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Abstract

Morphogenesis mainly occurs during embryonic stage, and congenital anomalies also 
occur at that time. The Kyoto Collection, one of the largest collections of human embryos, 
including a lot of those with congenital anomalies, is significantly helpful for analyz-
ing embryonic growth. From the collection, normal and abnormal embryos have been 
selectively presented in this chapter. Recently developed imaging technology enabled 
three-dimensional (3D) imaging of embryos and fetuses in high resolution. The devices 
available for embryonic and fetal imaging and the results obtained therefrom are intro-
duced in this chapter. In addition, new strategies for diagnosing congenital anomalies, 
such as autopsy imaging and genetic analyses, are discussed.

Keywords: human embryo, congenital anomalies, three-dimensional (3D) imaging, 
genetic analyses, autopsy imaging

1. Introduction

Congenital anomalies occur during the embryonic period, in which morphogenesis happens. 

The Kyoto Collection, one of the largest collections of human embryos, consists of over 40,000 

human embryos and fetuses, including a large number of embryos with anomalies. Here we 

introduce embryonic cases with congenital anomalies, supplemented with valuable pictures, 

and discuss about the diagnoses of these anomalies at an early embryonic age using new 3D 

imaging modalities.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Normal development of human embryos

2.1. Staging of human embryonic development

Carnegie stage 13: Four limb buds and optic vesicle appear

32 days after fertilization

CRL (crown-rump length): 5 mm

At this stage, two upper and two lower limb buds become visible. The optic vesicle can be 

easily recognized and the lens placode begins to differentiate. Although more than 30 pairs 
of somites have formed by this time, the number of somites becomes increasingly difficult to 
determine and therefore will no longer be used for staging henceforth.

Carnegie stage 14: Lens pit and optic cup appear

34 days after fertilization

CRL: 6 mm

The lens pit begins to invaginate into the optic cup, although its closure remains incomplete 

at this stage. On the other hand, the optic vesicle emerges from the endolymphatic append-

age and becomes easy to define. The upper limb buds elongate and taper, while the cephalic 
and cervical flexures become prominent in terms of the internal features; the future cerebral 
hemispheres and cerebellar plates differentiate at this point. The dorsal and ventral pancreatic 
buds have become noticeable, along with the development of the ureteric bud, which acquires 

a metanephrogenic blastema.

Carnegie stage 15: Lens vesicles are covered by surface ectoderm, nasal pit and hand 

plates form

34 days after fertilization

CRL: 8 mm

Lens vesicles have closed and are covered by the surface ectoderm at this time, while the nasal 

plate invaginates forming a nasal pit. At this stage, auricular hillocks arise, and hand plates 

begin to form. In the meantime, the foramen secundum develops in the heart while the lung 

buds begin to branch into lobar buds. The primary urogenital sinus completes its formation 

by the end of this stage.

Carnegie stage 16: Nasal pit faces ventrally, retinal pigment becomes visible, foot plates 

emerge

38 days after fertilization

CRL: 10 mm

Nasal pits deepen and start to face ventrally, while the retinal pigment becomes exter-

nally visible. In the meantime, hand plates become distinct and foot plates start to emerge. 

Furthermore, the nasolacrimal groove forms between the frontal and maxillary processes.
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Carnegie stage 17: Nasofrontal groove become distinct, and finger rays exhibited

40 days after fertilization

CRL: 11 mm

In comparison with the previous stage, the auricular hillocks and nasofrontal (nasolacrimal) 

grooves have become more distinct, and the trunk has straightened. The hand plates have 

come to exhibit conspicuous digital rays, and the foot has acquired a rounded digital plate 
by this stage.

Carnegie stage 18: Elbows become discernible, toe rays appear, and eyelid folds appear

42 days after fertilization

CRL: 13 mm

The body shape has become more cuboidal by this time. Both cervical and lumbar flexures are 
denoted, the elbows are discernible and interdigital notches begin to appear in the hand plates. 

Toe rays are observed in the foot plate. As for the facial features, eyelid folds start appearing, 

and the auricular hillocks transform into specific parts of the external ear. Furthermore, ossi-
fication may begin in some skeletal structures.

Carnegie stage 19: Trunk elongation and straightening

44 days after fertilization

CRL: 16 mm

The trunk begins its elongation and straightening. Simultaneously, the eyes and external ears 
become distinct. As a result of the growing size of the brain, the eyes get positioned in the 
front part of the face. The upper and lower limbs are approximately parallel, with preaxial 
borders being cranial, and postaxial borders caudal. Moreover, intestines have developed 
and parts of them can be observed in normal umbilical cord (physiological umbilical hernia).

