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Abstract

The chapter is devoted to the use of predicate calculus for artificial intelligence (AI)
problem solving. Here, an investigated object is represented as a set of its elements and is
characterized by a fixed number of predicates. Its description is a set of all constant literals
(with the chosen predicates), which are valid on the object. The NP-complete problem,
“whether an object satisfies a goal formula,” is under consideration. The upper bound of
number of its solution steps is exponential. The notion of common up to the names of
arguments subformula of two predicate formulas and one of their isomorphisms allows to
construct a level description of the set of goal formulas and essentially to decrease the
upper bounds of the problem solving. The level description permits to define a self-
training predicate network, which may change its configuration during the process of
training. The extraction of common up to the names of arguments subformulas permits
to construct a multiagent description of an object when every agent does not know the true
number of the object elements and uses her own notifications for the names of elements. A
model example illustrating all algorithms is presented.

Keywords: predicate calculus, NP-completeness, level description, predicate network,
multi-agent description

1. Introduction

The choice of initial attributes for description of an object in an artificial intelligence (AI)

problem is the first stage of any simulation of an informational process (representation of

information for its further use).

At the 60–70th of the twentieth century, many authors (see, for example, [1]) offered to use

predicate calculus for AI problem solving. The resolution method seemed to be a very easy and

clear tool to solve problems dealing with compound objects, which can be described by proper-

ties of its elements and relations between these elements.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Until the notion of NP-complete problem (in particular, described in [2, 3]) was not widely

adopted, such an approach seemed to be very convenient, but many such-a-way formalized

problems occurred to be NP-complete or even algorithmic unsolvable.

While developing the effective algorithms deciding discrete problems, determination of esti-

mations for number of steps of their run becomes one of the important problems. The absence

of the proved estimations for number of an algorithm run steps is considered as an insufficient

research of this algorithm. It is especially relevant for problems with big input. It concerns, in

particular, to the algorithms deciding various AI problems. At practical use of an algorithm, it

is important that it has polynomial upper bound of number of its run steps. The NP-

completeness or NP-hardness of a problem means now that the polynomial algorithm of its

decision is not known.

In 2007, the author proved NP-completeness of a series of AI problems formalized with

the help of predicate calculus formulas [4], proved upper bounds for number of steps of

algorithms solving these problems [5], and offered a level description of goal formulas for

decreasing the number of proof steps [6]. Such a level description is based on the extraction

of a common up to the names of its arguments sub-formula of the set of elementary conjunc-

tions of atomic predicate formulas. These sub-formulas define generalized characteristics of

an object.

Extraction of such sub-formulas allows to construct logic-predicate networks [7], which may

change its configuration (the number of layers and the number of cells in the layer) during the

process of training.

Extraction of these sub-formulas may serve as an instrument for constructing a multi-

agent description of an object, when every agent can describe only a part of the object (these

parts are intersected), but every agent gives its own names to the elements of the whole

object [8].

Here, some AI problems formalized in such a way are under consideration. For these prob-

lems, the solving algorithms and upper bounds of their run are obtained. These upper bounds

permit to point out the parameters of the problem, which mostly influence on the complexity

of the algorithm, and to offer approaches permitting to decrease the complexity.

A model example illustrating the described approach and algorithms is given.

2. Logic-predicate approach to some AI problems and number of steps of

these problems solution

Let an investigated object be presented as a set of its elements ω = {ω1,…, ωt}. The set of

predicates p1,…, pn (every of which is defined on the elements of ω) characterizes properties

of these elements or relations between them. Logical description S(ω) of an object ω is a

collection of all true formulas in the form pi τð Þ or ¬pi τð Þ (where τ is an ordered subset of ω)

describing the properties of ω elements or relations between them.
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Let the set Ω of all investigated objects be a union of classes Ωk, (k = 1,…, K), i.e., Ω = ⋃K

k¼1Ωk.

Logical description of the classΩk is such a formula Ak xð Þ that if the formula Ak ωð Þ is true then

ω ∈ Ωk. The class description may be represented as a disjunction of elementary conjunctions

of atomic formulas.

Here and below, the notation x is used for an ordered list of the set x. To denote that there exists

such a list x that all values for variables from the list x are distinct the notation ∃x6¼Ak xð Þ is used.

The introduced descriptions allow to solve many artificial intelligence problems [9]. Main of

these problems may be formulated as follows.

Identification problem: to pick out all parts of the object ω that belongs to the class Ωk.

Classification problem: to find all such class numbers k that ω ∈ Ωk.

Analysis problem: to find and classify all parts τ of the object ω.

The solution of these problems may be reduced to the proof of logic sequents

S ωð Þ ) ∃x6¼Ak xð Þ, (1)

S ωð Þ ) ⋁K

k¼1Ak xð Þ, (2)

S ωð Þ ) ⋁K

k¼1∃x6¼Ak xð Þ, (3)

respectively, and determination of the values for x and k. The number of Ak xð Þ variables in the

sequent (2) must be equal to the number of constants in ω.

Note that the proof of any of the sequent (1), (2), or (3) answers only the question “whether it is

true?” Strictly speaking, in the sequents (1)–(3), instead of the symbols ∃x and⋁K

k¼1 there must

be words “what are the distinct values of x” denoted as ?xð Þ and “what are the values of k?”

denoted as ?Kk¼1, respectively. In such a case, the sequents (1)–(3) would take the form

S ωð Þ ) ?xÞ 6¼Ak xð Þ,ð (4)

S ωð Þ ) ?
K
k¼1Ak xð Þ, (5)

S ωð Þ ) ?
K
k¼1 ?xÞ 6¼Ak xð Þ:ð (6)

If one uses an exhaustive or a logical algorithm (derivation in a sequent calculus or proof by

resolution method), the algorithm gives the values for x and k.

The proof of sequents (1) and (3) is based on the proof of the sequent

S ωð Þ ) ∃x6¼ A xð Þ, (7)

where A xð Þ is an elementary conjunction. It follows from the fact that Ak xð Þ is a disjunction of

the form C1∨…∨Cr of elementary conjunctions of atomic formulas C1,…,Cr, and ∃x6¼ (C1∨…∨Cr)

⇔ (∃x6¼ C1∨…∨ ∃x6¼ Cr). That is why we can consecutively check the sequents of the form
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S ωð Þ ) ∃x6¼ Cj. Here, the maximal value for j is r for the sequent (1), and the sum of the

number of elementary conjunctions in all class descriptions for the sequent (3).

