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Abstract

Machine learning is widely used inmanymodern artificial intelligence applications. Various
hardware platforms are implemented to support such applications. Among them, graphics
processing unit (GPU) is the most widely used one due to its fast computation speed and
compatibility with various algorithms. Field programmable gate arrays (FPGA) show better
energy efficiency compared with GPU when computing machine learning algorithm at the
cost of low speed. Finally, various application specific integrated circuit (ASIC) architecture
is proposed to achieve the best energy efficiency at the cost of less reconfigurability which
makes it suitable for special kinds of machine learning algorithms such as a deep convo-
lutional neural network. Finally, analog computing shows a promising methodology to
compute large-sized machine learning algorithm due to its low design cost and fast com-
puting speed; however, due to the requirement of the analog-to-digital converter (ADC) in
the analog computing, this kind of technique is only applicable to low computation resolu-
tion, making it unsuitable for most artificial intelligence (AI) applications.

Keywords: machine learning, hardware accelerator, model compression, analog
computing, GPU, FPGA, ASIC

1. Introduction

Machine learning (ML) is currently widely used in many modern artificial intelligence (AI)

applications [1]. The breakthrough of the computation ability has enabled the system to

compute complicated different ML algorithm in a relatively short time, providing real-time

human-machine interaction such as face detection for video surveillance, advanced driver-

assistance systems (ADAS), and image recognition early cancer detection [2, 3]. Among all

those applications, a high detection accuracy requires complicated ML computation, which

comes at the cost of high computational complexity. This results in a high requirement on the

hardware platform. Currently, most applications are implemented on general-purpose com-

pute engines, especially graphics processing units (GPUs). However, work recently reported
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from both industry and academy shows a trend on the design of application specific integrated

circuit (ASIC) for ML, especially in the field of deep neural network (DNN). This chapter gives

an overview of the hardware accelerator design, the various types of the ML acceleration, and

the technique used in improving the hardware computation efficiency of ML computation.

2. Recent development on deep learning hardware accelerator

2.1. GPU/FPGA-based accelerator in datacenter

Over the past decades, graphics processing units (GPUs) have become popular and standard

in training deep-learning algorithms or convolutional neural networks for face, object detec-

tion/recognition, data mining, and other artificial intelligence (AI) applications. GPUs offer a

wide range of hardware selections, a high-performance throughput/computing power, and a

stable but ever-expanding ecosystem. The GPU architecture is usually implemented with

several mini graphics processors. Each graphics processor has its own computation unit and

local cache which fits for the matrix multiplication. A shared high-speed bus is included in

multiple mini processors to enable fast data exchange among mini processors. In addition, it

also acts as a bridge to connect the main CPU and multiple mini graphics processors.

Taking NVIDIA’s DGX-1 as an example [4], DGX-1 has eight Tesla P100-SXM2 GPUs

conforming to Pascal architecture. Each GPU has 56 multiprocessors with 64 CUDA cores per

multiprocessor. This makes each GPU equipped with 3584 CUDA cores. The GPU and memory

clock frequencies are 1.3 GHz and 700 MHz, respectively. The GPU has 4096-bit memory bus

width, 16 GB global memory, and 4 MB L2 cache. Figure 1 shows the system-level topology of

DGX-1. The network of NVLink interconnect is wired so that any two GPUs can hop away from

less than one another GPU. The GPU cluster is connected to a switch (PLX) with a PCIe � 16

Figure 1. Diagram of NVIDIA DGX-1 system-level topology.
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interconnect. The maximum bandwidth of NVLink interconnect with Tesla P100 is reported at

160 GB/s. In a clustering or multicore parallel computation scenario, the communication inter-

connect performance becomes the bottleneck to achieving high throughput, low latency, and

high energy efficiency. Figure 2(a) and (b) shows that DGX-1 GPU outperforms comparable Intel

CPU (KNL) in power efficiency and computing throughput for two different batch sizes when

running CLfarNet.

The GPU offers significant computation speed due to a lot of parallel processing cores. How-

ever, a relatively large power consumption is also requested for the computation and data

movement. In addition, a high-speed interconnect interface is required to support the fast data

exchange. Thus, compared with other techniques, GPU offers power computation ability at the

expense of high design cost (unit price) and power consumption.

As the industry matures, field programmable gate arrays (FPGAs) are now starting to emerge as

credible competition to GPUs for implementing CNN-based deep learning algorithms. Microsoft

Figure 2. Power and performance of CifarNet/Cifar 10 with batch sizes (a) 96 and (b) 192.