Carnegie stage 20: Longer upper limb bends at elbow

46 days after fertilization

CRL: 19 mm

The angle of the cervical flexure becomes smaller, and the head is directed upwards. Vascular 
plexus starts to appear in the superficial tissues of the head. Meanwhile, the coiled intestine 
finishes its development. Spontaneous movements are recognized at this stage. The upper 
limbs have increased in length at this time, and it is flexed at the elbows and hand joints. 
Fingers can be observed over the chest, in a slight curve.

Carnegie stage 21: Fingers grow longer, hands approach each other

48 days after fertilization

CRL: 21 mm
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The head becomes round and the superficial vascular plexus spreads to surround the head. 
Meanwhile, the tail becomes rudimentary. At this time, the hands are slightly flexed at the 
wrists and are placed closely over the cardiac prominence.

Carnegie stage 22: Eyelids and external ears develop

50 days after fertilization

CRL: 23 mm

The vascular plexus of the head becomes more distinct at this stage. The eyelids start to 
thicken and encroach into the eyes. In the meantime, the tragus and antitragus of the external 
ear assume a more definite form, as the external ear repositions higher on the head. The tail 
is about to disappear.

Carnegie stage 23: The end of embryonic period

52 days after fertilization

CRL: 30 mm

At this stage, the head would be observed with a more rounded appearance and the trunk 

with a more mature shape. The eyelids and ear auricles have become conspicuous, the limbs 

have increased in length, and the forearms have ascended toward the level or higher than that 

of the shoulders. Meanwhile, the vascular plexus approaches the vertex of the head. Although 
external sex differences are not yet apparent, the external genitalia have developed relatively 
well by this time. The tail is no longer observed at this stage.

2.2. Facial development

At Carnegie stage 12, three pharyngeal arches appear. The first pharyngeal arch emerges from 
the maxillary and mandibular prominences (stage 13, Figure 1), which will later constitute 

the lateral and caudal boundaries of the stomodeum (i.e., primitive oral cavity), respectively.

The sides and front of the neck arise from the second pharyngeal arch, also known as the 

hyoid arch. Meanwhile, the frontonasal prominence (FNP) grows and covers the ventral part 

of the forebrain (stage 13), which will eventually form the forehead (frontal part of the FNP) 

and the primordial mouth and nose (nasal part of the FNP).

By the end of the fourth developmental week, nasal placodes (thickening of surface ectoderm 

that later becomes peripheral neural tissue) develop on the frontolateral aspects of the FNP 

(stage 13). The mesenchyme swells around the nasal placodes, which leads to the formation of 

medial and lateral nasal prominences (stage 16). The maxillary prominence merges with the 
medial nasal prominence, leading to its fusion. The fused medial nasal prominence will not 

only form the primary palate (stage 16–18), but also the midline of the nose and that of the 

upper lip.

The nasolacrimal groove divides the lateral nasal prominence from the maxillary prominence 
(observed in stages 16, 17).
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During the fifth developmental week, primordial ear auricles form around the first pharyngeal 
groove, at the interface between the mandibular prominences and the hyoid arches (stage 16).  

While the auricle emerges from the auricular hillocks, the external acoustic meatus arises 
from the first pharyngeal groove. At an early stage of ear development, the external ears are 
located in the neck region, which then start to ascend toward the level of the eyes on either 

side of the head, simultaneously with the development of the mandible.

The maxillary and lateral nasal prominences fuse with the nasolacrimal groove during the 
sixth developmental week, which enables the nose and cheek to be continuous (stage 18).

The seventh developmental week is marked by the fusion of the medial nasal prominence and 

the maxillary and lateral nasal prominences (stage 19~). Merging of the maxillary and medial 
nasal prominences creates continuity between the upper jaw and lip, leading to the segrega-

tion of the nasal cavity and oral cavity.

Figure 1. Development of human embryo, Carnegie stages 12–23.
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2.3. Development of upper and lower extremities

The embryonic development of the limbs [1] is illustrated here using computer graphics [2].

• Carnegie stage 12: The upper limb buds begin to develop.

• Carnegie stage 13: The upper limb buds gain more definite shape, while the lower limb 
buds start to develop.

• Carnegie stage 14: The upper limb buds grow and taper toward the tip, which forms the 

hand plate later on. In the upper limbs, innervation and blood supply begin at this stage. 