An exhaustive algorithm is widespread to prove (4). The total estimate for the number of steps

(i.e., the number of comparisons) for the exhaustive algorithm solving (4) is

t t–1ð Þ… t–mþ 1ð Þ
X

n

i¼1

aisi (8)

or, more roughly,

O tmasð Þ: (9)

While using a logical algorithm (derivation in a predicate sequent calculus or proof by

resolution method for predicate calculus), one must find unifier of the formula A xð Þ and some

subset of S(ω).

The number of steps (i.e., the number of comparisons) required for the solution of the system

and, hence, for the logical algorithm solving (4) is

O sa11 …sann
� �

, (10)

ai and si be the numbers of literals with the predicate pi in A xð Þ and in S(ω), respectively. More

roughly

O s
0a

� �

, (11)

where s0 = max{s1,…, sn}.

The above-received estimations are exponential over the length of A xð Þ. The ones for an

exhaustive algorithm are exponential over the number of variables, and for a logical algo-

rithm they are exponential over the maximal number of literals with the same predicate.

It allows to choose the algorithm depending on characteristics of the concrete problem

under consideration. Note that the reverse Maslov’s method [10, 11] has the same estima-

tions for the solution of the sequent (4), but makes essentially smaller number of steps on

the average.

The received estimations cannot be essentially decreased up to polynomial ones if P 6¼ NP

(classes P andNP are the classes of predicates checked in polynomial time by a deterministic or

nondeterministic Turing machine respectively). More precisely, the problem (4) is NP-complete

and, hence, the problems (1) and (3) are NP-complete, and the problems (4) and (5) are NP-

hard [4, 5].

Problem (2) is strictly connected with the so-called “open” problem ISOMORPHISM OF

GRAPHS [3], for which it is not proved neither its polynomiality nor its NP-completeness.
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2.1. Model example of description and the estimations for the number of an algorithm

steps

Figure 1. Standard different contour images of a “box”.

Figure 2. Images corresponding to extraction of common sub-formulas.

Figure 3. Image corresponding to the second extraction of common sub-formulas.

Predicate Calculus as a Tool for AI Problems Solution: Algorithms and Their Complexity
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These standard images allow to form a description (up to mirror image) of almost all boxes.

Such a description is a disjunction of four elementary conjunctions containing, respectively, 10,

8, 10, 8 variables and 30 + 2, 23 + 1, 28 + 4, 33 + 4 atomic formulas with predicates V and L,

respectively. The elementary conjunctions corresponding to the images are

Aa x1; x2; x3; x4; x5; x6; x7; x8; x9; x10ð Þ ¼ V x1; x3; x2ð Þ&V x2; x1; x5ð Þ&V x2; x5; x8ð Þ&V x3; x4; x1ð Þ&

V x3; x5; x1ð Þ&V x3; x9; x4ð Þ&V x3; x9; x5ð Þ&V x3; x9; x1ð Þ&V x4; x3; x6ð Þ&V x4; x6; x5ð Þ&

V x5; x2; x3ð Þ&V x5; x2; x4ð Þ&V x5; x3; x7ð Þ&V x5; x3; x10ð Þ&V x5; x4; x7ð Þ&V x5; x4; x10ð Þ&

V x5; x7; x2ð Þ&V x5; x10; x2ð Þ&V x6; x4; x9ð Þ&V x6; x7; x4ð Þ&V x6; x9; x7ð Þ&V x7; x5; x6ð Þ&

V x7; x6; x10ð Þ&V x8; x2; x10ð Þ&V x9; x6; x3ð Þ&V x9; x10; x6ð Þ&V x9; x10; x3ð Þ&V x10; x7; x9ð Þ&

V x10; x8; x7ð Þ&V x10; x8; x9ð Þ&L x4; x3; x5ð Þ&L x7; x5; x10ð Þ,

Ab x1; x2; x3; x4; x5; x6; x7; x8ð Þ ¼ V x1; x4; x2ð Þ&V x2; x1; x6ð Þ&V x2; x6; x3ð Þ&V x2; x1; x3ð Þ&

V x3; x2; x8ð Þ&V x4; x5; x1ð Þ&V x4; x6; x1ð Þ&V x4; x7; x5ð Þ&V x4; x7; x6ð Þ&V x4; x7; x1ð Þ&

V x5; x4; x7ð Þ&V x5; x7; x6ð Þ&V x6; x2; x5ð Þ&V x6; x2; x4ð Þ&V x6; x5; x8ð Þ&V x6; x4; x8ð Þ&

V x6; x8; x2ð Þ&V x7; x5; x4ð Þ&V x7; x8; x5ð Þ&Vðx7, x8, x4&V x8; x3; x6ð Þ&V x8; x6; x7ð Þ&

V x8; x3; x7ð Þ&L x5; x4; x6ð Þ,

Ac x1; x2; x3; x4; x5; x6; x7; x8ð Þ ¼ V x1; x3; x2ð Þ&V x2; x1; x6ð Þ&V x3; x4; x1ð Þ&V x3; x5; x1ð Þ&

V x3; x6; x1ð Þ&V x3; x7; x4ð Þ&V x3; x7; x5ð Þ&V x3; x7; x6ð Þ&V x3; x7; x1ð Þ&V x4; x3; x7ð Þ&

V x4; x7; x5ð Þ&V x4; x7; x6ð Þ&V x5; x3; x8ð Þ&V x5; x4; x8ð Þ&V x5; x8; x6ð Þ&V x6; x2; x5ð Þ&

V x6; x2; x4ð Þ&V x6; x2; x3ð Þ&V x6; x5; x8ð Þ&V x6; x4; x8ð Þ&V x6; x3; x8ð Þ&V x6; x2; x8ð Þ&

V x7; x8; x4ð Þ&V x7; x8; x3ð Þ&V x7; x4; x3ð Þ&V x8; x6; x5ð Þ&V x8; x5; x7ð Þ&V x8; x6; x7ð Þ&

