the acoustic model. This is in the same spirit of using 
speaker-adaptive training (SAT) scheme, where some adaptation or compensation method 
is used in both training and decoding. The acoustic models are constructed in the same way 
and only differ in the type of the data used. Feature extraction, model training, mapping 
construction, and decoding will be outlined below. 
The feature space of the acoustic models is formed as follows. First, 24 dimensional Mel-
frequency cepstrum coefficients (MFCC) are calculated. The MFCC features are then mean 
normalized. 9 vectors, including the current vector and its left and right neighbours, are 
stacked leading to a 216-dimensional parameter space. The feature space is finally reduced 
to 40 dimensions using a combination of linear discriminant analysis (LDA) and a global 
semi-tied covariance (STC)matrix [10]. 
The acoustic model uses Gaussian mixture models associated to the leaves of a decision tree. 
The tree clustering is done by asking questions about quinphone context. The phoneme 
inventory has 54 phonemes for American English, and each phoneme is represented by a 3-
state HMM. The model parameters are estimated using the forward-backward algorithm. 
First, a quinphone decision tree is built, an LDA matrix is computed and the model 
parameters are estimated using 40 EM iterations with the STC matrix updated each 
iteration. Upon finishing the estimation, the new model is used to re-generate the 
alignments based on which a new decision tree is built, the LDA matrix is re-computed and 
another 40 EM iterations are performed for model parameter estimation and STC matrix 
update. The clean model has 55K Gaussians while the MST models have 90K Gaussians. 
This difference is due to the difference in the amount of training data. The training and 
decoding are carried out on the IBM Attila toolkit. 
Generally speaking SSM is SNR-specific and noise-type specific, i.e. a different mapping is 
built for each SNR and each noise type. However, as mentioned above we constructed only 
one mapping (at 15 dB) that corresponds to the mean SNR of the training data. The training 
of the mapping is straightforward. It amounts to the concatenation of the clean and noisy 
channels in the desired way and building a GMM using the EMalgorithm. All the mappings 
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used in the following experiments are of size 1024. It was confirmed in earlier work [2] that 
using larger sizes only give marginal improvements. The mapping is trained by starting 
from 256 random vectors, and then running one EM iteration and splitting until reaching the 
desired size. The final mapping is then refined by running 5 EM iterations. The mapping 
used in this section is scalar, i.e. it can be considered as separate mappings between the 
same coefficients in the clean and noisy channels. Although using different configurations 
can lead to better performance, as for example in Section V-A, this was done for simplicity. 
Given the structure of the feature vector used in our system, it is possible to build the 
mapping either in the 24-dimensional MFCC domain or in the 40-dimensional final feature 
space. It was also shown in [2] that building the mapping in the final feature space is better, 
and hence we restrict experiments in this work to mappings built in the 40-dimensional 
feature space. As discussed in Section II there are two possible estimators that can be used 
with SSM. Namely, the MAP and MMSE estimators. It should be noted that the training of 
the mapping in both cases is the same and that the only difference happens during testing, 
and possibly in storing some intermediate values for efficient implementation. 
A Viterbi decoder that employs a finite state graph is used in this work. The graph is formed 
by first compiling the 32K pronunciation lexicon, the HMM topology, the decision tree, and 
the trigram language model into a large network. The resulting network is then optimized 
offline to a compact structure which supports very fast decoding. During decoding, 
generally speaking, the SNR must be known to be able to apply the correct mapping. Two 
possibilities can be considered, one is rather unrealistic and assumes that the SNR is given 
while the other uses an environment detector. The environment detector is another GMM 
that is trained to recognize different environments using the first 10 frames of the utterance. 
In [2], it was found that there is almost no loss in performance due to using the environment 
detector. In this section, however, only one mapping is trained and is used during decoding. 
Also as discussed in Section II the MAP estimator is iterative. Results with different number 
of iterations will be given in the experiments. 
The experiments are carried out on two test sets both of which are collected in the DARPA 
Transtac project. The first test set (Set A) has 11 male speakers and 2070 utterances in total 
recorded in the clean condition. The utterances are spontaneous speech and are corrupted 
artificially by adding humvee, tank and babble noise to produce 15dB and 10dB noisy test 
data. The other test set (Set B) has 7 male speakers with 203 utterances from each. The 
utterances are recorded in a real-world environment with humvee and tank noise running 
in the background. This is a very noisy evaluation set and the utterances SNRs are measured 
around 5dB to 8dB, and we did not try to build other mappings to match these SNRs. This 
might also be considered as a test for the robustness of the mapping. 
B.2 Experimental results 
In this section SSM is evaluated for large vocabulary speech recognition. Two scenarios are 
considered, one with the clean speech model and the other in conjunction with MST. Also 
the combination of SSM with FMLLR adaptation is evaluated in both cases. For MAP-based 
SSM both one (MAP1) and three (MAP3) iterations are tested. 
Table IV shows the results for the clean speech model. The first part of the table shows the 
uncompensated result, the second and third parts give the MAP-based SSM result for one 
and three iterations, respectively, while the final part presents MMSE-based SSM. In each 
part the result of combining FMLLR with SSM compensation is also given. The columns of 
the table correspond to the clean test data, artificially corrupted data at 15 dB, and 10 dB, 
and real field data. In all cases it can be seen that using FMLLR brings significant gain, 
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except in theMMSE-based SSMwhere it only leads to a slight improvement. MAP-based 
SSMshows some improvement only for test set B and using three iterations, in all other cases 
it does not improve on the clean result. MMSE-based SSM, on the other hand, shows 
excellent performance in all cases and outperforms its MAP-based counterpart. One 
explanation for this behavior can be attributed to the tying effect that is shown in Section II 
for MMSE estimation. In large vocabulary experiments a large mapping is needed to 
represent the new acoustic space with sufficient resolution. However, this comes at the 
expense of the robustness of the estimation. The implicit tying of the conditional covariances 
in the MMSE case can address this tradeoff and might be a reason of the improved 
performance in this case. Another way to address this, and that might be of benefit to the 
MAP-based algorithm is to construct the mapping in subspaces but this has to be 
experimentally confirmed. Finally, it is clear from the table that SSM does not hurt the clean 
speech performance. The best result for the real field data, which is for MMSE-based SSM 
with FMLLR, is 41% better than the baseline, and is 35% better than FMLLR alone. 
 

