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Abstract

These days, flying insects are seen as genuinely agile micro air vehicles fitted with smart
sensors and also parsimonious in their use of brain resources. They are able to visually
navigate in unpredictable and GPS-denied environments. Understanding how such tiny
animals work would help engineers to figure out different issues relating to drone
miniaturization and navigation inside buildings. To turn a drone of ~1 kg into a robot,
miniaturized conventional avionics can be employed; however, this results in a loss of
their flight autonomy. On the other hand, to turn a drone of a mass between ~1 g (or less)
and ~500 g into a robot requires an innovative approach taking inspiration from flying
insects both with regard to their flapping wing propulsion system and their sensory
system based mainly on motion vision in order to avoid obstacles in three dimensions or
to navigate on the basis of visual cues. This chapter will provide a snapshot of the
current state of the art in the field of bioinspired optic flow sensors and optic flow-
based direct feedback loops applied to micro air vehicles flying inside buildings.

Keywords: optic flow, sense and avoid system, micro air vehicle (MAV), unmanned
aerial vehicle (UAV), bionics, bioinspired robotics

1. Introduction

1.1. The biorobotic approach

Fifty years ago, Karl von Frisch observed that foraging bees fly to a distance somewhat greater

than 13 km from their hive in search of food sources [1], but honeybees were not able to be

trained to collect a reward beyond this limit; it thus corresponded to their maximum foraging

distance. The area of the circle, whose center is the hive and radius the maximum foraging

distance, represents a huge surface area of 530 km2. Even knowing that the average length of a

honeybee is about 13 mm, the volume of its brain is lower than 1 mm3 and contains around

960,000 neurons [2, 3], and each worker honeybee’s compound eye contains ~5500 facets

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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comprised of nine photosensitive cells (i.e., 99,000 photosensitive cells for the whole worker bee’s

visual system) [4]; it is still unknown what visual cues are used during honeybees’ journeys nor

how they are used in flight to recognize its location and to navigate within a space whose

dimensions are a million times larger than their bodies. Karl von Frisch was awarded the Nobel

Prize in Physiology or Medicine 1973 for his scientific achievement in describing the honeybees’

“waggle dance,” which is used by bees to communicate both the distance and the azimuthal

orientation of a profitable nectar source. The 8-shaped geometry of the waggle dance codes the

position of a nectar source. The duration of the waggle is closely correlated to the distance of the

nectar source [5], and the honeybee’s odometer appears to be driven by motion vision [6]. The

“8” orientation is highly correlated to the azimuthal orientation of a nectar source [1]. In flight,

honeybees use a kind of “solar compass” based on polarized ultraviolet light [7–9] instead of a

“magnetic compass” to maintain their heading toward the nectar source or their hive. Karl von

Frisch therefore concluded that bees “recruited” by this dance used the information encoded in it

to guide them directly to the remote food source. To better understand the honeybee’s recruit-

ment process, the Biorobotics Lab at the Freie Universität Berlin has developed a robotic honey-

bee mimicking the “waggle dance” using a biorobotic approach [10].

While the biological substrate has not yet been fully identified [12], the biorobotic approach is

particularly useful both in the fields of neuroscience and robotics [13–20], because the robotic

model can be tested under similar experimental conditions such as ethological experiments

and it can suggest new biological hypotheses (Figure 1). From these interactions between

ethological experiments, computational models, and robotics (Figure 1), uncertainties can be

removed by considering the minimum requirements to perform any navigational tasks (e.g.,

[21–25]). Insect-sized micro air vehicles (MAVs) are increasingly becoming a reality [26–31]

and in the future will have to be fitted with sensors and flight control devices enabling them to

perform all kinds of aerial maneuvers inside buildings including takeoff, floor, ceiling and wall

avoidance, tunnel-following, and landing.

Figure 1. Description of the biorobotic approach using successive interactions between animal behavior, computational

models, and robotics. Picture of the honeybee landing on a milk thistle flower from Wikimedia commons (picture taken

by Fir0002/Flagstaffotos under CC-BY license). Picture of the BeeRotor robot fitted with a twin CurvACE artificial

compound eye from [11] under CC-BY license.
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1.2. What is optic flow?

The optic flow perceived by an agent (an animal, a robot, or a human) is particularly depen-

dent on the structure of the environment [32–36]. Optic flow can be defined by a vector field of

the apparent angular velocity of objects, surfaces, and edges in a visual scene caused by the

relative motion between an agent and the scene (Figure 2). Optic flow ω
!