L x4; x3; x5ð Þ&L x4; x3; x6ð Þ&L x5; x4; x6ð Þ&L x5; x3; x6ð Þ,

Ad x1; x2; x3; x4; x5; x6; x7; x8; x9; x10ð Þ ¼ V x1; x3; x2ð Þ&V x2; x1; x6ð Þ&V x3; x4; x1ð Þ&

V x3; x5; x1ð Þ&V x3; x6; x1ð Þ&V x3; x9; x4ð Þ&V x3; x9; x5ð Þ&V x3; x9; x6ð Þ&V x3; x9; x1ð Þ&

V x4; x3; x7ð Þ&V x4; x7; x5ð Þ&&V x4; x7; x6ð Þ&V x5; x4; x8ð Þ&V x5; x3; x8ð Þ&V x5; x8; x6ð Þ&

V x6; x2; x5ð Þ&V x6; x2; x4ð Þ&V x6; x2; x3ð Þ&V x6; x5; x10ð Þ&V x6; x4; x10ð Þ&V x6; x3; x10ð Þ&

V x7; x4; x9ð Þ&V x7; x8; x4ð Þ&V x7; x9; x8ð Þ&V x8; x5; x7ð Þ&V x8; x7; x10ð Þ&V x8; x10; x5ð Þ&&

V x9; x7; x3ð Þ&V x9; x10; x3ð Þ&V x9; x10; x7ð Þ&V x10; x6; x8ð Þ&V x10; x8; x9ð Þ&V x10; x6; x9ð Þ&

L x4; x3; x5ð Þ&L x4; x3; x6ð Þ&L x5; x4; x6ð Þ&L x5; x3; x6ð Þ:

Given a “box” inside a complex contour image containing t nodes and s be the maximal

number of occurrences of the predicate V in the description S(ω), it would be recognized

(according to the estimations (50) and (60)) in O(t10) steps by an exhaustive algorithm and in O

(s37) steps by a logical algorithm.

Can seem that many atomic formulas such as V(x5,x2,x4), V(x5,x3,x7), V(x5,x4,x7), and V(x5,x7,x2)

in V(x5,x2,x3) & V(x5,x2,x4) & V(x5,x3,x7) & V(x5,x3,x10) & V(x5,x4,x7) & V(x5,x4,x10) & V(x5,x7,x2) &

V(x5,x10,x2) are unnecessary. But if we delete such “unnecessary” formulas, it would be needed

to add to a premise of a sequent, a condition that every point that belongs to a segment (y,z)

may be substituted instead of y or z (be the second or the third argument) in every atomic
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formula with the predicate V. It would be another setting of a problem. Moreover, such

“unnecessary” formulas can help to decrease the number of algorithm run steps if we use

branch and bound algorithm inside the exhaustive algorithm or the reverse Maslov’s method

for a logical one [11].

3. Level description of classes

Below, the designation Ak xkð Þ will be used for elementary conjunctions, which are disjunctive

terms of a class description.

The notion of level description of classes was introduced in [6]. Such a description essentially

allows to decrease the number of steps for an algorithm solving every of the above-formulated

problems. This notion is based on the extraction of “frequently” appeared “sub-formulas”

P1
i y1i
� �

(i = 1,…, n1) of A1 x1ð Þ,…, AK xKð Þ with “small complexity” and changing them in these

formulas by atomic formulas p1i y1i
� �

defined by an equivalence of the form p1i y1i
� �

⇔ P1
i y1i
� �

.

New predicates p1i having new first-level arguments y1i for lists y
1
i of initial variables are called

first-level predicates. The formula A1
k x1k
� �

is received from Ak xkð Þ by means of a substitution of

p1i y1i
� �

instead of P1
i y1i
� �

Repeat the above-described procedure with all formulas A1
k x1k
� �

. After L repetitions, an L-level

description in the following form is received:

AL
k xL
� �

p11 y11
� �

⇔P1
1 y11
� �

⋮

p1n1 y1n1

� �

⇔P1
n1

y1n1

� �

⋮

pli y
l
i

� �

⇔Pl
i y

l
i

� �

⋮

pLnL yLnL

� �

⇔PL
nL

yLnL

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(12)

The solution of the problem of the form (4) with the use of the level description of classes is

decomposed on the sequential (l = 1,…, L) implementation of the actions 1–4:

1. For every i (i = 1,…, nl) check Sl�1(ω) ) ∃y1i 6¼P1
i y1i
� �

and find all lists τ1i of previous levels

constants for the values of the variable list y1i such that Sl�1(ω) )P1
i τ

1
i

� �

.

2. Introduce new l-level atomic formulas p1i y1i
� �

defined by the equalities p1i y1i
� �

⇔ P1
i y1i
� �

with new l-level variables.

3. Substitute p1i y1i
� �

instead of P1
i y1i
� �

into Al�1
k yl�1

k

� �

and obtain Al
k ylk
� �

.
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4. Add all constant atomic l-level formulas in the form p1
i τ

l
i

� �

(τ1i were received at the first step) to

Sl�1(ω) andobtainSl(ω) .Here τli τi
l are new l-level constants for the lists of (l� 1)-level constants

5. At last check SL(ω) ) ∃yLk 6¼AL
k yLk
� �

.

The decreasing of the number of steps for an algorithm solving every of the above formulated

problems (1)–(3) with the use of a level description follows from the fact that in items 1, 2, and

5, we solve the same problem as it was formulated in Section 1 and has the number (4). The

estimations of number of steps exponentially depend on the parameters of the formula, i.e., on

the right part of implication. That is why the term “small complexity” for Pl
i y

l
i

� �

must be

interpreted as “small number of variables in Pl
i y

l
i

� �

” for an exhaustive algorithm, and “small

number of literals in Pl
i y

l
i

� �

” for a logical algorithm

Why did we use quotation marks for the term “sub-formulas?” Such formulas (elementary

conjunctions) Pl
j ylj

� �

are not obliged to be precisely sub-formulas of A1 x1ð Þ,…, AK xKð Þ but may

differ from these sub-formulas in names of variables and order of conjunctive terms

Definition 1. Elementary conjunctions P and Q are called isomorphic if there is an elementary

conjunction R and substitutions λR,P and λR,Q of the arguments of P and Q, respectively, instead of

the variables in R such that the results of these substitutions coincide up to the order of literals

The substitutions λR,P and λR,Q are called unifiers of R with P and Q, respectively.

