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Abstract

In this book chapter, most of the methods used in the literature to prepare switchable 
and reversible superhydrophobic surfaces are described. Inspired by Nature, it is pos-
sible to induce the Cassie-Baxter-Wenzel transition using different external stimuli such 
as light, temperature, pH, ion exchange, voltage, magnetic field, mechanic stress, plasma, 
ultrasonication, solvent, gas or guest. Such properties are extremely important for various 
applications but especially for controllable oil/water separation membranes, oil-absorbing 
materials, and water harvesting systems.
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1. Reversible superhydrophobic surfaces: Part two

This section provides continuation of the description of the stimuli used in the literature to 

induce reversible changes in surface wettability.

1.1. Ion exchange

Since 2004, the researchers have shown that the presence of charged species such as quater-

nary ammonium groups are sensitive to ion exchange and lead to different surface wettabili-
ties. In 2004, Choi et al. prepared self-assembled monolayers (SAM) with imidazolium groups 

on smooth Au and Si/SiO
2
 substrates [1–3]. They studied the effect of a series of anions as 

shown in Figure 1 and they found that the surface hydrophobicity increases like this: Br−>BF
4

− 

>PF
6
−>NO

3
−>ClO

4
−>TfO−>Tf

2
N−. Hence, Br− ions led to the highest surface hydrophilicity and 

Tf
2
N− the highest hydrophobicity.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The substituent has also an important influence on the surface wettability [3, 4]. For example, 

using a long substituent with 1-octyl-3-methylimidazolium ([omim]), θ
w
 was 68, 72, and 75° 

for Br−, BF
4
− et Tf

2
N−, respectively while with 1-benzyl-3-methylimidazolium ([bmim]) θ

w
 did 

not change because the anions are absent in [bmim] aggregation. Similarly, for compounds 

such as 1-alkyl-3-(3-triethoxysilylpropyl)imidazolium ([C1tespim]) (Figure 1), θ
w
 was 24, 30, 

and 42° for Cl−, BF
4

− et PF
6
−, respectively while with ([C4tespim]) θ

w
 did not change. Moreover, 

the cation nature has also an influence on the surface hydrophobicity [3].

In order to elaborate reversible superhydrophobic properties by ion exchange, gold micro 

and nanostructured substrates were performed by electroless etching process by immersing 

silicon substrates in aqueous solution of HAuCl
4
 and HF (Figure 2). The surface was then 

modified by SAM using a thiol terminated by a quaternary ammonium. Then, the surface 
wettability could be reversely changed from superhydrophilic to superhydrophobic after 
exchanging Cl− ions by perfluorooctanoate (C

7
F

15
COO− or PFO−) ions [4].

Moreover, polymers with charged species such as polyelectrolytes were also used to change the 

surface wettability [5–15]. For example, [PVBIm][PF
6
] ([1-(4-vinylbenzyle)-3-butylimidazolium 

hexafluorophosphate]) brushes were grafted on a silicon wafer by atom transfer radical polym-

erization (ATRP). The surface properties could be changed from hydrophobic (θ
w
 = 95°) to 

hydrophilic (θ
w
 = 41°) after exchanging PF

6
− ions by Cl− ions. The wettability of polyelectrolyte 

Figure 1. Grafting of monolayers on smooth gold substrates with imidazolium groups with sensitivity to ion exchange 

and surfaced hydrophobicity as a function of the ion-exchanged. Ref. [1], Copyright 2004. Reprinted with permission 

from American Chemical Society, USA.

Figure 2. Grafting of ion-sensitive molecules on rough gold substrates. Ref. [4], Copyright 2016. Reprinted with 

permission from American Chemical Society, USA.
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brushes could be modified with appropriate counter-ions [12–15] using poly(2-methacryl poly 

oxyethyl trimethylammonium chloride) (PMETAC) and poly(2-dimethylaminoethyl methacry-

late chloride) (PDMAEMAC).

Superhydrophobic properties could be reached by grafting PMETAC on gold micro and 

nanostructured substrates by ATRP [16]. Then, reversible and switchable properties from 

superhydrophobic to superhydrophilic were obtained after exchanging Tf
2
N− ions by SCN− 

ions. PMETAC were also grafted onto the surface of multiwalled carbon nanotubes [17]. Their 

surface properties could be reversely changed from superhydrophobic/highly oleophobic to 

superhydrophilic/superoleophobic after exchanging PFO− ions by SCN− ions. PMETAC was 

also grafted on cotton fabrics leading to similar properties [18]. Zhang et al. fabricated first 
silicone nanofilaments and modified them by P(METAC-co-trifluoroethyl methacrylate) to the 
obtained reversible surface [19].