(Eq. (1)) is the

combination of two optic flow components: a translational optic flow ω
!

T and a rotational optic

flow ω
!

R [35]:

ω
!
¼ ω

!

T þ ω
!

R (1)

Flying insects like hymenopterans stabilize their heads by compensating for any body rota-

tions [37]. Accordingly, any robot’s visual system is assumed to be perfectly stabilized in space,

therefore canceling all rotation due to body pitch and roll with respect to the inertial frame.

Consequently, the robot’s visual system experiences only translational optic flow, and the

visual system will receive a purely translational optic flow (ω
!

R ¼0
!

). The translational optic

flow (expressed in rad/s) can be defined as follows:

ω
!

T ¼ �

V
!

� V
!

� d
!

� �

� d
!

D d
!

� � (2)

where d
!

is a unit vector describing the viewing direction, V
!

is the translational velocity vector

and D d
!

� �

is the distance from the object as seen by photosensors.

However, in the horizontal plane, the magnitude of the translational optic flow, which

describes the front-to-back motion occurring when the agent moves forward, depends only

on the ratio between the relative linear speed V and the distance Dw from the objects providing

an optical contrast in the environment (the walls in Figure 2) and the azimuth angle w between

the gaze direction and the speed vector (Eq. (3)):

Figure 2. The LORA robot fitted with a heading-lock system travels straightforward through a tapered corridor perceiv-

ing a purely translational optic flow. This optic flow experienced by the robot is schematized by the white arrows (i.e.,

angular velocity vectors) on the walls (adapted from [25] under CC-BY license).
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ωT ¼
V

Dw

� sin wð Þ (3)

Translational optic flow (Eq. (3)) is particularly appropriate for short-range navigation because

it depends on the ratio between (i) the relative linear speed of an object in the scene with

respect to the agent and (ii) the distance from obstacles in the surrounding environment: this

visual angular speed cue does not require either speed or distance measurement (Eq. (3)).

1.3. Why use optic flow in robotics?

Flying robots are today capable of accurately evaluating their pose in outdoor flight using conven-

tional sensors such as the global positioning system (GPS) and inertial measurement unit (IMU).

This is very efficient for long-range navigation at hundreds of meters above the ground, without

any obstacles around, for example, an airplane in cruising flight. Nevertheless, the expanding set

of roles for flying robots increasingly calls for them to operate close to obstacles (<1 m) in all

directions in GPS-denied or cluttered environments including buildings, warehouses, performance

halls, or urban canyons. Robots can have difficulties receiving the GPS signal, but they have to pick

up the 3D structure of the surrounding environment to avoid obstacles and accomplish their

missions. At such a short distance from obstacles (<1 m), the environment is completely

unpredictable: it is obviously very difficult to map the entire environment in 3D at such a scale in

real time. A more efficient approach would consist of the robot continuously using local informa-

tion to avoid obstacles while waiting for global information to pursue its mission. Most of the time,

the use of emissive proximity sensors such as ultrasonic or laser range finders, radar, or scanning

light detection and ranging (LIDAR) has been considered for this purpose. Such emissive sensors

can be bulky, stealth-compromising, high energy, and low-bandwidth, compromising their utility

for tiny and insect-like robots [26–31]. It is well known that flying insects are sensitive to optic flow

[16, 19, 36, 38]; moreover, they are able to measure the optic flow of their surroundings irrespective

of the spatial texture and contrast [39, 40] and also that some of their neurons respond monoton-

ically to optic flow [36, 41]. Consequently, there are considerable benefits in terms of both number

of pixels and computational resources by designing guidance systems for micro flying robots fitted

with passive sensing, such as motion vision, inspired by flying insects.

1.4. The chicken-and-egg problem of translational optic flow

A given magnitude of translational optic flow is a kind of chicken-and-egg problem (Eq. (3)),

because an infinite number of couples (speed; distance) lead to the same speed/distance ratio,

in other words the same optic flow magnitude, coming from a surface (Figure 3a). For

instance, an optic flow magnitude of 2 rad/s (i.e., 115�/s) can be generated by a robot flying at

1 m/s at 0.5 m above the floor, flying at 2 m/s at 1 m above the floor, and so on (Figure 3a). To

get around the optic flow chicken-and-egg problem, roboticists introduced the assumption

prevailing in those days that robots have to measure their own speed by using a tachymeter on

wheels [21, 42], a GPS unit [43], or a custom-built Pitot tube [44], in order to assess the distance

from obstacles and then to avoid them, and conversely have to measure the distance from

obstacle by means of an ultrasonic distance sensor [45] in order to assess their own ground

speed. However, flying insects are not able to directly measure their true ground speed (but
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only their airspeed [46] or their airspeed rate [38]) or their distance from obstacles by using

their binocular vision which is too limited [47]. Flying insects do not actually solve the optic

flow chicken-and-egg problem to cross tunnels but instead use visuomotor feedback loops

directly based on optic flow by perceiving it in a wide field of view with their compound eyes

seeing both the floor and the ceiling (Figure 3b) and also the walls [48, 49].