Definition 2. Elementary conjunction C is called a common up to the names of arguments sub-formula

of two elementary conjunctions A and B if it is isomorphic to some sub-formulas A0 and B0 of A and B,

respectively

For example, let A(x,y,z) = p1(x) & p1(y) & p1(z) & p2(x, y) & p3(x, z), B(x,y,z) = p1(x) & p1(y) &

p1(z) & p2(x, z) & p3(x, z)

Is the formula P(u,v) = p1(u) & p1(v) & p2(u, v) their common sub-formula?

The formula P(u,v) is their common up to the names of variables sub-formula with the unifiers

λP,A—substitution of x and y instead of u and v, respectively, and λP,B—substitution of x and z

instead of u and v, respectively. It is so because P(x,y) = p1(x) & p1(y) & p2(x,y) is a sub-formula

of A(x,y,z) and P(x,z) = p1(x) & p1(z) & p2(x,z) is a sub-formula of B(x,y,z).

An algorithm of extraction of a maximal (having a maximal number of literals) common up to

the names of arguments sub-formula C of two elementary conjunctions A and B and determin-

ing the unifiers λc,A0 and λc,B0 is described in [12]. The number of steps of this algorithm is O(aa

bb), where a and b are the numbers of literals in A and B, respectively. The minimal number of

steps of this algorithm is O((ab)2), the middle estimate is O((ab)1/2 log(ab)).

This algorithm allows to construct a level description for a set of goal elementary conjunctions.

Essential difference between maximal common up to the names of arguments sub-formulas

and sub-formulas in the level description consists in the fact that in the level description it is
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needed to extract sub-formulas with “small complexity” but not a maximal one. An algorithm

of level description construction is in [6]. It consists in sequential pairwise extraction of

common up to the names of variables sub-formulas of Ai xið Þ and Aj xj
� �

with finding their

unifiers and then the analogous procedure with the obtained sub-formulas.

Let N be the maximal number of literals Ak xkð Þ in (k = 1,…, K). The upper bound of this

algorithm number of steps is O(K2N2N).

3.1. Example of sub-formula extraction and a level description construction

Return to the example in the previous section. There, we have seen a description of a class of

“boxes” represented in Figure 1. According to these descriptions, we have received that given

a “box” inside a complex contour image containing t nodes it would be recognized in O(t10)

steps by an exhaustive algorithm and in O(s37) steps by a logical algorithm (here, s is the

maximal number of occurrences of the same predicate in the object description S(ω)).

Pairwise extraction of common up to the names of variables of elementary conjunctions,

corresponding to these images, allows to extract common up to the names of variables sub-

formulas corresponding to the images represented in Figure 2

These sub-formulas contain, respectively, 8, 8, 7, 7, 7, 8 variables and 18, 15, 11, 11, 15, 16

atomic formulas.

The following extraction by means of pairwise partial deduction between common sub-

formulas corresponding to images ab, ac, ad, bc, bd, cd gives a sub-formula corresponding to

the image represented in Figure 3.

Elementary conjunction P1(x1,x2,x3,x4,x5,x9,x10) = V(x1,x3,x2) & V(x2,x1,x5) & V(x3,x4,x1) & V(x3,

x5,x1) & V(x3,x9,x4) & V(x3,x9,x5) & V(x3,x9,x1) & V(x5,x2,x4) & V(x5,x2,x3) & V(x9,x10,x3) & T(x4,

x3,x5), corresponding to this image, defines a first-level predicate p1(x1). The first-level variable

x1 is a variable for a list of seven initial variables x1 = (x1,x2,x3,x4,x5,x9,x10). The unifier of P
1(x1,

x2,x3,x4,x5,x9,x10) with the description of ab, ac, ad, ac, and bd is an identical substitution, but

its unifier with the description of cd is a substitution of x6 instead of x5.

Elementary conjunctions P1
2(x1,x1,x2,x3,x4,x5,x8,x9,x10), P2

2(x1,x4,x5,x6,x9,x10), P3
2(x1,x3,x4,x5,x10),

P4
2(x1,x2,x5,x6,x10), corresponding to the images ab, ac, bd, cd and written with the use of the

predicate p1(x1), define second-level predicates p1
2(x1

2), p2
2(x2

2), p3
2(x3

2), p4
2(x4

2) with the

second-level variables x1
2 = (x1,x1,x2,x3,x4,x5,x8,x9,x10), x2

2 = (x1,x4,x5,x6,x9,x10), x3
2 = (x1,x3,x4,x5,

x10), x4
2 = (x1,x2,x5,x6,x10).

For example, a sub-formula corresponding to the image ab is P1
2(x1,x1,x2,x3,x4,x5,x8,x9,

x10) = p1(x1) & V(x2,x5,x8) & V(x2,x1,x8) & V(x5,x4,x10) & V(x5,x3,x10) & V(x8,x2,x10) & V(x10,x8,

x5) & V(x10,x5,x9) & V(x10,x8,x9). The unifier of P1
2(x1,x1,x2,x3,x4,x5,x8,x9,x10) with the descrip-

tion of a is an identical substitution, and with the description of b, it is a substitution of x4,x5,x6,

x7,x8 instead of x2,x4,x5,x9,x10. Descriptions of images c and d are not unified with it.

The three-level description of the image b takes the form Ab
2(x1

2,x4,x5,x6,x7) = p1
2(x1

2) & V(x5,

x4,x7) & V(x5,x7,x6) or Ab
2(x3

2,x4,x5,x6,x7) = p3
2(x3

2) & V(x3,x2,x8) & V(x5,x4,x7) & V(x5,x7,x6).
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Given a “box” inside a complex contour image containing t nodes, the proof the sequence from

S(ω) of elementary conjunction P1(x1,x2,x3,x4,x5,x9,x10) defining the first-level predicate p1(x1)

and the denotation of variables x1,x2,x3,x4,x5,x9,x10 would be done in O(t7) steps by an exhaus-

tive algorithm and in O(s11) steps by a logical algorithm.