Hardware Accelerator Design for Machine Learning
http://dx.doi.org/10.5772/intechopen.72845

3



Research’s Catapult Project garnered quite a bit of attention in the industry when it contended

that using FPGAs could be as much as 10 times more power efficient compared to GPUs [5].

Although the performance of single FPGA was much lower than comparable-price GPUs, the

fact that power consumption was much lower could have significant implications for many

applications where high performance may not be the top priority. Figure 3(a) shows a logical

view of FPGAs in cloud-scale application and Figure 3(b) shows how the FPGA-based acceler-

ator fits into a host server.

As Figure 3(b) shows, the FPGA-based machine learning accelerator typically involves hardware

blocks such as DRAM, CPUs, network interface controller (NIC), and FPGAs. The DRAMs act as

a large buffer to store the temporary data while the CPU is in charge of managing the computa-

tion, including sending instructions to FPGAs. The FPGA is programmed to fit the ML algo-

rithm. Since the ML algorithm is optimized at a hardware level through FPGA programming, a

high data access efficiency is obtained compared with regular GPU computation which does not

have any hardware optimization on the corresponding ML algorithms.

Although the FPGA reduces the power consumption in computing through optimizing the ML

algorithms on the hardware design, the overall efficiency is still much lower compared with the

ASIC for single kind of algorithms. Compared with the ASIC, the programmability introduced by

the FPGA also brings complicated logic which increases the hardware design cost. In addition, the

speedof the FPGA is usually limited to 300MHz,which is 4–5� times lower than a typicalASIC [6].

2.2. ASIC-based CNN accelerator at edge

2.2.1. Introduction

In the HPC or datacenter, hardware accelerator solutions are dominated by GPU and FPGA

solution. State-of-the-art machine-learning computation mostly relies on the cloud servers.

Figure 3. (a) De-couples programmable hardware plane, (b) server plus FPGA schematic.
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However, high-power consumption makes this approach limited in many real application

scenarios. Since cloud-based AI applications on portable devices require network connection

capability, the quality of network connection affects user experience. Furthermore, the network

and communication latency is not acceptable for real-time AI applications. In addition, most of

IoT AI applications have a strict power and cost constrain, which could support neither high-

power GPU nor transmitting a large amount of data to cloud servers.

To address the abovementioned issues, several edge-based AI processing schemes were intro-

duced in [7–9]. The edge-based AI processing scheme targets utilizing the localized data at the

edge side and avoids network communication overhead. Currently, most localized AI pro-

cessors focus on processing convolutional neural network (CNN) which is widely used for

computation vision algorithms and requests a lot of computing resources.

2.2.2. CNN accelerator layer function definition

The state-of-art convolutional neural networks commonly include three different computa-

tional layers: convolution layer, pooling layer, and fully connected layer. Convolution layer

is the most computation intensive part of the neural network, with pooling layer inserted

between two convolution layers with the function of reducing intermediate data size and

remapping feature maps. Fully connected layer is usually the last layer of the CNN to predict

labels of input data, which is memory bandwidth limited, rather than computation resource

limited.

The primary role of a convolution layer is to apply convolution function to map the input

(previous) layer’s images to the next layer. Data from each input layer are composed of

multiple channels as a three-dimensional tensor. One set of regional filter windows is defined

as one filter or weight. The results run through inner product computation by the filter weight

and input data. Output feature is defined by using the filter or weight to scan and accumulate

different input channels. After interproduct computation, a separated bias vector (the same

dimension as output feature number) will be added in each final result. The analytical repre-

sentation of convolution layer is shown in Eq. (1) and Figure 4.

O o½ � m½ � x½ � y½ � ¼ B o½ � þ
XM

k¼1

XK

i¼1

XK

j¼1

I o½ � k½ � αxþ i½ � αyþ j½ � �W m½ � k½ � i½ � j½ �

1 ≤ o ≤N, 1 ≤m ≤M, 1 ≤ x, y ≤ So (1)

O, B, I, and W are the output features, biases, input features, and filters, respectively.

In addition to the convolution layer, pooling layer is to compress important information

through a group of local image pixel data in each input channel. There are two types of pooling

operations: max pooling and average pooling. For max pooling operation, the output of

pooling layer collects the maximum of pixel data in the local group window, while for average

pooling operation, the output of pooling layers calculates the mean of pixel data in the local

groupwindow. The representations of these two pooling operations are defined as Eqs. (2) and (3).