The development of the lower limb buds is delayed with respect to the upper limb buds.

• Carnegie stage 15: The hand plates in the upper limb buds have become distinct. In the 

lower limbs, the rostral half is rounded, whereas the caudal half is tapered. At this stage, 

innervation begins in the lower limb buds as well.

• Carnegie stage 16: The hand plates form a central part, a carpal part, and a digital flange, 
whereas the lower limb buds form a femoral part, a crural part, and a foot plate.

• Carnegie stage 17: Finger rays can be recognized in the hand plate while the rim of the 
hand plate becomes crenated due to the appearance of individual fingers in some advanced 
specimens. The lower limb buds have increased in size and a rounded digital plate is set off 
from the crurotarsal region.

• Carnegie stage 18: The upper limbs have lengthened and are slightly bent at the elbow. 

Finger rays are distinct. As for the lower limb bud, toe rays begin to appear, although the 

notch on the rim of the foot plate is still incomplete.

• Carnegie stage 19: The upper limbs rotate medially, as if to hold the chest. Apoptoses occur 

in the mesenchymal tissues of interdigital areas to create deeper interdigital notches in the 

foot plate. Toe rays become prominent, and knees and ankles become noticeable.

• Carnegie stage 20: The upper limbs are bent at the elbow and hand joints, resulting in a 
pronated position. Meanwhile, the lower limbs are also bent at the knee joints, and notches 
are present between the toe rays in the foot plate.

• Carnegie stage 21: Elbows and knees become distinct in the upper and lower limbs, re-

spectively. Hands are crossed over the chest. Meanwhile, fingers grow longer and distal 
phalangeal portions become slightly swollen, indicating the beginning of palmar pads. The 

feet are approaching each other at this stage.

• Carnegie stage 22: Hands get larger in front of the body and fingers elongate, which may 
clasp over with those of the other hand. Although toe digits are still webbed, feet approach 

closer.

• Carnegie stage 23: The upper and lower limbs have lengthened, well formed, and bent at 

joints. Fingers grow longer and toes cease to be webbed; all the digits are separate and distinct.
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3. Representative external anomalies of human embryos

3.1. CNS anomalies

3.1.1. Holoprosencephaly (HPE)

Holoprosencephaly (HPE) refers to an anomaly in which the differentiation of the prosen-

cephalon from the neural tube is defective, thus leading to malformations of the forebrain, 

midface, and occasionally limbs. It can be recognized as early as CS12 or 13.

HPE can be classified into three categories, depending on the degree of defect in the develop-

ment of prosencephalon: alobar holoprosencephaly, semi lobar holoprosencephaly, and lobar 

prosencephaly.

Alobar holoprosencephaly is the most severe, which usually associates with cyclopia, ethmo-

cephaly, and cebocephaly. Cyclopia (Figure 2A) is characterized by a single eye centered in 
the middle of the face, caused by the fusion of the optic vesicles due to the lack of midline tis-

sue. The name of this malformation is derived from the cyclops (or cyclopes) in Greek mythol-

ogy, first mentioned in Homer’s epic poem, “Odyssey” in the seventh century B.C. There are 
cases of cyclopia with incomplete fusion of optic vesicles, but either with the nose absent 

or complicated further with proboscis located above the orbit [3]. The cyclopic embryo pre-

sented in Figure 1 shows single eye in the center of the face, without any nose.

Ethmocephaly is morphologically similar to cyclopia, except that both eyes exist with dis-

tinct orbits, although marked by hypotelorism, with proboscis located between the eyes 

(Figure 2B) [4]. Cebocephaly is also an anomaly that exhibits hypotelorism in the two distinct 
orbits, characterized by a single nostril, occasionally complicated by cleft lip and/or palate [5].

HPE is one of the most common lethal congenital anomalies that occur at embryonic stages, 

and the prevalence rate is approximately 1/250. However, most of them cannot survive to 
develop into a fetus, which makes it a rare anomaly in newborns (1/10,000–20,000) [6].

Figure 2. Congenital anomalies in the CNS. (A) Embryo presenting cyclopia, (B) embryo presenting ethmocephaly, with 

proboscis located between the eyes, (C) exencephaly presenting the opening in the neural tube, (D) spina bifida occulta 
observed dorsally, and (E) spina bifida occulta observed laterally.
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Although it is yet to be proved, four main genes: SHH, ZIC2, SIX3, and TGIF are suggested to 

be associated with the onset of HPE, along with the aneuploidies in chromosomes 13 and 18. 