Cho et al. developed a multifunctional polyelectrolyte membranes by electrospinning of 

P(METAC-co-[trimethoxysilyl]propylmethacrylate) (PMETAC-co-TSPM) [20]. Here, the pres-

ence of TSPM (sol-gel precursor) was used not only to form a polymer network via intramo-

lecular interactions but also to anchor substrates (Figure 3). The membranes could reversely 

change from superhydrophobic/highly oleophobic to superhydrophilic/superoleophobic 

after exchanging Cl− ions by heptadecafluorooctanesulfonic acid (C
8
F

17
SO

3
− or HPS−) ions. 

Moreover, the membranes were also highly efficient filter medium for removing multiple 
contaminants such as SO

2
 form waster gas streams. Another strategy was to deposit polyelec-

trolyte multilayers poly(diallyldimethylammonium chloride (PDDA) and poly(sodium 4-sty-

renesulfonate) (PSS) on gold micro and nanostructured substrates [21]. The authors studied 

the influence of the exchanged ions and the highest properties were obtained by exchang-

ing Cl− (θ
w
 < 5°) ions by PFO− (θ

w
 = 164°). The authors also deposited polyelectrolyte multi-

layers on micro and nanostructured aluminum substrates obtained by etching in HCl and 

immersion in boiling water [22, 23]. Using PFO− ions, the substrates were superhydrophobic 

and superoleophobic. When the substrates were immersed in seawater, the PFO− ions were 

exchanged by hydrophilic Cl− or SO
4
2− making the substrates underwater superoleophobic.

1.2. Magnetic field

Environment protection against oil leakage during oil tankers sinking is a major global prob-

lem. Finding new materials to separate oil/water mixtures is hence extremely important 

[24–26]. Athanassiou et al. reported the formation of a novel composite material based on 

polyurethane (PU) foams functionalized with colloidal superparamagnetic iron oxide (spi-

nel-cubic γ-Fe
2
O

3
/Fe

3
O

4
) nanoparticles and submicrometer PTFE particles [27]. The resulting 

foams could efficiently separate oil from water. The combination of the functionalization of 
the PTFE-treated foam surfaces with colloidal iron oxide nanoparticles significantly increased 
the speed of oil absorption. The foams were also magnetically responsive because they could 

be magnetically actuated. Durable and magnetic PU sponges were also reported by CVD of 

tetraethoxysilane (TEOS) to bind Fe
3
O

4
 nanoparticles [28]. The sponges exhibited fast mag-

netic responsivity with a saturation magnetization of 22.73 emu/g and can be easily manipu-

lated with a magnet. The sponges were also superhydrophobic and superoleophilic, quickly 

absorbed floating oils on the water surface and also displayed high mechanical properties.
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Other materials were also used in the literature [29–35]. Inspired by marine mussel adhesive, 

Jiang et al. used dopamine to link Fe
3
O

4
 nanoparticles on electrospun PVDF [29]. After fluori-

nation, the materials displayed oil adsorption properties and could move towards a magnet. 

Using magnetically responsive mesh substrates, micro-robots were fabricated (Figure 4) [30]. 

The meshes could float and move on air/water and oil/water interfaces and could be guided 
by a magnetic field.

Zhang et al. reported superamphiphobic elastic and magnetic silicone sponges with excellent 

thermal stability [31]. Their sponges were prepared by hydrolytic condensation of methyl-

trimethoxysilane, dimethoxydimethylsilane in the presence of Fe
3
O

4
@SiO

2
 nanoparticles and 

finally fluorinated. Superhydrophobic and magnetic quartz fibers were also reported by load-

ing in cobalt and modification with PDMS [32].

Another potential application of magnetically responsive materials is the control of liquid 

moving using a magnet [36]. Randomly oriented hierarchical arrays with control geometries 

(diameter, height, and density) could be prepared by the mouldless self-assembly of solutions  

Figure 3. Membranes sensitivity to ion exchange prepared by electrospinning of PMETAC-co-TSPM. The resulting 

membranes could switch from superhydrophobic/highly oleophobic to superhydrophilic/superoleophobic by changing 

the counter-ions. Ref. [20], copyright 2012. Reprinted with permission from Royal Society of Chemistry, United Kingdom.

Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry162



comprising procured polymers and magnetic particles under a magnetic field. With their 
actuating and superhydrophobic properties, these flexible films enabled active, fast, precise, 
and reversible manipulation of droplets with the use of a magnet.

Moreover, using superparamagnetic droplets on a magnetic superhydrophobic film, it was 
also shown to switch from superhydrophobic (low adhesion) to parahydrophobic (high adhe-

sion) properties after magnetization/demagnetization [37]. It is also possible to control the 

speed, the shape, and the self-assembly of magnetic droplets on the superhydrophobic sur-

face by modulating the magnetic field (Figure 5) [38, 39].

Figure 4. Fabrication of micro-robots using magnetically responsive mesh substrates and Fe
3
O

4
 nanoparticles. Ref. [30], 

Copyright 2015. Reprinted with permission from Royal Society of Chemistry, United Kingdom.
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1.3. Mechanical stress

Most of the time, reversible switchable wettability is governed by the change in the surface 
chemistry (surface energy). However, the use of mechanical strains is a very interesting way 

to control the surface wettability by modifying the surface roughness. In 2004, Zhang et al. 
showed that the hydrophobicity of PTFE can reversely change from 108 to 165° as the mate-

rial is extended to 190% [40]. This was attributed to an increase in the distance between the 
fibrous PTFE crystals. They also described a novel method to reversibly change the wettability 
(from superhydrophilic to superhydrophobic) of a polyamide film with a triangular net-like 
structure upon biaxial extension and unloading [41]. The average side-length of the triangular 

structures was around 200 μm before extension and the surface was superhydrophobic, and 

450 μm and superhydrophilic after extension. The phenomena could be repeated around 20 

times because the film had a good elasticity.

Using a flexible PDMS with micropillar arrays, it was reported the feasibility to drastic change 
the surface wettability by simple modification of the substrate curvature (Figure 6) [42, 43]. 

When the substrate was not incurved it was parahydrophobic (high water adhesion) while it 

became superhydrophobic after curvature become the curvature could induce air injection into 

the pillar arrays. This easy and reversible process could be used in microfluidic devices [42–45].

To obtain micro and nanostructures on PDMS, Singh et al. deposited Ag nanorods arrays using 

oblique angle deposition on prestretched PDMS (Figure 7) [46]. The substrates displayed both 

microbuckles/wrinkles and nanorods. Superhydrophobic properties with θ
w
 = 154.8° under 

30% prestretching, which is due to optimal amplitude and periodicity of the wrinkles. The 

substrates also displayed anisotropic wetting and water droplets could move only along the 
direction parallel to the wrinkles. Reversible contact angles from 154.8 to 126.2° were also 

reported by simple stretching/relaxation cycles because the stretching changes the dimen-

sions of the microstructures. Yang et al. also reported the properties of PDMS elastomers with 

microscale ripples and SiO
2
 nanoparticles, allowing to reach anisotropic superhydrophobic 

properties [47]. The surface properties were dependent on the ripple amplitude and periodic-

ity and also on the surface chemistry. Here, the sliding angle could also reversibly be tuned 

with external strains and with fast response.

Figure 5. Modification of the speed, the shape and the self-assembly of magnetic droplets on the superhydrophobic 
surface by modulating the magnetic field. Ref. [38], Copyright 2013. Reprinted with permission from The American 

Association for the Advancement of Science, United Kingdom.
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Self-healing superhydrophobic textiles with mechanical responsivity were also reported [48]. 

To induce this property, polydopamine nanocapsules with trapped hydrophobic agents were 

coated on the textiles. The nanocapsules could be released using different mechanical stresses, 
such as stretching, compression, friction, and even mechanical washing, and lead to self-healing  

properties.

1.4. Plasma

In a plasma chamber, highly ionized species are created by applying an electric field 
between two electrodes. When the plasma interacts with a substrate, different effects can be 
produced such as the surface cleaning, the formation of chemical groups, and/or the forma-

tion of surface structures. These effects are highly dependent on the plasma parameters such 
as the used gas, the pressure or the power and also on the substrate nature. For example, 

if a hydrophobic monolayer is used to prepare a superhydrophobic surface, the plasma 

treatment can remove the monolayer and leads to superhydrophobic properties [49–52]. 

Figure 6. Change in the water adhesion by inducing flexion on a flexible micro-patterned substrate. Ref. [43], Copyright 

2011. Reprinted with permission from AIP Publishing LLC, USA.

Figure 7. Preparation of microwrinkles of PDMS by pre-stretching following by oblique angle deposition of Ag nanorod. 