2. Bioinspired optic flow sensors

The criteria for evaluation of the potential of optic flow sensors for MAV applications include:

• Visual sensors must be able to deal with the large dynamic range of natural irradiance

levels, which can cover up to 9 decades during the course of the day.

• Range of optic flow covered (i.e., the angular speed magnitude), defined by the number of

optic flow decades. There is now evidence that flying insects are able to measure the optic

flow over a range of more than 1.4 decades [41, 50].

• Accuracy and precision, defined by systematic errors and coefficients of variation CV < 0:5.

• Output refresh rate, defined by the instantaneous output frequency (>10 Hz).

2.1. Taking inspiration from the compound eye

The structure of a compound eye is based on a large number of repeating units called omma-

tidia (Figure 4). Each ommatidia is composed of a facet (hexagonal lens, diameter from ~30 to

Figure 3. (a) The chicken-and-egg problem of translational optic flow. An infinite number of couples (speed; distance)

lead to the same speed/distance ratio ωground (the same angular velocity/optic flow magnitude). For instance, in this

illustration an optic flow magnitude of ωground ¼ 2 rad/s (or 115
�

/s) is coming from the ground. (b) To get around the optic

flow chicken-and-egg problem shown in (a), the flying agent has to pick up optic flow in a wide field of view or in

different parts of the field of view, here by jointly measuring optic flow coming from the ceiling (ωceiling) and the floor

(ωfloor).
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~60 μm) which focuses the incoming light toward the photosensitive cells [19, 51]. Each

ommatidia optical axis is separated by an interommatidial angle Δf which defines the spatial

acuity of the visual system [52]. The interommatidial angles Δf are smaller in the frontal part

of the visual system than in the lateral, dorsal, or ventral parts as observed in any compound

eye [52–54]. In bioinspired robots, a sine-law gradient (Eq. (4)) is generally used in the hori-

zontal plane in artificial compound eye design [21]:

Δf wð Þ ¼ Δf 90
�� �

� sin wð Þ (4)

Once the spatial sampling has been carried out, the narrowness of the ommatidia performs a

type of automatic low-pass filtering on the visual signals reaching the photosensitive cells. The

diffraction of the light through the lens leads to a Gaussian angular sensitivity [52, 55, 56],

which acts as a blurring effect. This angular sensitivity is described by the width at half height,

called the acceptance angle Δr (Eq. (5)):

Δr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

Dl
þ
Dr

f

s

(5)

where Dl is the lens diameter, λ is the wavelength, Dr is the rhabdom diameter (i.e., pixel

diameter in artificial design), and f is the ommatidium focal length. The acceptance angle Δr and

the interommatidial angle are roughly equal (Δr ≈Δf) in diurnal insects [52] for each ommatid-

ium, which allows for continuity in visual signals (low aliasing) and avoids oversampling the

environment. Moreover, the photosensitive cells’ dynamics can achieve a temporal frequency up

to 100 Hz in dipterans [57]; well beyond human vision (central vision up to 50 Hz).

In artificial design, most of the time Dl ≫λ, the light diffraction is therefore not considered;

thus, Δf ¼ d
f with d the pixels pitch and f the focal length and Δr ≈Δf can be obtained by

Figure 4. Head of a blue bottle fly Calliphora vomitoria, Austin’s ferry, Tasmania, Australia (2009). Picture: J.J. Harisson

under CC-BY license. There are 6000 ommatidia per compound eye of a blowfly Calliphora erythrocephala. The two

compound eyes cover 85% of the visual field, which represents a full panoramic view field except in their blind spot

caused by their own body. The minimum interommatidial angle of a Calliphora erythrocephala visual system is ΔΦ ¼ 1:1
�

in the frontal part, up to 2� in the ventral part [52].
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slightly defocusing the lens (see section 2.2.). Two artificial compound eyes have been already

built with either inorganic semiconductor photoreceptors comprising 630 pixels with

Δf ¼ Δr ¼ 4:2
�

[58] or organic photodiodes comprising 256 pixels with Δf ¼ 11
�

and

Δr ¼ 9:7
�

[59].