The existence of environmental factors is suggested, and a strong positive correlation of the 
occurrence with maternal age is noted [7, 8].

3.1.2. Exencephaly

The morphological characteristics of exencephaly are exposed brain and absence of the skull 
and scalp. This condition arises due to the failure to close the cephalic part of the neural 

tube, occasionally due to the overgrowth of neural tissue [9] (Figure 2C). Exencephaly can be 
recognized at CS 12 at the earliest, much ahead of the stage at which the development of the 
neural tube completes.

Neural tube defects such as exencephaly, anencephaly, and spina bifida are extremely com-

mon lethal congenital anomalies, and the prevalence rate is approximately 1/1000 [10]; most 
of these survive for only few hours, and all cases lead to death within a few days. Although 

the understanding remains unclear, folic acid deficiency is a suggested factor for anenceph-

aly, along with the MTHFD 1 gene, which is significant in folate metabolism [11].

3.1.3. Spina bifida

Spina bifida is the most common congenital anomaly of the CNS, resulting from the incom-

plete fusion of the vertebrae and hence exposure of the spinal cord. It can be classified into 
spina bifida occulta (Figure 2D and E), and spina bifida cystica (or aperta), which can be fur-

ther classified into meningocele, meningomyelocele, and myelocele [12]. Spina bifida occulta 
is the mildest form, caused by the malformation of the bony arch that extends caudally, fail-
ing to fuse dorsal midline to the spinal cord. The spinal cord itself, however, is unaffected, 
extended caudally, or duplicated at the end, with no neurological damage. The bone defect is 
covered by skin, although sometimes patches of hair or pigment may be observed in the area 

covering the defect. Figures 4 and 5 exhibit an embryo with spina bifida occulta, presenting a 
malformation of the bony arch, with neither neurological defect nor swelling.

On the other hand, spina bifida cystica refers to the malformation of the bony arch as well as 
the neural tube that has failed to close. Meningocele has a fluid-containing cystic swelling, 
emerging from a defect in the vertebral arch; the spinal cord is completely confined to the 
spinal canal, but may exhibit myelodysplasia.

Meningomyelocele and myelocele also refer to cystic swellings emerging dorsally through a 

vertebral arch, although the spinal cord (located inside the sac) bears its fundus. Myelocele is 

different from meningomyelocele in the following aspects: spinal cord is exposed to the exter-

nal surface, often in the lumbosacral area; neutral folds stay flat, and will not elevate; not only 
the spinal cord, the brain is also often malformed, which may result in hydrocephalus, Chiari 

2 malformation, and other defects [13].

Although spina bifida can be recognized as early as CS 12, it becomes observable earliest by 
CS 13, when the closure of the neural tube is supposed to be completed.
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A significant amount of folic acid is known to prevent spina bifida; early postnatal treatments, 
including the closure of the spinal lesion within 48 h after birth, and medical management are 

essential for life henceforth [14].

3.2. Facial anomalies

3.2.1. Cleft lip

Cleft lip, often accompanied by cleft palate, is the most common congenital facial anomaly 

that causes dental defects, yielding defective speech and feeding disorders, and sometimes 

ear infections. The prevalence among the Asian and American Indian populations is as high 

as 1 in 500 births, which is relatively higher than that in European-derived or African-derived 

population, where prevalence rates are at approximately 1/1000 and 1/2500, respectively [15].

The morphological characteristic of cleft lip is the opening in the upper lip to the roof of the 

mouth, either located in the center (median cleft lip) (Figure 3A) or left and/or right side 
(bilateral/ unilateral cleft lip, Figure 3B and C), as a result of failed fusion of various processes. 

Median cleft lip is the rarest, and is commonly associated with mental retardation, attributed 
to the loss of midline structures.

As for lateral cleft lips, 80% of them are unilateral, out of which 70% are left-sided. Cleft 

lip can be recognized as early as CS 18, and is considered a multifactorial defect, involving 
genetic factors, environmental factors, teratogens, and maternal conditions. There are over 

50 recognized syndromes that include this malformation, often caused by mutant genes [16].

The occurrence of isolated cleft lip is higher in male, whereas the occurrence of isolated cleft 

palate is higher in females [15].

3.2.2. Micrognathia

Micrognathia is a facial malformation characterized by an underdeveloped and receded man-

dible, thus presenting a bird-like face, as shown in Figure 3D. It was first mentioned in the 
clay tablets of ancient Babylonia, back in 1700 BC [17].