Ref. [46], Copyright 2015. Reprinted with permission from American Chemical Society, USA.
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However, to obtain reversible properties, it is often necessary to have again the hydrophobic 

monolayer and/or to storage in the dark.

Otherwise, following the used gas, the plasma treatment can also change the surface chemis-

try. For example, meshes substrates were coated by CVD with the nanocrystalline diamond 

film [53]. After H
2
 plasma, the surface diamond termination changed with hydrogen atom 

leading to superhydrophobic properties. Moreover, the surface properties were reversible by 

annealing in air at 500°C.

1.5. Ultrasound

Very recently, full reversibility between the Cassie-Baxter and Wenzel states were reported 

through acoustic pressure [54]. Ultrasonication is used both for the nucleation of bubbles 

directly on superhydrophobic surfaces. Oppositely, the collapse of an entrapped air film was 
promoted to reversibly manipulate the material surface properties and the interaction with 

the environment.

1.6. Guest

It is known that specific interactions between “guest” and “host” molecules can be extremely 
strong. This is the case, for example, between crown ethers and ions. Li et al. used this strat-

egy to develop superhydrophobic surfaces with specific sensitivity [55]. They grafted by click 

chemistry calix[4]azacrown (C4AC) on micro/nanostructured silicon substrates. Different 
organic ion pairs were selected (Figure 8): 1-butyl-3-methylimidazolium (C

4
mim) with differ-

ent counter ions (Cl−, Br− and PF
6

−). Reversible surfaces from superhydrophobic to superhy-

drophilic were observed but only in the presence of [C
4
mim]Cl because [C

4
mim]Cl interacts 

with C4AC cavities and cone resulting in 1,3-alternate conversion. Calix[4]arene lipoic acid 

(C4LA) was also grafted on the gold substrate [56]. The substrate had specific interaction 
with guest molecules, resulting in a high decrease of surface hydrophobicity. The interaction 

was specific with methomyl (a carbamate pesticide) but not with four other tested carbamate 
pesticides. With the aim to remove metal ions from the environment, responsive mesh was 

prepared by coating with poly(acrylic acid) hydrogel [57]. The resulting mesh was superhy-

drophilic and underwater superoleophobic. The mesh could complex Hg+ ions by complex-

ation with the COO− groups of poly(acrylic acid) leading to an increase in water contact angle 

and a decrease in underwater oil contact angle.

Metal-organic frameworks (MOFs), also known as porous coordination polymers, were also 

used in the literature. In order to prepare hydrophobic MOFs, Planas et al. used an ortho- 

carborane functionalized with pyridylmethyl alcohol groups at the C-positions as a hydro-

phobic linker to Zn-1,4-benzenedicarboxylate [58]. Moreover, the substrate could change 

from highly hydrophobic to superhydrophilic by immersion in NaOH/DMF. In order to 

obtain fluorescent and hydrophobic MOFS, pyrene was incorporated in the structure [59]. 

The resulting materials displayed super-absorbency and could remove oils from oil/water 

mixture. They could also C
60

 as guest offering great promise for application in sensors.

In order to develop biosensors with switchable wettability, different strategies were used 
in order to bind biological molecules. For that, a tricomponent copolymer containing  
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phenylthiourea and phenylboronic acid was designed [60]. As a strong hydrogen-bonding 

donor, phenylthiourea was used to combine with the phosphate units and phenylboronic acid 

to combine with the pentose rings. The copolymer was grafted on structured silicon substrates. 

The substrates could switch from superhydrophobic to superhydrophilic after immersion in 

adenosine diphosphate (ADP) aqueous solution. Using copolymers with phenylboronic acid 

units, biosensors that can bind sugars such as glucose were also reported in the literature [61].

1.7. Solvent and gas

When structured polymer materials are immersed into a solvent such as water, the interac-

tions between the polymer chains and in contact with the solvent can highly varied leading to 

possible changes in surface morphology and wettability. Mixed polymer brushes with hydro-

phobic and hydrophilic blocks were used and fixed to a substrate. After exposure to different 
solvents, the organization of these chains can be highly affected as shown in Figure 9 [62, 63]. 

As a consequence, the surface energy and as a consequence θ
w
 vary [64, 65].