Elementary conjunctions P1
2(x1

1), P2
2(x1

1), P3
2(x1

1), P4
2(x1

1) contain respectively only 1, 1, 0, 1

“new” variables (not containing in the first-level variables) and 7, 4, 4, 5 “new” atomic formu-

las. The proof of the sequence from S1(ω ) of these elementary conjunctions defining the

second-level predicates p1
2(x1

2), p2
2(x2

2), p3
2(x3

2), p4
2(x4

2), and the denotation of the “new”

variables would be done in O(t) steps by an exhaustive algorithm and in O(s7) steps by a

logical algorithm.

Elementary conjunctions obtained from the class description by means of second-level predi-

cates instead of the corresponding sub-formulas contain respectively 2, 0, 2, 2 “new” variables

and 7, 4, 11, 16 “new” atomic formulas. The proof of the sequence from S2(ω ) of these

elementary conjunctions and the denotation of the “new” variables would be done in O(t2)

steps by an exhaustive algorithm and in O(s16) steps by a logical algorithm.

As O(t7) + O(t) + O(t2) = O(t7) < O(t10) and O(s11) + O(s7) + O(s16) = O(s16) < O(s37) then both an

exhaustive algorithm and a logical algorithm using the built level description of the class of

“boxes” make the less number of steps then the same ones using the initial description. At the

same time, the decreasing of number of steps of a logical algorithm is more noticeably.

4. Logic-predicate network

Traditional neuron network deals with binary or many-valued characteristics of an object and

is an adder of weighted inputs followed by a function mapping the result into the segment [0,

1]. The neuron network configuration is fixed and only the weights may be changed.

A logic-predicate network is described later. The inputs for this network are atomic formulas

setting properties of the elements composing an investigated object and relations between

them [7]. The proposed model of logic-predicate network has two blocks: a training block and

a recognition block. The input of every block is an elementary conjunction of atomic predicate

formulas or their negations. Configuration of the recognition block is formed after an imple-

mentation of the training block and may be changed with its help.

The training block is a “slowly running” block. At the same time, the recognition block is a

“quickly running” one. The base of the proposed predicate network is a logic-objective

approach to AI problems and level description of classes.

The scheme of the logic-predicate network is presented in Figure 4

At a training stage of logic-predicate network construction, we have a training set of objects.

Let a training set of objects ω1,…, ωK be given to form an initial variant of the network training

block. Replace every constant ω
j
k in S(ωk) by a variable x

j
k (k = 1,…, K, j = 1,…, tk) and substitute

the sign & between the atomic formulas. Initial goal formulas A1 x1ð Þ,…, AK xKð Þ are obtained.
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Construct a level description for these goal formulas with the use of algorithm of level descrip-

tion. The first approximation to the recognition block is formed. Formulas Pl
i y

l
i

� �

(i = 1,…, nl,

l = 1,…, L) obtained in the training block (together with the unifiers) are the contents of the cells

forming the recognition block. This block runs as it was described in the section level descrip-

tion of classes.

The recognition block tries to identify a new object according to the level description of classes,

obtained in the training block.

If after the “recognition block” run an object is not recognized or has wrong classification,

then it is possible to train anew the network. The description of the “wrong” object must be

Figure 4. Scheme of the logic-predicate network.
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added to the input set of the training block. The training block extracts common sub-

formulas of this description and previously received formulas forming the recognition block.

Some sub-formulas in the level description would be changed. Then, the recognition block is

reconstructed.

4.1. Model example of a logic-predicate network construction

Given a training set for the class of contour images of “boxes” presented in Figure 1 (Section 2).

Pairwise extraction of common up to the names of variables of elementary conjunctions,

corresponding to these images, allows to extract common sub-formulas corresponding to the

images presented in Figures 2 and 3 (Section 3). Fragments of the images corresponding to a

three-level network are presented in Figure 5.

Figure 5. Fragments of the images corresponding to a three-level network.
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Given, a new image represented in Figure 6 for recognition, the network would not recognize

it because the first-level predicate is not valid.

Add the description of this control image to the input data of the training block. The extraction

of common sub-formulas for this description and the formula defining the first-level predicate

gives a formula corresponding to the image represented in Figure 7.

New second-level predicates correspond to three images represented in Figure 8.

The set of the third-level predicates coincides with the set of previous second-level predicates.

So, the recognition block is constructed anew and represents four-level description of the class.

Fragments of the images corresponding to a four-level network are presented in Figure 9.

5. Multi-agent description of an object

A problem of multi-agent description of a complex object is under consideration in this section.

It is supposed that every agent knows only a part of an investigated object description.

Moreover, she does not know the true names of elements and gives them names arbitrary. It

is similar to the parable about tree blind men who feel an elephant. To overcome such a

Figure 6. Control image.

Figure 7. Image corresponding to the new first-level predicate.

Figure 8. Images corresponding to three new second-level predicates.
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Figure 9. Fragments of the images corresponding to a four-level network.
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paradox, it is supposed that every two agents have information concerning some common part

of an object. The main difficulty in this problem is to find and identify these parts [8].

5.1. Setting of the problem

Let an investigated object is represented as a set of its elements ω ¼ ω1;…;ωtf g and is charac-

terized by the set of predicates p1,…, pn, every of which is defined on the elements of ω and

gives properties of these elements or relations between them.

Information (description) of an object is an elementary conjunction of atomic formulas with

predicates p1,…, pn and some constants as arguments.

There are m agents a1,…, am which can measure some values for some predicates of some

elements of ω. The agent aj does not know the true number of the ω elements and suppose

that she deals with the object ωj ¼ ω
j
1;…;ω

j
tj

n o

. That is, the agent aj has the information

Ij ω
j
1;…;ω

j
tj

� �

in the form of elementary conjunction of atomic formulas. It is required to

reconstruct the full description I ω1;…;ωtð Þ of ω (if it is possible).

As every agent uses her own notifications for the names of the object elements, it is needed to

find all common up to the names of arguments sub-formulas Cij of the information

Ii ω
i
1;…;ω

i
ti

� �

and Ij ω
j
1;…;ω

j
tj

� �

(i 6¼ j) and their unifiers, i.e., such substitutions for the

argument names that the extracted pairs of sub-formulas are identical.

5.2. Algorithm of multi-agent description

Below, the arguments of informationwill be omitted. Let every agent ajhas information Ij about the

described objectω (j = 1,…,m). To construct a description ofω the following algorithm is offered.