Micrognathia is often a part of chromosomal disorder; it is commonly seen in patients of Pierre 
Robin syndrome, and is associated with trisomy 13, trisomy18, Treacher-Collins syndrome,  

Figure 3. Congenital anomalies of face. (A) Median cleft lip, (B) left-sided unilateral cleft lip, (C) right-sided unilateral 

cleft lip, (D) micrognathia from lateral view, and (E) malformed pinna.
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and Nager syndrome [18, 19]. The frequency of Pierre Robin syndrome is approximately 1 in 
8500–14,000 births [20], and signs of micrognathia can be observed as early as CS 18. It is also 

often observed in association with cleft palate [21].

Because of the undersized jaw, most have feeding problems after birth and some may have 
major respiratory obstruction; however, there is usually no need for surgical treatment, since 
it can be naturally corrected through growth. However, micrognathia leads to dental anoma-

lies, breathing problems, and tongue growth defect, which need close observation.

3.2.3. Low-set ears

Low-set ears refer to malpositioned auricles, located anteriorly to the horizontal line drawn at 
the level of the inner canthus (Figure 3E).The size of a low-set ear is usually smaller compared 
to that in a normally developed embryo, with the angle posteriorly rotated [22]. Low-set ears 

accompany a variety of congenital chromosomal defects, including Turner’s syndrome, Patau 
syndrome, Treacher-Collins syndrome, trisomy 18, trisomy 13, Cri du chat syndrome, and 

Down syndrome. It is often observed along with micrognathia.

Malformations of the ear can be recognized earliest at CS 18, although it can be estimated ear-

lier by observing the auricle hill. Besides being low-set, the auricles may also be malformed 

as shown in Figure 3E.

3.3. Anomalies of extremities

3.3.1. Polydactyly

Polydactyly is a limb malformation, characterized by additional digit(s) in the limbs (Figure 4A 

and B) [23]. There can be preaxial, postaxial, or median polydactyly, corresponding to extra 
digits on the radial or tibial sides, ulnar or fibular sides, or in between medial fingers, respec-

tively [24].This malformation is more likely to occur in the hands than in the feet, and can be 

estimated at CS 16 [25]. The prevalence varies across races, and occurs more frequently in the 

right hand than the left, among the Japanese. Its frequency on each finger may also vary; the 
highest to lowest being in the order: thumb, little finger, middle finger, ring finger, and index 
finger in the Japanese population. Polydactyly is one of the most common hereditary malfor-

mations of the extremities, with GLI3 and SHH genes being responsible [23]. The extra digit 
in preaxial polydactyly may be surgically treated after 8–12 months of birth, whereas that of 
postaxial polydactyly is dissected shortly after birth.

3.3.2. Cleft hand/foot

Cleft hand/foot, also known as split-hand/split-foot malformation (SHFM), is a limb malfor-

mation that imparts an appearance resembling a lobster claw, due to the absence of the mid-

dle finger and hence an abnormal gap between the second and fourth metacarpal bones and 
soft tissues (Figure 4C). The two fingers on either side of the cleft in a cleft hand may be fused, 
which would make it appear as if there are only two digits on one hand [26].

Congenital Anomalies - From the Embryo to the Neonate30



Ectrodactyly, or oligodactyly refers to malformations of the limb such that there are digits 

less than 5, arising from either ulnar deficiency, radial deficiency, or median deficiency (cleft 
hand/foot) [26]. Figure 4C shows a cleft hand with four distinct digits, with a large gap in 

between the second and third digits, presenting a lobster claw-like feature.

The inheritance of cleft hand is autosomal dominant, caused by deletions or mutations in 

autosomes such as chromosomes 2, 3, 7, and 10. For example, the deletion in chromosome 
2 results not only in ectrodactyly, but also in microcephaly, micrognathia, low-set ears, and 

mental retardation. Although ectrodactyly is often associated with other malformations, a 

single family has been reported for the inheritance of isolated ectrodactyly resulting from 

X-linked recessive inheritance [26]. Another well-known syndrome that is associated with this 

malformation is EEC (ectrodactyly-ectodermal dysplasia-cleft lip/palate) syndrome, which 

Figure 4. Congenital anomalies of extremities. (A) Polydactyly in hand; (B) polydactyly in foot; (C) cleft hand, (D) 
sirenomelia, lateral view, and (E) sirenomelia, anterior view.
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comprises of ectodermal dysplasia and cleft lip, occasionally accompanied by cleft palate, due 

to an autosomal dominant inheritance [27]. The prevalence is approximately 1 in 18,000 births 
[28], and can be observed as early as CS 18, at the stage when the finger rays develop. There 
is no difference between females and males in terms of occurrence, and surgical treatment is 
scheduled when the child is 1 or 2 years old.