2.2. Taking inspiration from biological signal processing

Thirty years ago, a bioinspired local motion sensor (LMS) was designed [60, 61], the signal

processing scheme of which was based on a time-of-travel algorithm directly inspired from

fly’s motion-sensitive neurons [19, 51, 62]. A time-of-travel algorithm directly measures the

delay Δt taken by a contrast edge to travel between the visual axes of two adjacent pixels,

separated by an inter-pixel angle Δf. The optic flow is therefore naturally an inverse function

of this delay Δt (Eq. 6), and the optic flow range measurement depends jointly on the choice of

the inter-pixel angle Δf and on the timespan, which was reported from 10 to 230 ms in fly’s

motion-sensitive neurons [19, 51, 62] and considered in the LMS signal processing as well:

ωmeas ¼

Δf

Δt
(6)

The signal processing scheme of the bioinspired LMS is depicted in Figure 5a and can be

broken down into the eight following steps:

1. Spatial sampling realized by the photoreceptor’s optical axes separated by an angle Δf

[52, 55, 56].

Figure 5. (a) Original analog local motion sensor (LMS). Only the thresholding stage of the ON contrast pathway is

represented here, but both ON and OFF contrast pathways were implemented in the original full analog LMS in [61]

(redrawn from [19]). (b) Analog-digital implementation of a local motion sensor (redrawn from [25, 63]).

Taking Inspiration from Flying Insects to Navigate inside Buildings
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2. Spatial low-pass filtering performed by the Gaussian angular sensitivity function of the

defocused lens (correspond to a blurring effect) and characterized by the angular width at

half height, called the acceptance angle Δr. Unlike natural compound eyes in which

spatial low-pass filtering automatically results from diffraction [52], the cutoff spatial

frequency depends on the amount of defocusing [60, 61].

3. Phototransduction: a logarithmic amplifier was originally used (five decades of lighting)

[60, 61], a linear amplifier was used (three decades of lighting) [64], or more recently auto-

adaptive photodetectors were designed as artificial retinas [58, 65], which consisted of a

logarithmic amplifier associated with a high-gain negative feedback loop (seven decades

of lighting). Results with auto-adaptive pixels are reminiscent of analogous experiments

carried out on single vertebrate [66] and invertebrate [67] photodetectors.

4. Temporal high-pass filtering of photoreceptor signals in each channel not only to cancel

the direct component but also to accentuate the transient signals created by contrasting

edges (derivative effect).

5. Temporal low-pass filtering to reduce noise (e.g., 100 Hz interference originating from

artificial lighting). Such temporal band-pass filtering was identified in two large mono-

polar cells L1 and L2 inside the fly’s lamina [68–70]. However, two discrepancies can be

reported in the technological design: the high-pass and low-pass filters are switched with

respect to the biological model in the bioinspired LMS due to electronic constraints, and

the low-pass filter is the fourth order in the bioinspired LMS rather than the third order in

the biological model.

6. Hysteresis thresholding performed on signals to detect contrast transition and also to

discriminate ON and OFF transitions. There is now strong evidence that the fly’s motion

pathway is fed by separate ON and OFF pathways [51, 71, 72].

7. Pulse generation on the first channel though a low-pass filter, then generating a long-lived

decaying signal (first-order unit impulse response) approximating a mathematical inverse

function [60, 61].

8. Pulse generation on the second channel, sampling the long-lived decaying signal coming

from the first channel through a diode minimum detector circuit [60, 61]. The LMS output is

therefore a pulse-shaped signal whose magnitude represents the local optic flowmagnitude.

Accordingly, the optic flow measurement ωmeas (here in volts) results from sampling the long-

lived exponentially decaying function (with a time constant τ), varies inversely with Δt, and

hence increases with the true optic flow ω according to the following equation:

ωmeas ωð Þ ¼ Vcc � e
�

ω0
ω (7)

ω0 ¼
Δf

τ

(8)

with Vcc representing the power supply voltage. This original analog functional scheme can

measure the optic flow in a range ω0

4 ; 4 � ω0

� �

, corresponding to a 1.2 decade of optic flow

measurement.
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This bioinspired LMS (Figure 5) features three major benefits: firstly, the LMS output responds

monotonically to the magnitude of the optic flow and therefore acts like a local optic flow sensor,

which is vital to get non-equivocal information about the distance from surrounding obstacles;

secondly, the refresh rate of the LMS output is asynchronous and relatively high (>10 Hz

depending on lighting conditions) which is suitable for indoor navigation; and, thirdly, the

thresholding stage makes the LMS output virtually independent of texture and contrast.