1. Change all constants in I1,…, Im by variables in such a way that different constants are

changed by different variables and the names of variables in Ii and Ij (i 6¼ j) does not

coincide. Obtain I01,…, I0m.

2. For every pair of elementary conjunctions I0i and I0j (i = 1,…,m� 1, j = i + 1,…,m) find their

maximal common up to the names of arguments sub-formula Cij and unifiers λi,ij and λj,ij.

Every argument of Cij has a unique name.

3. For every pair i and j (i > j) check if I0i and I0j contain a contradictory pair of atomic

formulas or two sub-formulas which cannot be satisfied simultaneously (for example, “x

is green” and “x is red”). If such a contradiction is established, then delete from Cij atomic

formulas containing the variables, which are in the contradictory sub-formulas. Change

the unifiers by means of elimination of these variables.

4. For every i, identify the variables in Cij (i 6¼ j) which are substituted in I0i and I0j instead of

the same variable. The names of the identified variables are changed in unifiers by the

same name.

5. With the use of the unifiers obtained in items 2–4 change the names of variables in I01,…,

I0m. Obtain I001,…, I00m.

6. Write down the conjunction I001 &… & I00m and delete the repeated atomic formulas.
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5.3. Upper bound of the number of steps

To estimate the number of the algorithm run steps, we estimate every item of the algorithm.

1. Item 1 requires not more than
P

j¼lm Ij
�

�

�

� “steps.”

2. Item 2 requires O t
tj
i ∙2

Ijk k
� �

“steps” for an exhaustive algorithm and O s
Ijk k

i ∙ Iik k3
� �

“steps” for an algorithm based on the derivation in the predicate calculus.

It is needed to summarize the above estimates for i = 1,…, m � 1, j = i,…, m. So, we have

O tt∙2sm2
� �

“steps” for an exhaustive algorithm and O ssþ3
∙m2

� �

“steps” for an algorithm

based on the derivation in the predicate calculus. Here, t and Ik k are the maximal numbers

of variables and atomic formulas in Ij (j = 1,…, m), respectively.

3. Consistency checking of the formulas Ii and Ij requires Iik k Ij
�

�

�

� “steps.” This item of the

algorithm requires not more than
Pm

i¼1 m� ið Þ Iik k “steps” that is O(m2s) “steps.”

4. For every i, identification of the variables in Cij (i > j) consists in the comparison of the

replaced part of the unifiers λi,ij and λj,ij. It requires not more than (m � i)ti
2
“steps.”

Summarizing it for i = 1,…, m we have not more than
Pm

i¼1 m� ið Þt2i ¼ O m2t2
� �

“steps”.

5. The number of “steps” required for the changing of the names of variables in I1,…, Im is

linear under
Pm

i¼1 Iik k ¼ O m Ik kð Þ “steps.”

6. The number of “steps” required for the deleting of the repeated conjunctive terms is not

more than
Pm�1

i¼1

Pm
j¼iþ1 Iik k Ij

�

�

�

� “steps.”

The whole number of the algorithm run steps is O(tt 2s m2) for an exhaustive algorithm and O

(ss + 3 m2) for an algorithm based on the derivation in the predicate calculus.

The analysis of the received estimation shows that the main contribution is made by the

summarized number of partial deduction checking (item 2).

5.4. Example of a multi-agent description

Let the initial predicates be V and L described in Section 2. Each of the three agents has a

description of one of the fragment presented in Figure 10.

According to the item 1 of the algorithm, all constants in the fragment descriptions are

replaced by variables in such a way that different constants are changed by different variables

and the names of variables in Ii and Ij (i 6¼ j) does not coincide. The fragment descriptions take

the form:

I01(x1,…,x6) = V(x1,x2,x4) & V(x1,x5,x4) & V(x1,x3,x2) & V(x1,x3,x5) & V(x1,x3,x4) & V(x2,x1,

x3) & V(x2,x3,x5) & V(x3,x2,x1) &V(x3,x6,x2) & V(x3,x6,x1) & L(x2,x1,x5),

I02(y1,…,y6) = V(y3,y1,y4) & V(y1,y2,y3) & V(y1,y5,y3) & V(y1,y6,y2) & V(y1,y6,y5) & V(y1,y6,

y3) & L(y2,y1,y5),
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I03(z1,…,z8) = V(z1,z5,z3) & V(z1,z3,z2) & V(z1,z5,z2) & V(z3,z1,z7) & V(z3,z1,z6) & V(z3,z7,

z4) & V(z3,z6,z4) & V(z3,z4,z1) & V(z4,z2,z3) & V(z4,z3,z8) & V(z4,z2,z8) & L(z7,z6,z3).

According to the item 2 of the algorithm, find maximal common up to the names of arguments

sub-formula of formulas I01(x1,…,x6) and I02(y1,…,y6). It is C12(u0,…,u4) of the form C12(u0,

…,u4) = V(u0,u1,u2) & V(u0,u3,u2) & V(u0,u4,u1) & V(u0,u4,u3) & V(u0,u4,u2) & L(u1,u0,u3).

It has unifiers λI1,C12—substitution of u0, u1, u4, u2, u3 instead of x1, x2, x3, x4, x5, respec-

tively, and λI2,C12—substitution of u0, u1, u2, u3, u4 instead of y1, y2, y3, y5, y6, respectively.

Besides,

I01(u0,u1,u2,u3,u4,x6) = V(u1,u0,u4) & V(u1,u4,u3) & V(u4,u1,u0) & V(u4,x6,u1) & V(u4,x6,u0)

& C12(u0, …, u4),

I02(u0,u1,u2,y4,u3,u4) = V(u2,u0,y4) & C12(u0,…,u4).

Maximal common up to the names of arguments sub-formula of I02(y1,…,y6) and I03(z1,…,z8)

is C23(v0,v2,v4,v5,v6,v7) of the form

C23(v0,v2,v4,v5,v6,v7) = V(v6,v2,v7) & V(v2,v4,v6) & V(v2,v5,v6) &V(v2,v0,v4) & V(v2,v0,v5).