Figure 5 is an example of the max pooling function.
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Oavg r½ � c½ � ¼ avg

I r½ � c½ � ⋯ I r½ � cþ K � 1½ �

⋮ ⋱ ⋮

I rþ K � 1½ � c½ � ⋯ I rþ k� 1½ � cþ K � 1½ �

2

6

4

3

7

5
(2)

Omax r½ � c½ � ¼ max

I r½ � c½ � ⋯ I r½ � cþ K � 1½ �

⋮ ⋱ ⋮

I rþ K � 1½ � c½ � ⋯ I rþ k� 1½ � cþ K � 1½ �

2

6

4

3

7

5
(3)

Here I[r][c] represents the input channel’s data at the position (r,c) and the kernel size of the

pooling window is K.

2.2.3. CNN accelerator architecture overview

Today’s CNN accelerator architecture can mainly separate into two categories. The central

computation architecture and the sparse computation architecture. Figure 6 is a typical central

Figure 4. Concept of computation of CONV layer.

Figure 5. Example of computation of a max pooling layer.
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computation architecture that reports in 2015 [10]. The central computation architecture has

one large PE array. Multiple filters will be sent out into the PE array to enable parallel

computation. The output result of each filter will be gathered at the PE array’s output to

feedback to the memory for next layer computation. This large PE array in the central compu-

tation architecture provides a benefit to computing large kernel-sized CNN; however, it needs

to reconstruct the array when computing the small kernel-sized CNN.

On the other hand, a sparse computation architecture is made of many parallel small convolu-

tion units that fit for small-sized kernel [11]. Figure 7 is one of such implementations. The

computing unit (CU) Engine Array is made of 16 3 � 3 kernel-sized convolution units. It

provides a benefit to compute small kernel-sized convolution operations and simplify the data

flow. However, the computing unit is only supported for 3 � 3 convolution. So when comput-

ing a kernel size that is larger than 3 � 3, a kernel decomposition technique is proposed in the

following section.

2.2.4. Kernel decomposition technique

The filter’s kernel size in a typical CNN network can range from a very small size (1� 1) to a very

large size (11 � 11). A hardware engine needs design to support various sized convolutional

operation. However, for sparse architecture, the computation units are not separated into many

small blocks. Each block consists of a small-sized processing engine array and can only support

small-sized convolution, making each block hard to process large convolution. To minimize the

hardware resource usage, a filter decomposition algorithm is proposed to compute any large

kernel-sized (>3 � 3) convolution through using only 3 � 3-sized CU [11]. The algorithm is

separated into three steps: (1) It first examines the kernel size of the filter. If the original filter’s

kernel size is not an exact multiple of three, zero padding weights will be added in the original

filter’s kernel boundary to extend the original filter’s kernel size to be a multiple of three. The

added weights are all zero to keep the extended filter convolution result to be same as the original

one. (2) The extended filters will be decomposed into several 3 � 3-sized filters. Each filter will be

Figure 6. Central computation architecture of the CNN accelerator.
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assigned a shift address based on its top left weight’s relative position in the original filter and

each decomposed filter will be computed individually. (3) The output result of each decomposed

filter will be summed together based on its shift address to generate the final output. The

mathematical derivation of this decomposition technique is also explained in [11].

Figure 8 is an example of decomposing a 5 � 5 filter into four 3 � 3 filters using this technique.

One row and column zero padding are added in the original filter. The decomposed filters F0,

F1, F2, F3’s shift address are (0,0), (0,3), (3,0), (3,3). Figure 9 shows the detailed procedure.

2.3. Model compression

In addition to the hardware architecture level development, model compression is also reported as

a way to improve the hardware computation efficiency of the machine learning. Ref [12] reported a

methodology to prune the neural network and achieve up to 35� to 49� model parameters

reduction. The procedure is shown in Figure 10. The original network will be pruned and

retrained several times to achieve parameters reduction. After that, quantization is implemented

with clustered weights to achieve additional parameter size reduction. Finally, Huffman encoding

is added into the final weights to achieve further model size reduction.

Figure 7. Sparse computation architecture of the CNN accelerator in [11].
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Figure 8. A 5 � 5 Filter decomposed into four 3 � 3 sub-filter.

Figure 9. Filter decomposition technique to compute a 5 � 5 filter on the 7 � 7 image. The 5 � 5 filter is decomposed into

four separated 3 � 3 filters F0, F1, F2, F3, and generating four sub-images. The sub-images are summed together to

generate the final output. Same color’s pixels in each sub-image will be added together to generate the corresponding

pixels in the output image.