The bioinspired LMS scheme based on a time-of-travel algorithm (Figure 5) is not a “correlator

scheme” or “Hassenstein-Reichardt detector” (HR detector) [73, 74] whose output is depen-

dent on texture and contrast. Another variant of the bioinspired LMS based on a time-of travel

algorithm has been proposed over the past 20 years and is known as “facilitate-and-sample”

algorithm [75, 76].

2.3. Local motion sensors and artificial retinas

Since the original analog design depicted in Figure 5a [60, 61], various versions of the

bioinspired LMS have been built including analog-digital implementations as depicted in

Figure 5b (for an FPAA implementation and an 8-bit microcontroller implementation running

at 1 kHz [77], for an FPGA implementation running at 2.5 or 5 kHz [78], for an LTCC

implementation running at 1 kHz [25, 79, 80], and for a 16-bit microcontroller implementation

running at 2 kHz) [64]. These various versions of the bioinspired LMS have been built in order

to reduce size, mass, or power consumption while benefiting from computational resources to

increase the number of LMSs.

An original LMS version was developed including an iC-Haus™ LSC 12-channel photosensor

array forming 6 pixel and five LMSs [63]. The outputs of five LMS were associated to a step

merging based on a median filter; both the precision and the accuracy in the optic flow

measurement were greatly improved [63]. Moreover, to increase by at least four times the

number of LMSs that can be embedded in a 16-bit microcontroller, a linear interpolation

applied to photosensor signals was used to reduce the sampling rate and thus save computa-

tional resources [81]. The best trade-off between computational load and accuracy was found

at a sampling rate of 200 Hz [81].

In the framework of a European project called CurvACE (2009–2013; www.curvace.org),

aiming at mimicking the Drosophila melanogaster’s compound eye, the first artificial compound

eye was built [58]. This functional prototype with its 630 pixels (forming 630 artificial omma-

tidia) offered a wide view field (180 � 60�) over a significant range of lighting conditions and

weights ~2 g [58] (see twin CurvACE version in Figure 8a).

A recent optic flow sensor based on the M2APix retina (M2APix stands for Michaelis–Menten

auto-adaptive pixel [65]) can auto-adapt in a 7 decade of lighting range and responds appro-

priately to step changes up to �3 decades [82]. The pixels do not saturate thanks to the

normalization process performed by the very large-scale integration (VLSI) transistors [65];

this is due to the intrinsic properties of the Michaelis–Menten equation [66]. A comparison of

the characteristics of auto-adaptive Michaelis–Menten and Delbrück pixels [83] under identical

lighting conditions (i.e., integrated in the same retina) demonstrated better performance of the

Michaelis–Menten pixels in terms of dynamic sensitivity and minimum contrast detection [65].
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Different kinds of algorithms have been developed to compute local motion; these have pro-

duced different hardware implementations including templates, time of travel, feature track-

ing, edge counting, edge correlation, and the Hassenstein-Reichardt correlator [30, 84, 85] and

also different software implementations [85]. However, analog VLSI motion sensors provide

significant reductions in power consumption and payload while increasing bandwidth,

improving both precision and accuracy in optic flow measurement for MAVapplications.

3. Optic flow-based navigation inside buildings

3.1. Obstacle avoidance in the horizontal plane

3.1.1. Keeping the bilateral optic flow constant: a speed control system

The idea of introducing a speed control system based on optic flow was firstly developed by

Coombs and Roberts [86]. Their Bee-Bot adjusted its forward speed to keep the optic flowwithin

a measurable range, using a bilateral optic flow criterion to control the robot’s speed. The

bilateral optic flow criterion (sum of the left and right optic flows) as a feedback signal to directly

control the robot’s speed was first introduced by Santos-Victor and colleagues [87] onboard the

Robee robot. Qualitatively, the robot’s speed was scaled by the level of the environment’s visual

clutter. Since then, the bilateral optic flow criterion as a feedback signal to directly control the

robot’s forward speed has been tested onmany robots in both straight and tapered corridors [25,

87–94]. The desired bilateral optic flow was ~12�/s for the Bee-Bot robot [87], ~19�/s in [88], ~46�/s

in [88], ~21�/s in [91], 190, or 250�/s in [25] and [94]. The higher the desired bilateral optic flow, the

faster the robot will advance while moving close to the walls.