3.3.3. Sirenomelia (meromelia)

Sirenomelia, named after the Sirens (half-bird women in Greek mythology, often confused 

with mermaids), is an extremely rare form of malformation of the extremities, characterized 
by fused lower limbs hence resembling “merpeople” (Figure 4D and E) [29]. With only a 

single umbilical artery and vein, it is difficult for both limbs to develop, resulting in the forma-

tion of fused lower limbs [30]. It can be divided into categories, based on the degree of devel-

opment of the lower limb: sympus apus, sympus monopus, and sympus dipus, referring to 

absence of feet, short feet, and a pair of feet, respectively. Anomalies of the kidneys, large 

intestine, and external genitalia are commonly observed as accompanying complications.

This lethal congenital anomaly begins to show up at CS 13, with an occurrence rate of approx-

imately 1.5–4.2 in 100,000 births, with more than half of them born dead. All such cases lead to 

death within 5 h after birth [29]. Although chromosomal aneuploidy is not associated, mater-

nal diabetes mellitus and monozygotic twins are considered important factors for increasing 
the risk of sirenomelia [31].

4. Diagnostic strategies for human embryos

4.1. Imaging modalities

4.1.1. Ultrasound

Fetal ultrasound was developed as A-mode in the late 1950s, then modified to B-mode in 
the 1970s, followed by real-time imaging in the 1980s, and 3D imaging [32, 33] in the 1990s. 

Currently, ultrasonography is applied throughout pregnancy. Transvaginal ultrasonography 

is useful for examining the gestational sac at approximately 5 weeks, the yolk sac at 5.5 weeks, 
flickering cardiac motion at 6 weeks, etc. Embryos and early fetuses within 12 weeks of gesta-

tion are usually examined by transvaginal ultrasonography, whereas those beyond 12 weeks 
of gestation are examined by transabdominal ultrasonography. Ultrasonography is used for 
examining embryos and fetuses for several reasons, one of them is to determine the gesta-

tional age and estimate the fetal weight. A formula for estimating the latter was first suggested 
in the late 1970s [34]. Since then, a number of formulae have been proposed and accepted 

[35–39], while new formulae for the estimation have also been frequently promoted [40, 41]. 

Another purpose of ultrasonography is to detect (and occasionally, to assess) congenital 

fetal anomalies. Ultrasonography was first applied to evaluate anencephaly [42], but now it 

is able to detect a wide range of anomalies. The definition of optimal fetal anatomy survey 
has been published as guidelines by the International Society of Ultrasound in Obstetrics 
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and Gynecology (ISUOG) [43] for performing effective screening of morphological anoma-

lies. Meanwhile, studies conducted during the 1980s–1990s made it clear that soft markers 

in ultrasonography indicate an elevated risk of chromosomal abnormalities [44–46], even 

though they may not be directly harmful by themselves. Soft markers combined with mater-

nal serum is capable of detecting aneuploidy with high precision [47].

4.1.2. Magnetic resonance imaging

Magnetic resonance (MR) microscopy refers to MR imaging for screening small samples. It is 

significantly useful for the 3D measurement of chemically fixed human embryos, due to the 
large amount of mobile or NMR responsive protons existing in the preservation fluid (for-

malin) [48]. Being a non-invasive and non-destructive imaging process, it has been applied 

to a number of animal models for understanding developmental embryology [49–52]. MR 

imaging provides highly beneficial features [50, 53, 54], reaching a resolution of 40 μm/pixel 
or higher when scanning a sample for an extended amount of time. Superconducting magnets 
with field strength of 1.0–9.4 T [52, 54, 55] have been used for describing human embryo using 

MR imaging. Figure 5C–D and E–F is obtained with MR microscopes equipped with 7.0 and 