Figure 10. Neural network compression reported in Ref [12].
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Due to the rapid increment of the deep learning model size, model compression becomes more

and more important for machine-learning hardware acceleration, especially for the edge-side

user case. In addition, the fixed-point data format is also used in many deep learning applica-

tions to reduce the computation cost [13].

2.4. Analog computing

In addition to the traditional digital accelerator design, analog computing is also becom-

ing one of the trends to improve the processor computation ability in solving machine

learning problems. Here, we use the charge-trapping transistors (CTTs) technique as an

example to introduce analog computing [14]. The complementary metal oxide semicon-

ductor (CMOS)-compatible feature of the CTTs makes them very promising devices to

implement large-sized computation using analog methodology.

As the scaling of transistors is reaching its manufacturing limit, the computation through-

put using current architectures will also inevitably saturate. Recent research reports the

development of analog computing engines. Compared to traditional digital computation,

analog computing shows tremendous advantages regarding the power, design cost, and

computation speed. Among many analog computing systems, memristor-based ones have

been widely reported [14]. Recently, more promising charge-trapping transistors (CTTs)

Figure 11. A schematic showing the basic operation of CTT device (equally applicable to FinFET-based CTTs): (1) charge

trapping operation, (2) charge de-trapping operation.
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were reported to be used as digital memory devices with reliable trapping and de-trapping

behavior. Different from other charge-trapping devices such as floating-gate transistors,

transistors with an organic gate dielectric, and carbon nanotube transistors, CTTs are

manufacturing ready and fully CMOS compatible in terms of process and operating. IT

shows that more than 90% of the trapped charge can be retained after 10 years even when

the device is baked at 85�C [15].

A schematic of the basic operation of a CTT device is depicted in Figure 11. The device

threshold voltage, VT, is modulated by the charge trapped in the gate dielectric of the transis-

tor. VT increases when positive pulses are applied to the gate to trap electrons in the high-k

layer and decreases when negative pulses are applied to the gate to de-trap electrons from the

high-k layer. CTT devices can be programmed by applying logic-compatible voltages.

A memristive computing engine based on the charge-trapping transistor (CTT). The proposed

memristive computing engine consists of 784 by 784 CTT analog multipliers and achieves 100�

power and area reduction compared to the conventional digital approach. Through impleme-

nting a novel sequential analog fabric (SAF), the mixed-signal interfaces are simplified and it

only requires an 8-bit analog-to-digital converter (ADC) in the system. The top-level system

architecture is shown in Figure 12. A 784 by 784 CTT computing engine is implemented using

TSMC 28 nm CMOS technology and occupies 0.68mm2 as shown in Figure 13. It achieves 69.9

TOPS with 500 MHz clock frequency and consumes 14.8 mW.

Figure 12. Top-level system architecture of the proposed memristive computing engine, including CTT array, mixed-

signal interfaces including tunable low-dropout regulator (LDO), analog-to-digital converter (ADC), and novel sequential

analog fabrics (SAF).
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Compared with the traditional digital processor, analog-based computing processor achieves

much less power as well as large area reduction in the design. Table 1 is a comparison of the

computation ability between the analog processor and digital processor. As it shows, analog

processor achieved more than 100 times computing speed with 1/10 times area consumption

compared to digital processor.

Even the analog computing shows advantages in the computation speed and design cost, a low

computing resolution limits its application in most ML algorithms. Due to the design challenges

of the ADC in the analog processor, the processor can only handle computation resolution that is

less or equal to around 10 bits, making it not suitable for most AI applications.

Figure 13. Layout view in TSMC 28 nm CMOS technology.

Merits Digital [16] This work

Process Standard 28 nm FD-SOI CMOS Standard 28 nm CMOS

Core Area (mm2) 5.8 0.68

Power (mW) 41 14.8

Clock Speed 200–1175 MHz 500 MHz

Peak MACs # 0.64 K 69.9 K

SRAM Size 128 KB 0

Non-Volatile No Yes

Table 1. Comparison table between analog computing and digital computing in Ref [14].
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3. Conclusion

In this chapter, various computation hardware platforms for machine learning algorithms are

discussed. Among them, GPU is the most widely used one due to its fast computation speed

and compatibility with various algorithms. FPGA shows better energy efficiency compared

with GPU when computing machine learning algorithm at the cost of low speed. Finally,

different ASIC architectures are proposed to support certain kinds of the machine learning

algorithms such as a deep convolutional neural network with model compression technique to

improve hardware performance. Compared with the GPU and FPGA, ASIC shows the best

energy efficiency and computation speed, however, at the cost of reconfigurability to various

ML algorithms. Depending on the specific applications, the designers should select the most

suitable computation hardware platform.
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