3.1.2. Dual optic flow regulation

The first optic flow regulator was originally developed for ground avoidance when following

terrain [25, 95]. An optic flow set point is compared to a measured optic flow to provide an

error signal, this latter feeding into a regulator controlling a force orthogonal to the direction of

motion. The combination of a unilateral optic flow regulator for controlling the lateral posi-

tioning on either side and a bilateral optic flow regulator for controlling the forward speed has

been called a dual optic flow regulator [96]. The dual optic flow regulator concept was

originally developed for aerial vehicles endowed with natural roll and pitch stabilization

abilities, in which planar flight control systems can be developed conveniently [96] in order to

mimic honeybees’ abilities in the horizontal plane [16, 39, 97, 98] and to avoid the weaknesses

of the optic flow balance strategy in the presence of lateral openings (see review [99]). The dual

optic flow regulator was implemented for the first time onboard an 878-gram fully actuated

hovercraft called LORA, which stands for lateral optic flow regulator autopilot [25, 94] (Figure 7a).

The dual optic flow regulator is based on:

i. A unilateral optic flow regulator (Figure 6b) that adjusts the hovercraft’s lateral thrust so

as to keep the two perceived lateral optic flows higher (left or right) equal to a sideways

optic flow set point (noted ωsetSide). The outcome is that the distance to the nearest wall

becomes proportional to the hovercraft’s forward speed V f , as determined in (ii).
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ii. A bilateral optic flow regulator (Figure 6c) adjusts the hovercraft’s forward thrust so as to

keep the sum of the two lateral optic flows (right and left) equal to a forward optic flow

set point (noted ωsetFwd).

In a steady state, with a given corridor width of D, the final operating point of the dual optic

flow regulator will be

V f∞ ¼
ωsetSide � ωsetFwd � ωsetSideð Þ

ωsetFwd
�D (9)

y
∞
¼
ωsetFwd � ωsetSide

ωsetFwd
�D (10)

As a consequence, the robot’s speed will asymptotically and automatically be scaled by the

corridor width or even by the environment clutter (Figure 7b). By increasing the forward optic

flow set point ωsetFwd at a given sideways optic flow set point ωsetSide, one can change the robot’s

forward speed. By reducing the sideways optic flow set point at a given forward optic flow set

point, one can induce a graceful shift from “wall-following behavior” to “centering behavior”

[96]. “Centering behavior” occurs as a particular case of “wall-following behavior,” whenever

ωsetSide ≤ωsetFwd=2 [96]. In addition, the dual optic flow regulator requires a third feedback loop

to stabilize the robot around its vertical axis, which makes the robot experience purely

Figure 6. Functional diagram of the dual optic flow regulator (OF stands for optic flow; FOV stands for field of view; and

LMS stands for local motion sensor). (a) Heading-lock system canceling any robot rotations. (b) Speed control system

based on bilateral optic flow regulation. (c) Lateral obstacle system based on unilateral optic flow regulation. (from [25]

under CC-BY license).
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translational optic flow. The robot’s heading is maintained by a heading-lock system (based on

a micro-compass enhanced by a micro-gyrometer) controlling the rear thrusters differentially

in closed-loop mode (Figure 6a).

3.1.3. Bioinspired visuomotor convergence

Humbert put forward the bioinspired visuomotor convergence concept during his PhD degree

(PhD thesis [100], obstacle avoidance and speed control [101, 102], terrain-following [103],

corridor-following [92, 93, 104], urban canyon-following [105]) to control both land-based and

flying robots solely on the basis of optic flow. This theory is based on the spatial decomposi-

tions performed by the neurons in the insect visuomotor system [106–108] that extract relative

velocity and proximity information from patterns of optic flow. Advantages of bioinspired

visuomotor convergence include:

• Significant improvements in signal-to-noise ratio of relative velocity and proximity infor-

mation since one feedback signal is given across many estimates of optic flow [105].

• Through proper choice of weighting functions, the rotational and translational compo-

nents can be separated automatically and do not require any derotation procedure [93].