It has unifiers λI2,C23—substitution of v2, v4, v6, v7, v5, v0 instead of y1, y2, y3, y4, y5, y6,

respectively, and λI3,C23—substitution of v0, v2, v6, v5, v4, v7 instead of z1, z3, z5, z6, z7, z8,

respectively. Besides,

I02(v2,v4,v6,v7,v5,v0) = V(v2,v0,v6) & L(v4,v2,v5) & C23(v0,v2,v4,v5,v6,v7),

I03(v0,z2,v2,v6,z5,v5,v4,v7) = V(v2,v6,v0) & V(v0,z5,v2) & V(v0,v2,z2) & V(v0,v5,z2) & V(v6,

z2,v2) & V(v6,v2,v7) & L(v4,v5,v2) & C23(v0,v2,v4,v5,v6,v7).

As I02(v2,v4,v6,v7,v5,v0) contains V(v2,v0,v6) and I03(v0,z2,v2,v6,z5,v5,v4,v7) contains V(v2,

v6,v0) and according to the definition of the predicate V, the formula V(x,y,z) & V(x,z,y) is a

contradiction, so substitutions with this unifiers cannot give a consistent description of the

object. After deleting from I02(y1,…,y6) and I03(z1,…,z8), the variables y1 and z3, respectively,

a new maximal common up to the names of arguments their sub-formula C’23(v0,v2,v4,v5,v6,

v7) of the form C’23(v0,v1,v2) = L(v1,v0,v2) will be received with the unifiers λI2,C’23— substi-

tution of v0, v1, v2 instead of y1, y2, y3, respectively, and λI3,C’23—substitution of v2, v0, v1

instead of z3, z6, z7, respectively. Besides,

Figure 10. Fragments of the image received by three agents.
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I02(v0,v1,v2,y4,y5,y6) = V(v2,v0,y4) & V(v0,v1,v2) & V(v0,y5,v2) & V(v0,y6,v1) &V(v0,y6,y5) &

V(v0,y6,v2) & C’23(v0,v1,v2),

I03(z1,z2,v2,z4,z5,v0,v1,z8) = V(z1,z5,v2) & V(z1,v2,z2) & V(z1,z5,z2) & V(v2,z1,v1) & V (v2,z1,

v0) & V(v2,v1,z4) & V(v2,v0,z4) & V(v2,z4,z1) & V(z4,z2,v2) & V(z4,v2,z8) & V(z4,z2,z8) &

C’23(v0,v1,v2).

Maximal common up to the names of arguments sub-formula of I1(x1,…,x6) and I3(z1,…,z8) is

C13(w0, …,w6) in the form

C13(w0,…,w6) = V(w2,w4,w6) & V(w2,w5,w6) & V(w2,w0,w4) & V(w2,w0,w5) & V(w0,w1,w2).

It has unifiers λI1,C13— substitution of w2, w4, w0, w6, w5, w6 instead of x1, x2, x3, x4, x5, x6,

respectively, and λI3,C13—substitution of w0, w2, w6, w1, w5, w2 instead of z1, z3, z4, z5, z6,

z7, respectively. Besides,

I01(w2,w4,w0,w6,w5,w1) = V(w2,w0,w6) & V(w0,w1,w4) & V(w0,w4,w2) & L(w2,w4,w5) &

C13(w0,…,w6),

I03(w0,z2,w2,w6,w1,w5,w4,z8) = V(w0,w2,w3) & V(w0,w1,w3) & V(w2,w6,w0) & V(w6,w3,

w2) & V(w6,w2,w7) & V(w6,w3,w7) & C13(w0,…,w6).

As I01(w2,w4,w0,w6,w5,w1) contains V(w2,w0,w6), I3(w0,z2,w2,w6,w1,w5,w4,z8) contains V

(w2,w6,w0) and according to the definition of the predicate V, the formula V(x,y,z) & V(x,z,y) is a

contradiction, so substitutions with this unifiers cannot give a consistent description of the object.

After deleting from I01(x1,…,x6) and I03(z1,…,z8) literals with the variables x1 and z3, respec-

tively, a new maximal common up to the names of arguments their sub-formula

C013(w0,w1,w2) of the form C’13(w0,w1,w2) = L(w1,w0,w2)

will be received with the unifiers λI1,C’13—substitution of w0, w1, w2 instead of x1, x2, x5,

respectively, and λI3,C’13—substitution of w2, w1, w0 instead of z3, z4, z5 respectively. Besides,

I01(w0,w1,x3,x4,w2,x6) = V(w0,w1,x4)&V(w0,w2,x4)&V(w0,x3,w1)&V(w0,x3,w2)&V(w0,x3,x4)

& V(w1,w0,x3) & V(w1,x3,w2) & V(x3,w1,w0) & V(x3,x6,w1) & V(x3,x6,w0) & C’13(w0,w1,w2),

I03(z1,z1,w2,w1,w0,z6,z7,z8) = V(z1,w0,w2) & V(z1,w2,z2) & V(z1,w0,z2) & V(w2,z1,z7) & V

(w2,z1,z6) & V(w2,z7,w1) & V(w2,z6,w1) & V(w2,w1,z1) & V(w1,z2,w2) & V(w1,w2,z8) & V

(w1,z2,z8) & C013(w0,w1,w2).

According to the item 4 of the algorithm, we identify new variables substituted instead of the

same initial variable. That is we identify the following variables:

u0 and w0 (are substituted instead of the variable x1),

u1 and w1 (are substituted instead of the variable x2),

u2 and w2 (are substituted instead of the variable x4),

u0 and v0 (are substituted instead of the variable y1),

u1 and v1 (are substituted instead of the variable y2),
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u2 and v2 (are substituted instead of the variable y3),

v0 and w0 (are substituted instead of the variable z6),

v1 and w1 (are substituted instead of the variable z3),

v2 and w2 (are substituted instead of the variable z7).

The identified variables denote as α 0, α 1, and α 2. So, we have the equalities u0 = v0 = w0 = α

0, u1 = v1 = w1 = α 1, u2 = v2 = w2 = α 2.