To verify this hypothesis, molecules in Y-shape composed of hydrophobic polystyrene PS and 

hydrophilic poly(acrylic acid) (PAA) were grafted on a substrate [66, 67]. When the substrate 

was immersed in toluene, a good solvent for PS, the layer at the extreme surface was mainly 

composed of PS brushes and reversely the orientation of the polymers chains could highly 

vary as a function of the affinity with the solvent. PAA-block-PS was also grafted on multiwall 
carbon nanotubes. The surface could reversely switch from superhydrophobic to parahydro-

phobic by immersion in water and heating [68].

In order to reach superhydrophobic properties, Minko et al. grafted carboxyl-terminated 

poly(styrene-co-2,3,4,5,6-pentafluorostyrene) (PSF-COOH) and carboxyl-terminated poly(2-
vinylpyridine) (PVP-COOH) on flat and rough (with needle-like structures) PTFE substrates 
functionalized with hydroxyl and amino groups (Figure 10) [69, 70]. After exposure to toluene,  

Figure 8. Preparation of guest-responsive surface using calix[4]azacrown derivatives. Ref. [55], Copyright 2012. 

Reprinted with permission from American Chemical Society, USA.
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the top layer was mainly composed of hydrophobic PSF while after exposure to water the 

surface topography changed: PSF formed round domains inside the hydrophilic PVP matrix. 

As a consequence, on flat substrates, θ
w
 varies from 118 to 25° while on rough substrates θ

w
 

varies from 160 to 0°.

Ji et al. developed an asymmetric free-standing film layer-by-layer (LbL) assembly using poly-

ethyleneimine (PEI) and PAA [71]. After coating with Teflon on one side, the free-standing 
film was superhydrophobic on one side and hydrophilic on the other side. As a function of the 
humidity, the free-standing film could be in a control manner bended and unbended (Figure 11).  

In a similar manner, Sun et al. developed films that could reversely induce wrinkles in the 
presence of humidity by depositing hydrophobic SiO

2
 nanoparticles on multilayer assembly of 

poly(allylamine hydrochloride) (PAH) and PAA [72]. Aizenberg et al. also reported a very inno-

vative strategy by embedding nanoarrays in a hydrogel [73]. When the material was exposed to 

water, the orientation of the nanostructures changes leading to different surface hydrophobicity.

Figure 9. Changing in the organization of mixed polymer brushes with hydrophobic and hydrophilic blocks after 

exposure to different solvents. Ref. [63], Copyright 2002. Reprinted with permission from American Chemical Society, 

USA.

Figure 10. Change in the surface topography and organization of needle-like PTFE nanostructures grafted with PSF-

COOH and PVP-COOH after exposure to different solvents. Ref. [70], Copyright 2003. Reprinted with permission from 

American Chemical Society, USA.
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Tang et al. reported that 1,2,3,4,5-hexaphenylsilole is a unique solvent-sensitive material with 

switchable luminescence properties (Figure 12) [74]. When this material is spin-coated on a sub-

strate, the resulting material is smooth, slightly hydrophobic (θ
w
 = 97.0°) and displayed a green 

light luminescence. After exposure to ethanol vapor, the substrate became nanostructured,  

Figure 11. Control in the bending of free-standing films prepared by LbL of PEI and PAA as a function of humidity. Ref. 
[71], Copyright 2010. Reprinted with permission from American Chemical Society, USA.

Figure 12. Reversible control in the surface structuration, hydrophobicity, and luminescence properties of 1,2,3, 

4,5-hexaphenylsilole films after exposure to ethanol vapor and toluene vapor, respectively. Ref. [74], Copyright 2008. 

Reprinted with permission from American Chemical Society, USA.
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highly hydrophobic (θ
w
 = 136.3°) and displayed a blue light luminescence. Moreover, the 

surface properties could be reversely switched using toluene vapor.

Inorganic materials can also be used to obtain solvent-sensitive but, here, it is often possible 

when interactions of the substrates with the solvent induce changes in the surface chemistry 

[75–77]. This is the case of titanate nanostructures in water. The authors reported a change 

in the surface hydrophobicity due to physically adsorbed water molecules [75]. Moreover, 

the surface was reversible by simple heating. Otherwise, the immersion of inorganic materi-

als can also lead to the removal of the hydrophobic treatment and as a consequence highly 

decreases the surface hydrophobicity [78, 79].