2.34 T magnets, respectively.

4.1.3. Phase-contrast X-ray computed tomography

X-rays are electromagnetic waves with characteristic amplitude and phase. When X-rays pen-

etrate a sample, its amplitude decreases and the phase gets shifted. Conventional X-ray imag-

ing (radiography) is based on absorption contrast (i.e. amplitude imaging) and represented 

by the internal mass density distribution within the sample (Figure 6A and B). Unfortunately, 
only sensitivity to X-ray distribution is not enough for a detailed analysis of the samples 

containing biological soft tissues such as embryos, unless it is either combined with contrast 

agents or performed at higher X-ray doses. Another way of solving this issue is by exploiting 
the phase information of X-rays. Since lighter elements, such as hydrogen, carbon, nitrogen, 

and oxygen are 1000 times more sensitive to phase-shift compared to the actual absorption 
[56], they can be used to detect the phase-shift. To that end, it is essential to convert the phase 

shift into a change in X-ray intensity, which can be measured easily by current-detecting 

devices. Conversion methods, such as interferometry and diffractometry, are applied for the 

Figure 5. The results of MRI from several imaging devices. A, B: 2.34 T super parallel MRM (MR microscope), developed 

by Prof. Kose et al. in the University of Tsukuba. C, D: Pre-clinical MRI (Bruker BioSpin, 7 T) in the Human Health 
Sciences, Kyoto University Graduate School of Medicine, Japan. E, F: Clinical MRI (Siemens Magnetom, 3 T) in the Kyoto 
University Hospital, Japan.
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generation of 2D and 3D images using synchrotron radiations from appropriate devices [57, 

58]. An image of a human embryo at CS 17, obtained by applying a two-crystal X-ray interfer-

ometer [59], is displayed in Figure 6C and D.

4.2. New strategies for diagnosis of congenital anomalies

4.2.1. Autopsy imaging of human embryos and fetuses

Additional imaging modalities can be applied for dead embryos and fetuses. Classically, solid 

reconstruction and fine drawing were primarily the approaches used; the first 3D morpho-

logical imaging technique was the wax plate technique, using serial histological sections of 
human embryos, which was developed by Born [60]. Recently, the 3D reconstruction of serial 

sections has been carried out by using computer graphic methods, which has made the 3D 

reconstruction much easier and quicker than before. The 2D image stacks generated from 

serial sections have a high resolution, although the issues of section registration and distor-

tion remain unsolved. A solution to this problem is a novel imaging modality for the gen-

eration of high-resolution 3D reconstructed images [61], which uses episcopic fluorescence 
image capture (EFIC). In EFIC imaging, tissue autofluorescence is used to image the block 
face prior to cutting any section. Although the samples are sliced and some lost during the 
procedure, the optical resolution of EFIC is reported to reach approximately 5–6 μm [62].

MRI is a useful imaging modality, not only for living prenatal embryos and fetuses, but also 

for dead embryos and fetuses in autopsy imaging. Despite the longer time taken to capture 

images, the higher resolution is definitely an advantage; the time required for a high-resolu-

tion imaging ranges from several hours to days. MR devices should be selected depending 

on the sample size; specially, MR microscopy, clinical MRI, and experimental MRI are suit-
able for small-sized embryos, larger fetuses, and embryos/fetuses with an intermediate size, 
respectively [39] (Figure 5) [2, 63, 64].

X-ray imaging is also used for dead embryos and fetuses. Since there is no need to consider 

the impact of radiation exposure on the tissue, longer time may be devoted to capture high 
resolution images. Conventional (absorption-contrast) X-ray CT (cCT) is used for fetal skeletal 

imaging (Figure 6A and B). Phase-contrast X-ray CT (pCT) is another method of X-ray imag-

ing [40]. Since X-rays are electromagnetic waves, phase-contrast X-ray imaging is capable of 

recording the phase-shift of X-rays while passing through the samples and reconstructing 

Figure 6. The results of X-ray CT. A, B: Clinical CT (Toshiba Alexion) in the Laboratory of Physical Anthropology, 
Graduate School of Science, Kyoto University, Japan. C, D: Phase contrast CT, Photon Factory of the KEK (High Energy 
Accelerator Research Organization) in Tsukuba, Japan. A, C: Surface reconstruction and B, D: midsagittal section.
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2D/3D images of the samples in combination with CT. An embryo or an early fetus, mostly 
composed of soft tissue, is suitable for pCT imaging (Figure 6C and D).

Ultrasonography of living embryos and fetuses is very commonly performed nowadays, and 
many malformations can be diagnosed during the early prenatal period. In the cases of preg-

nancy termination, not all the aborted fetuses are dissected and pathologically diagnosed, due 

to technical difficulties associated with the dissection of small fetuses. However, the imaging 
modalities presented here can be used for autopsy imaging of embryos and fetuses, regard-

less of their size. If any clue to the fetal anomaly (that might have led to the abortion) could 
be identified by using these imaging modalities, supplemented by appropriate genetic tests, 
then a final accurate diagnosis can be obtained. Based on the final diagnosis, parents would 
be provided with sufficient detailing of their lost pregnancy, which would enable them to 
receive a genetic counseling prior to the next pregnancy.