To compare the bioinspired visuomotor convergence theory to the “optic flow balance strat-

egy” that frequently fails in one-sided corridors or those with openings in a wall (see review

[99]) or the switching mode strategy employed in such environments [87, 88], the bioinspired

visuomotor convergence in [109, 110] retains the strategy of balancing lateral optic flows and

leverages the stability and performance guarantees of the closed loop to achieve stable

Figure 7. (a) A fully autonomous sighted hovercraft equipped with a minimalistic (8 pixel) compound eye. (b) Automatic

wall-following behavior as the function of the initial ordinate in both tapered and bent corridors. (from [25] under CC-BY

license).
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quadrotor flight in corridor-like environments which include large openings in a wall or

additional structures such as small poles.

3.1.4. Image expansion to avoid frontal obstacles

The “optic flow balance strategy” was originally suggested to explain the centering behavior

along a straight corridor (see review [99]). However, it turned out that this strategy, when used

alone, did not allow an agent to avoid frontal obstacles, i.e., following a corridor that included

L-junctions or T-junctions without using the frontal view field [111]. The frontal image expan-

sion can therefore be used to estimate the time to contact [112] by means of the optic flow

divergence [113, 114] and trigger a prespecified rotation angle around the robot’s vertical axis.

A simulated small helicopter could therefore trigger U-turns when encountering frontal obsta-

cles [115], a wheeled robot could trigger a rotating angle of 90� [111] or of 110� [90] in front of

an obstacle, or the robot could stop and rotate on the spot until the frontal range once again

became large enough [88]. Other robots use a series of open-loop commands, called body

saccades, to avoid a frontal obstacle. The saccade duration has either been set to a constant

prespecified value [116, 117], determined according to a Gaussian distribution [118], or mod-

ulated using optic flow [119–123]. Recently, an optic flow-based algorithm has been developed

to compute a quantified saccade angle; this has allowed a simulated fully actuated hovercraft

to negotiate tight bends by triggering body saccades, on the basis of a time-to-contact criterion,

and to realign its trajectory parallel to the wall along a corridor that includes sharp turns [124].

3.2. Obstacle avoidance in the vertical plane

Ventral optic flow can be used by aerial robots [125–127] to achieve different maneuvers:

takeoff, terrain-following, flying nap of the earth, landing, and decking in the same way as

honeybees do it [5, 97]. Ventral optic flow was also employed for ground avoidance onboard

MAVs by maintaining the ventral optic flow at a given set point using a ventral optic flow

regulator [95]. Another control algorithm based on a “bang-bang” method was used onboard

MAVs to control their lift such that if a certain threshold of ventral optic flow was exceeded,

the MAV elevator angle would be moved to a preset deflection [120, 121, 128].

Recently, the dual optic flow regulation principle applied in the vertical plane was tested

onboard an 80-gram rotorcraft called BeeRotor [11]. As a third control feedback loop, an active

system of reorientation based on a quasi-panoramic eye constantly realigned its gaze parallel

to the nearest surface followed: BeeRotor demonstrated its abilities and achieved automatic

terrain-following despite steep reliefs (Figure 8) without a need for inertial frames to access the

verticality as flying insects do. Indeed, behavioral experiments performed 35 years ago on

flying insects in zero gravity [129] or recent behavioral experiments with hymenopterans [37]

or dipterans [130] demonstrated that flying insects do not actually sense verticality in flight by

means of gravity perception as vertebrates do. The eye reorientation therefore enables

BeeRotor, at an earlier stage, to detect the increase in the optic flow due to steep relief in order

to properly avoid the obstacle [11]. Additionally, in the framework of the “Green Brain” project

managed by James Marshall, a dual optic flow regulator for both speed control and lateral
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positioning and a ventral optic flow for altitude control were implemented onboard a small

quadrotor [131].

3.3. Obstacle avoidance inside a maze

In silico experiments in a maze were mainly carried out in urban-like environments with a flying

robot at a relatively high speed V f in relatively wide urban canyons ([115] with V f = 1 m/s and a

minimum urban canyon width Dmin = 4 m; [43] with V f = 13 m/s and Dmin = 40 m; [44] with V f =

14 m/s and Dmin = 50 m; [132] with V f = 2 m/s and Dmin = 10 m), hence generating an optic flow,

coming from the walls, lower than 45�/s. On the other hand, navigating inside a building

requires measuring not only the optic flow with a high refresh rate (>10 Hz), but also high optic

flowmagnitude in the range of those shown in Figure 3 (i.e., >100�/s). In order to achieve this, the