 

Table IV Word error rate results (in %) of the compensation schemes against clean acoustic 
model 

 

Table V Word error rate results (in %) of the compensation schemes against mst acoustic 
model 

Table V displays the same results as table IV but for the MST case. The same trend as in 
table IV can be observed, i.e. FMLLR leads to large gains in all situations, and SSMbrings 
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decent improvements over FMLLR alone. In cotrast to the clean model case, MAP-based 
SSM and MMSE-based SSM are quite similar in most cases. This might be explained by the 
difference in nature in the mapping required for the clean and MST cases, and the fact that 
the model is trained on compensated data which in some sense reduces the effect of the 
robustness issue raised for the clean case above. The overall performance of the MST model 
is, unsurprisingly, better than the clean model. In this case the best setting for real field data, 
also MMSE-based SSM with FMLLR, is 60% better than the baseline and 41% better than 
FMLLR alone. 
C. Experimental Results for Stereo-HMM 
This section gives results of applying stereo-HMM compensation on the Sets A and B of the 
Aurora 2 database. There are four types of noise in the training set which include subway, 
babble, car and exhibition noise. The test set A has the same four types of noise as the 
training set while set B has four different types of noise, namely, restaurant, street, airport 
and station. For each type of noise, training data are recorded under five SNR conditions: 
clean, 20 dB, 15 dB, 10 dB and 5 dB while test data consist of six SNR conditions: clean, 20 
dB, 15 dB, 10 dB, 5 dB and 0 dB. There are 8440 utterances in total for the four types of noise 
contributed by 55 male speaker and 55 female speakers. For the test set, each SNR condition 
of each noise type consists of 1001 utterances leading to 24024 utterances in total from 52 
male speakers and 52 female speakers. 
Word based HMMs are used, with each model having 16 states and 10 Gaussian 
distributions per state. The original feature space is of dimension 39 and consists of 12 
MFCC coefficients, energy, and their first and second derivatives. In the training set, clean 
features and their corresponding noisy features are spliced together to form the stereo 
features. Thus, the joint space has dimension 78. First, a clean acoustic model is trained on 
clean features only on top of which single-pass re-training is performed to obtain the stereo 
acoustic model where the correlation between the corresponding clean and noisy 
components is only taken into account. Also a multi-style trained (MST) model is 
constructed in the original space to be used as a baseline. The results are shown in Tables 
VI-VIII. Both the MST model and the stereo model are trained on the mix of four types of 
training noise. 
 

 

Table VI Accuracy on aurora 2 set A and set B. evaluated with N = 5. 

A word graph, or lattice, is constructed for each utterance using the noisy marginal of the 
stereo HMMand converted into an N-best list. Different sizes of the list were tested and 
results for lists of sizes 5, 10 and 15 are shown in the tables. Hence, the summation in the 
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denominator of Equation (37) is performed over the list, and different values (1.0, 0.6 and 
0.3) of the weighting υ are evaluated (denoted in the parentheses in the tables). The 
language model probability p(H) is taken to be uniform for this particular task. The clean 
speech feature is estimated using Equation (36). After the clean feature estimation, it is 
rescored using the clean marginal of the stereo HMM on the word graph. The accuracies are 
presented as the average across the four types of noise in each individual test set. 
 

 

Table VII Accuracy on aurora 2 set A and set B. evaluated with N = 10. 

From the tables we observe that the proposed N-best based SSMon stereo HMMperforms 
better than theMST model especially for unseen noise in Set B and at low SNRs. There are 
about 10%-20% word error rate (WER) reduction in Set B compared to the baseline MST 
model. It can be also seen that there is little influence for the weighting factor, this might be 
due to the uniform language model used in this task but might change for other scenarios. 
By increasing the number of N-best candidates in the estimation, the performance increases 
but not significantly. 
 

 

Table VIII Accuracy on aurora 2 set A and set B. evaluated with N = 15. 

6. Summary 

This chapter presents a family of feature compensation algorithms for noise robust speech 
recognition that use stereo data. The basic idea of the proposed algorithms is to stack the 
features of the clean and noisy channels to form a new augmented space, and to train 
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statistical models in this new space. These statistical models are then used during decoding 
to predict the clean features from the observed noisy features. Two types of models are 
studied. Gaussian mixture models which lead to the so-called stereo-based stochastic 
mapping (SSM)algorithm, and hidden Markov models which result in the stereo-HMM 
(SHMM) algorithm. Two types of predictors are examined for SSM, one is based on MAP 
estimation while the other is based on MMSE estimation. Only MMSE estimation is used for 
the SHMM, where an N-best list is used to provide the required recognition hypothesis. The 
algorithms are extensively evaluated in speech recognition experiments. SSM is tested for 
both digit recognition in the car, and a large vocabulary spontaneous speech task. SHMM is 
evaluated on the Aurora task. In all cases the proposed methods lead to significant gains. 
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