Different materials sensitive to gases were also reported in the literature [80–86]. 19-25 Jiang 

et al. developed superhydrophobic indium hydroxide (InOH)
3
) with microcubes and nanorods 

using a hydrothermal process in the presence of InCl
3
 and urea (Figure 13) [80]. The sur-

face could switch from superhydrophobic to superhydrophilic in the presence of ammonia 

(NH
3
·H

2
O). Indeed, In(OH)

3
 being acidic, the ammonia molecules would anchor to the surface 

and form an ammonia layer on the surface of In(OH)
3
. Moreover, the bonds created between 

In(OH)
3
 and NH

3
.H

2
O being weak, they can be easily broken by heating leading again to super-

hydrophobic properties. In(OH)
3
-PDMS sponges with NH

3
 sensitivity were also prepared in 

the presence of polydopamine [81]. In a similar manner, CO
2
 is an acid gas; it can react at the 

surface of a material if amine groups are present. This strategy was used by Yuan et al. [83]. 

They electrospun PMMA-co-poly(N,N-dimethylaminoethyl methacrylate), a copolymer with 

amine groups. The resulting materials could switch from highly hydrophobic and underwater 

oleophobic to highly hydrophilic and underwater oleophilic in the presence of CO
2
. Moreover, 

Figure 13. Influence of NH
3
·H

2
O on the surface hydrophobicity of In(OH)

3
 with microcubes and nanorods. Ref. [80], 

Copyright 2008. Reprinted with permission from American Chemical Society, USA.
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the properties were reversible in the presence of N
2
. A very interesting work was reported by 

Wang et al. using the allochroic material (a material that can changes color) crystal violet lac-

tone (CVL) [84]. To obtain superhydrophobic properties, palygorskite@polysiloxane was modi-

fied with CVL. The resulting materials could change from blue (CVL+: the carboxylate group of 

CVL) to discolored (CVL) in the presence of different gas vapor such as acetone.

A palladium-based superhydrophobic substrate was reported by Pd coating on vertically 

aligned Si nanowires [85]. The resulting substrates could reversely switch from superhydro-

phobic to parahydrophobic (high adhesion) properties in the presence of H
2
 or air, respec-

tively. Here, the changes are due to a change in the surface energy due to the formation 

of β-phase Pd hydride (PdH
x
). Moreover, the substrates could potentiate the therapeutic 

efficiency of 3D stem cell spheroids. ZnO nanowires could also be reversely switched from 
superhydrophobic to superhydrophilic in the presence of O

2
 and H

2
, respectively, but at high 

temperature (300°C) [86]. Using a model based on density functional theory, the authors 

showed that oxygen-related defects are responsible for the wettability switching.

1.8. Chemical reactions

Different grafting strategies can also be envisaged to prepare the surface with reversible 
wettability [87–89]. For example, nanofibers of poly(3,4-ethylenedioxythiophene) (PEDOT) 
functionalized with azido groups (N

3
) were prepared by electropolymerization [87]. Then, 

dithiolane groups were introduced by reaction with lipoic acid also called thioctic acid. Then, 

various thiols were introduced to modify the surface properties. Both the surface morphol-

ogy and the surface hydrophobicity were affected by the post-treatment with the used thiol. 
Interestingly, the use of fluorinated thiols highly changed the surface morphology and poros-

ity leading to superhydrophobic properties and highly oleophobic properties. Moreover, the 

surface hydrophobicity and oleophobicity were reversible by reaction with dithiothreitol 

(DTT) to form the dithiolane groups again (Figure 14).

The boronic ester chemistry was also used to reversely change the surface properties [88]. 

This time, nanostructured PEDOT films functionalized with protected 1,2-diol were prepared 
by electropolymerization. After deprotection, the surface could easily react with different 
boronic acids containing different aromatic groups as shown in Figure 15. Similarly, both the 

surface morphology and the surface hydrophobicity were affected by the use of boronic acid 
post-treatment. The highest properties were obtained with the pyrene group for which the 

surface was parahydrophobic (extremely high water adhesion) with θ
w
 = 135°.

Figure 14. Reversible wetting properties by reaction of hydrophobic thiols on dithiolane and DTT [87].
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1.9. Dual sensitivity

Temperature and pH: Switchable surfaces by temperature and pH were prepared using 

thermosensitive polymers functionalized by pH-sensitive groups such as carboxylic acids 

(COOH) or amines. For example, a copolymer of poly(N-isopropylacrylamide) (PNIPAAm: 

sensitive to temperature) and polyacrylic acid (PAA: sensitive to pH) was grafted on micro 

and nanostructured silicon substrates (Figure 16) [90, 91]. The resulting surface could switch 

from superhydrophobic (low adhesion) at high temperature (45°C) and/or low pH (2) to para-

hydrophobic (high adhesion) at low temperature (20°C) and/or high pH (11).