The imaging modalities described in this section are summarized in Figures 5 and 6. The 

appropriate modalities for imaging dead embryos or fetuses should be used depending on 

the stage of pregnancy.

4.2.2. Genetic analysis of the human embryo and fetus

Amniotic fluid, chorionic villi, and umbilical cord blood are used for genetic analyses of human 
embryos and fetuses. Recently, a new approach for prenatal testing was proposed in the name 

of noninvasive prenatal testing (NIPT) that uses DNA fragments derived from maternal villus 

cells to determine the genetic information of the fetus. In comparison to maternal serum analy-

sis, NIPT has considerably higher sensitivity and specificity for aneuploidy [65]. However, due 

to the infrequent derivation of cell-free DNA (cfDNA) from multiple sources such as in pla-

cental mosaicism, maternal conditions including cancer, or fetal and/or maternal copy number 
variation (CNV) [66], NIPT has a risk of predicting false-positive and false-negative results.

The cell samples obtained from amniotic fluid and chorionic villi may be used for both screen-

ing and diagnostic tests. Traditional karyotype analysis is the most commonly used method 

to examine cells, obtained from chorionic villus sampling (CVS) and amniocentesis (AC), for 
the diagnosis of aneuploidies and large rearrangements. The diagnostic accuracy of traditional 

karyotype analysis is higher than 99% for aneuploidy and for chromosomal abnormalities larger 

than 5–10 Mb [67]. On the other hand, fluorescence in-situ hybridization (FISH) analysis can 
detect specific chromosomes or chromosomal regions by using fluorescently labeled probes. The 
turnaround for FISH results (usually within 2 days) is faster than that of conventional karyotyp-

ing results (7–14 days, including the cell culture period). Due to the existence of false-positive 
and false-negative reports, FISH [68–70] is considered as a mere screening test, although still 

commonly used to screen chromosomes 13, 18, 21, X, and Y. Therefore, clinical diagnosis using 

FISH results should be supplemented by other clinical and laboratory analyses such as abnormal 

ultrasonography, positive screening test using maternal serum and/or soft markers, confirma-

tory traditional metaphase chromosome analysis, or chromosomal microarray analysis (CMA).

CMA is capable of detecting small chromosomal aneuploidies that cannot otherwise be iden-

tified by conventional karyotyping [71]. Since CMA can be performed without cell or tissue 

culture, the results can be obtained within 3–7 days. Since CMA can also be carried out with 
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nonviable cells, which are not suitable for conventional karyotyping analysis, this technique 

[71] is applicable to the cases of fetal death or stillbirth. CMA can identify almost all the abnor-

malities, except for balanced translocations and triploidy. While the results of conventional 
karyotyping in the detection of structural abnormalities, seen in prenatal ultrasonography, 

did not show anything notable, approximately 6% of the fetuses were identified for chromo-

somal defects by CMA [72, 73]; CMA qualifies as the primary test, in case a structural abnor-

mality is detected by fetal ultrasonography, as also recommended by the American Congress 

of Obstetricians and Gynecologists (ACOG) [71].

In the late 1980s, single gene disorders were diagnosed from fetal samples. Although only 

prenatal diagnosis of β-thalassemia was done using amplified fetal DNA [74] initially, the 

number of diagnosable diseases or genes has increased thereafter. Thus, the whole-genome 

sequencing, using DNA samples from amniotic fluid, was developed in the next-generation 
sequencing (NGS) era [75]. In fact, whole-exome sequencing (WES) is more appropriate for 
fetal genetic analysis, because the coding exons in WES contain 85% of disease-coding muta-

tions, even though it accounts for only 2% of the entire genome. Prenatal WES, using fetal 

blood samples, has been performed since 2013 [76]. Meanwhile, massive parallel sequencing 

(MPS) using NGS opened the way to NIPT [77] in the late 2000s. Now, NIPT is widely used for 

aneuploidy, throughout the world [78], and even some of the fetal single-gene diseases can be 

detected using cell-free fetal DNA (cffDNA) obtained from maternal blood [79, 80]. Although 

the number of diseases detectable using cffDNA is gradually increasing, cffDNA analyses 
are merely screening tests and would not replace the diagnostic testing, as mentioned in the 

guidelines of professional societies [81–86].
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