As a result, we have the following descriptions of the fragments:

I001(α 0, α 1,u4,u2, α 2,x6) = V(α 0, α 1,u2) & V(α 0, α 2,u2) & V(α 0,u4, α 1) & V(α 0,u4, α 2) & V

(α 0,u4,u2) & V(α 1, α 0,u4) & V(α 1,u4, α 2) & V(x3, α 1, α 0) & V(u4,x6, α 1) & V(u4,x6, α 0) &

L(α 1, α 0, α 2),

I002(α0, α 1,u2,y4, α 2,u4) = V(u2, α 0,y4) & V(α 0, α 1,u2) & V(α 0, α 2,u2) & V(α 0,u4, α 1) & V

(α 0,u4, α 2) & V(α 0,u4,u2) & L(α 1, α 0, α 2),

I003(z1,z2, α 2,z4,z5, α 0, α 1,z8) = V(z1,z5, α 2) & V(z1, α 2,z2) & V(z1,z5,z2) & V(α 2,z1, α 1) &

V(α 2,z1, α 0) & V(α 2, α 1,z4) & V(α 2, α 0,z4) & V(α 2,z4,z1) & V(z4,z2, α 2) & V(z4, α 2,z8) &

V(z4,z2,z8) & L(α 1, α 0, α 2).

Their conjunction

V(α0, α 1,u2) & V(α 0, α 2,u2) & V(α 0,u4, α 1) & V(α 0,u4, α 2) & V(α 0,u4,u2) &

V(α 1, α 0,u4) & V(α 1,u4, α 2) & V(x3, α 1, α 0) & V(u4,x6, α 1) & V(u4,x6, α 0) &

V(u2, α 0,y4) & V(z1,z5, α 2) & V(z1, α 2,z2) & V(z1,z5,z2) & V(α 2,z1, α 1) &

V(α 2,z1, α 0) & V(α 2, α 1,z4) & V(α 2, α 0,z4) &V(α 2,z4,z1) & V(z4,z2, α 2) &

V(z4, α 2,z8) & V(z4,z2,z8) & L(α 1, α 0, α 2)

allows to “stick together” the images of fragments according to the same variable. The image

corresponding to the result of “sticking” is presented in Figure 11.

If a description of the investigated object is presented in the database, it may be found according

the principle “the nearest neighbor” with the use of metric for predicate formulas presented in

[13].

Figure 11. Image corresponding to the result of “sticking”.
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6. Conclusion

Logic-predicate approach to an AI problem has a rather powerful capability, essentially when

an investigated object is a compound one and is characterized by properties of its elements and

relations between them.

Setting of pattern recognition problems considered in Section 2 (except the problem (2)) differs

from the classical one. The setting of the problems (1) and (3), in which it is needed to find parts

of an investigated object, turns out to be a rather difficult one in the frameworks of a standard

approach in the frameworks of which an object is regarded as a whole indivisible one.

In particular, an exponential estimation for number of propositional variables in a formula

simulating a predicate formula in a finite domain for planning problems T�|Act|�OP is men-

tioned in [14]. Here, T is the number of time stages, |Act| is the number of schemes of actions,

O is the number of objects in the domain, P is the maximal number of parameters in schemes of

actions. In Section 2, the analogous estimate (50) was received for an exhaustive algorithm

solving the problem (4).

The problem (2) is polynomial equivalent to an “open” problem ISOMORPHISM OF GRAPHS

[3] and the problems (1) and (3) are NP-complete.

A notion of level description of classes has been introduced in Section 3 in order to decrease the

number of steps of algorithms solving these problems. Such a description reduces the solution

of the main problem to a series of solutions of the same form problems with the inputs with the

essentially less notation lengths. At the same time, the constructing of a level description still

deals with big input data. So, a problem with big input data is solving only once, and then the

problem with the essentially less input data is solving repeatedly.

The idea of decomposition of a problem to a series of the “less dimension” problems is not a

new one and is frequently used. The difficulty consists in a precise definition of the term

“common sub-formula of small complexity.”

The development of a precise definition and of an algorithm for the extraction of a common up

to the names of arguments sub-formula of two elementary conjunctions (and their unifiers)

allows not only to work out an algorithm of level description construction but also to find an

approach to the solution of some else AI problems.

Note that the extracted sub-formulas define generalized characteristics of an object. This has an

analogy in medical diagnostics: initial characteristics are symptoms and the generalized ones

are syndromes.

Level description of classes allowed to introduce the notion of logic-predicate network described

in Section 4. Such a network may be regarded as a self-training network which changes its

configuration after an additional training. It corresponds to the fact that in the process of a man

training, new notions and relations between them are formed in a human brain.

The presence of an algorithm for the extraction of a common up to the names of arguments

sub-formula of two elementary conjunctions (and their unifiers) allows to find an approach to

a problem of multi-agent description of an object described in Section 5. Just an extraction of
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such sub-formulas and determining of their unifiers with the input formulas makes possible to

“stick together” such parts of descriptions in which different agents gives different names to

one element of the whole object.

Note that the formulation of the problem (1) from Section 2 coincides with the one for a well-

known problem CONJUNCTIVE BOOLEAN QUERY from [3]. The difference is in the imple-

mentation of these problems. While repeated implementation of the problem (1) the premise

S(ω) of the sequent S ωð Þ ) ∃x6¼Ak xð Þ is different, while every implementation and the conclu-

sion Ak xð Þ is a constant part. That is why just a collection of class descriptions A1 x1ð Þ, …,

AK xKð Þ permits to construct a level description.

While repeated implementation of the problem CONJUNCTIVE BOOLEAN QUERY, the

premise S(ω) of the sequent S ωð Þ ) ∃x6¼Ak xð Þ is constant while every implementation and

queries Ak xð Þ are different while every implementation. An approach to the construction of a

level data base is presented in [15].

The possibility of reduction of an object description length by means of adding a formula

setting some properties of initial predicates to the premise of a sequent was mentioned in the

model example in Section 2. Properties of initial predicates also were used in the item 3 of the

algorithm of multi-agent description. In fact, in the both cases instead the sequent of the form

(4) S ωð Þ ) ∃x6¼A xð Þ it is needed to check another sequent of the form C yð Þ S ωð Þ ) ∃x6¼A xð Þ,

where C yð Þ is a set of formulas setting properties of initial predicates. Investigation of compu-

tational complexity of such a form sequent may be an interesting problem in the further

research.

To solve the problem (2) and to extract a maximal common up to the names of arguments sub-

formula of two elementary conjunctions it is needed to check whether two elementary conjunc-

tions are isomorphic. A polynomial in time rough algorithm for such a checking was offered in

[12] by Petrov. Numerical experiments with this algorithm give over 99.95% of valid results.
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