Different polymers with amino or pyridinium groups were also used to induce pH sensitivity 
[92–96]. Hybrid responsive nanoparticles were prepared by grafting on a SiO

2
 core mixed block 

copolymers of PS and poly(4-vinylpyridine) (P4VP) [92, 93]. PS is a thermosensitive polymer 

Figure 15. Reversible wetting properties by reaction of hydrophobic boronic acids on 1,2-diols and HCl [88].

Figure 16. Temperature and pH-switchable surfaces using PNIPAAm and PAA copolymers. Ref. [90], Copyright 2012. 

Reprinted with permission from Royal Society of Chemistry, United Kingdom.
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with a Tg of 100°C while P4VP is sensitive to pH. The surface was superhydrophobic at high pH 

(6) and at a temperature (> 100°C) while θ
w
 decreased with the temperature and pH. The authors 

also observed that the surface roughness changed with the temperature and pH. Wang et al. 

modified stainless steel meshes with a hydrogel copolymer of 2-(dimethylamino)ethyl methac-

rylate and methacrylic acid (two monomers sensitive to pH) [95]. Using oil/water mixtures, the 

meshes could let water pass through with a separation efficiency of 98.35% but only at both high 
temperature (55°C) and low pH (7), or both low temperature (25°C) and high pH (13). Poly-L-

lysine, as both pH and the thermosensitive peptide, was also tested on a micro and nanostruc-

tured silicon substrate [96]. The surface was superhydrophobic at both high temperature (60°C) 

and high pH (11.5), and became superhydrophilic as the temperature and/or the pH decrease.

Solvent and pH: To prepare polymer particles responsive to solvent and pH, copolymers were 

prepared using a hydrophilic moiety (PAA) and hydrophobic ones (poly(2,3,4,5,6-pentafluo-

rostyrene) [97]. The polymer films produced by annealing in the air led to superhydrophobic 
properties while by annealing in water led to highly hydrophilic properties (Figure 17). This 

was due to the reorientation of the PAA groups in water. Moreover, due to the presence of 

COOH groups, the pH could also modify the surface charge between negative and neutral, 

which can also modify the surface hydrophobicity.

Voltage and pH: Switchable surfaces by voltage and pH were prepared using conducting 

polymers for their sensitivity to voltage. First, polyaniline was used for its sensitivity also to 

pH [98, 99]. To form superhydrophobic micro and nanostructured polyaniline with urchin-

like and core-shell structures, polystyrene microspheres were used as seed (hard template) 

for the growth of polyaniline nanofibers [98]. The surface could switch from superhydropho-

bic to superhydrophilic depending on the voltage and the pH. Similar properties were also 

reported on polyaniline-polyacrylonitrile coaxial nanofibers prepared by electrospinning [99].

Switchable surface from superhydrophobic properties to highly hydrophilic were obtained 

by electro-copolymerization of PEDOT monomers with both pH-sensitive groups (COOH) 

Figure 17. Solvent and pH-switchable surfaces using poly(2,3,4,5,6-pentafluorostyrene) and PAA copolymers. Ref. [97], 

Copyright 2010. Reprinted with permission from American Chemical Society, USA.
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and fluorinated chains [100]. The authors studied the influence of the percentage of each 
monomer, the doping state and also the pH on both the surface hydrophobicity (Figure 18). 

The surface morphology changed with the percentage of each monomer. The highest wetta-

bility changes were observed for a mol% of EDOT-COOH between 12.5 and 25%.

Voltage and Ion Exchange: Switchable surfaces by voltage and ion exchange were prepared using 

conducting polymers for their sensitivity to voltage while the sensitivity to ion exchange could be 

obtained by introducing functional groups such as ammonium, imidazolium or sulfonate groups. 

For example, multiresponsive surfaces were obtained by grafting an imidazolium substituent on 

PEDOT polymers [101, 102]. Smooth polymer films were prepared by spin-coating and observed 
sensitivity to ion exchange, oxidative doping, temperature, and pH. Their surface hydrophobicity 

could be modified from 40 to 70–72° by exchanging the counter-anion of the imidazolium moiety 
with fluorinated bis(trifluoromethane)sulfonamide or nonafluoro-1-butanesulfonate anions. The 
surface properties could be also enhanced from 24 to 107° by depositing the polymer on ZnO 

nanowire arrays. The surface properties of PEDOT:PSS were also studied by the authors [103].