LORA robot is driven by a body saccadic system (see section 3.1.) and a dual optic flow

regulator-based intersaccadic system (see section 3.1.) as depicted in detail in [124]. In Figure 9,

the optic flow set points have been set at ωsetSide ¼ 90
�

=s and ωsetFwd ¼ 130
�

=s; the LORA robot is

seen to explore at V f ¼ 0:33� 0:21 m/s inside the building and to adopt two possible routes

along straight sections (following either the right wall or the left wall) according to Eqs. (9) and

(10) leading to an operating point V f∞ = 0.48 m/s and y
∞
= 0.31 m in a steady state. Except three

lateral contacts with the walls (red crosses in Figure 9) where there are either a salient angle (90�)

or a returning angle (270�), the LORA robot is able to explore for ~23 minutes inside the building

even though it is fitted with a minimalistic visual system (16 pixel forming eight LMSs).

Figure 8. (a) BeeRotor I robot equipped with a twin CurvACE sensor [58]. (b) Experimental setup. (c) Trajectories of the

robot BeeRotor II following the ground thanks to a dual optic flow regulator applied in the vertical plane and a fixed eye

(blue traj.) or a decoupled eye (red traj.) oriented parallel to the ground (adapted from [11] under CC-BY license).
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4. Drones in the field of architecture

Over the last decade, camera-equipped unmanned aerial vehicles (UAVs) are increasingly

used in the field of architecture for visually monitoring construction, operation of buildings,

and control of a failure of superstructures (skyscraper, stadium, chimney, nuclear area activity,

bridges, etc.) [133]. UAVs can frequently survey construction sites, monitor work in progress,

create documents for safety, and inspect existing structures, particularly for hard-to-reach

areas. UAVs are used not only for 3D modeling for building reconstruction but also photo-

grammetric applications [134]. These UAVs evaluate their pose (i.e., their position and their

orientation) in outdoor flight with a GPS giving an output signal of about 7 Hz (see section

1.3.) forcing drones to work away from structures, which is a drawback to take high-resolution

pictures. In indoor flight, drones work in GPS-denied environments. Consequently, the use of

active proximity sensors such as ultrasonic, laser range finders, radar, or scanning light detec-

tion and ranging (LIDAR) has been most of the time considered for this purpose [135].

However, such active sensors are bulky, high power consumption, low bandwidth, and low-

output refresh rate (2 Hz–5 Hz), compromising their utility for UAV’s fast maneuvers close to

Figure 9. Trajectory of the LORA robot fitted with eight local motion sensors looking ahead at �15�, �30�, �45�, and �90�

but also a heading-lock system by means of both a rate gyro and a micro compass. The LORA robot is driven by a body

saccadic system (merging two incidence angles computed by�30� and�45� LMSswith Eq. (14) in [124]) and a dual optic flow

regulator-based intersaccadic system as depicted in detail in [124]. This maze could represent corridors inside a building. The

LORA robot starts at an initial position (X0 = 0.5 m, Y0=4.5 m) and with the initial headingΨ0 ¼ �5
�

and progresses through

the corridors including challenging junctions for ~23 minutes with only three lateral contacts with the walls (red crosses).
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obstacles or walls. Recently, a lightweight sensor composed of four stereo heads and an inertial

measurement unit (IMU) were developed to perform FPGA-based dense reconstruction for

obstacle detection in all directions at 7 Hz output refresh rate [136]. In another application, a

drone of a mass less than 500 g was developed for photogrammetric 3D reconstruction applied

to a cultural heritage object [137] but requiring a motion capture system to determine accurately

their pose of the robot at a frequency of 500 Hz. Better understanding how flying insects work

will therefore help future drones to operate inside buildings where obstacles are very close.

5. Conclusion

The expanding set of roles for flying robots increasingly calls for them to operate at relatively

high speed close to obstacles (<1 m) in all directions in GPS-denied or cluttered environments

including buildings, warehouses, performance halls, or urban canyons. Tiny flying robots

cannot rely on GPS signals in such complex environments. However, they have to pick up the

3D structure of the surrounding environment in real time to avoid collisions. At a short

distance from obstacles (<1 m), the environment is completely unpredictable; most of the time,

emissive proximity sensors have been considered for this purpose, but now optic flow sensing

is truly becoming a part of MAV avionics in several companies (e.g., senseFly in Switzerland,

Qualcomm or Centeye in the USA), and it can also be used as a direct feedback signal in MAV

automatic guidance in the same way as flying insects use it.
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