In order to reach superhydrophobic properties, PEDOT copolymers with both ion exchange 

functional groups and fluorinated chains were prepared by electro-copolymerization (Figure 19) 

[104, 106]. The authors studied the influence of the percentage of each monomer, the doping 
state and also the counter-ions of ion exchange functional groups on both the surface hydropho-

bicity (Figure 19) [104]. Surprisingly, using 25 mol% of EDOT-Py+, the surface could switch from 

superhydrophobic to hydrophilic by reduction (dedoping using a different voltage) and again  

Figure 18. Voltage and pH-switchable surfaces using PEDOT-COOH and PEDOT-O-H
12

 copolymers [101].
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superhydrophobic properties by ions exchange with hydrophobic bis(trifluoromethanesulfonyl)
imide (Tf

2
N−) ions while the superoleophobic properties remained unchanged. Hence, it was possible 

to obtain both superoleophobic and hydrophilic properties, which is extremely rare in the literature 

[105]. Moreover, superoleophobic properties were also prepared with poly(3,4-ethylenedioxypyr-

role) PEDOP copolymers with ion exchange functional groups and fluorinated chains [106].

Light and ion exchange: Switchable surfaces by light and ion exchange were reported by SAM 

of an imidazolium moiety (sensitive to ion exchange) terminated with a fluorinated chain on 
nanostructured ZnO (sensitive to light) films [107]. The authors studied the influence of ZnO 
morphology, the counter-ions (I−, BF

4
−, PF

6
−, Tf

2
N−) of imidazolium groups and the light on the 

surface hydrophobicity. Superhydrophobic properties were obtained with ZnO nanoparticles 

and hydrophobic PF
6

− or Tf
2
N− ions. Moreover, the surface could reversely switch from super-

hydrophobic to hydrophilic by UV irradiation and dark storage.

Mechanic stress and magnetic field: Liu et al. developed flexible conical arrays coated with 
magnetic nanoparticles for fog harvesting systems [108]. Under an external magnetic field, 
static fog water could be spontaneously and continuously captured and directionally trans-

ported from the tip to the base of the spine through periodic vibration of the flexible coni-
cal spines driven by the magnetic field and the Laplace pressure difference arising from the 
conical shape of the flexible spines (Figure 20). Magnetically sensitive superomniphobic sur-

faces were also reported by fabricating flexible micronail caps [109]. The micronail caps could 

reversely bend using an external magnetic field, which changed the surface properties from 
superomniphobic to superomniphilic.

Multiresponsivity: Switchable surfaces with responsivity to both light, heat, and pH was prepared 

by modifying TiO
2
 (sensitive to light) nanoparticles with a copolymer of poly(N-isopropylacryl-

amide) (PNIPAAm: sensitive to temperature) and polyacrylic acid (PAA: sensitive to pH) [110].  

Figure 19. Voltage and ion exchange-switchable surfaces using PEDOT-Py+ and PEDOT-F
8
 copolymers [104].
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The resulting polymer surfaces displayed reversible wettability from superhydrophobic to 
superhydrophilic by UV and heat treatment at 150°C or immersion in solution of pH 12 and 

2. Multiresponsive surfaces to heat, pH, and sugars was also reported by using a copolymer 

of PNIPAAm (sensitive to temperature) and poly(acrylamidophenylboronic acid (sensitive to 

both sugars and pH) [111]. The surface could switch from superhydrophobic to superhydro-

philic by cooling at T = 20°C, exposure to glucose or immersion at high pH (10.1).

2. Conclusion

In this book chapter, most of the articles dedicated to switchable and reversible superhydro-

phobic surfaces were reviewed. If superhydrophobic properties are highly present in Nature, 

the preparation of reversible superhydrophobic properties has become one of the most 

studied domains. Indeed, if robust superhydrophobic surfaces can be obtained if the sur-

face structures are able to stabilize the Cassie-Baxter state, it is possible to induce the Cassie-

Baxter-Wenzel transition. In the literature, various techniques were developed to control the 

surface wettability using extern stimuli such as light, temperature, pH, ion exchange, voltage, 
magnetic field, mechanic stress, plasma, ultrasonication, solvent, gas or guest. Such proper-

ties are extremely important for various applications but especially for controllable oil/water 

separation membranes, oil-absorbing materials, and water harvesting systems.
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Figure 20. Switchable surfaces with mechanic stress and magnetic field by creating flexible magnetic conical arrays [108].
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