
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



14 

Construction of a Noise-Robust Body-
Conducted Speech Recognition System 

Shunsuke Ishimitsu 
Hiroshima City University  

Japan 

1. Introduction 

In recent years, speech recognition systems have been used in a wide variety of environments, 
including internal automobile systems. Speech recognition plays a major role in a dialogue-
type marine engine operation support system (Matsushita & Nagao,2001) currently under 
investigation. In this system, speech recognition would come from the engine room, which 
contains the engine apparatus, electric generator, and other equipment. Control support 
would also be performed within the engine room, which means that operations with a 0-dB 
signal-to-noise ratio (SNR) or less are required. Noise has been determined to be a portion of 
speech in such low SNR environments, and speech recognition rates have been remarkably 
low. This has prevented the introduction of recognition systems, and up till now, almost no 
research has been performed on speech recognition systems that operate in low SNR 
environments. In this chapter, we investigate a recognition system that uses body-conducted 
speech, that is, types of speech that are conducted within a physical body, rather than speech 
signals themselves (Ishimitsu et al. 2001). 
 Since noise is not introduced into body-conducted signals that are conducted in solids, even 
within sites such as engine rooms which are low SNR environments, it is necessary to 
construct a system with a high speech recognition rate. However, when constructing such 
systems, learning data consisting of sentences that must be read a number of times is 
required for creation of a dictionary specialized for body-conducted speech. In the present 
study we applied a method in which the specific nature of body-conducted speech is 
reflected within an existing speech recognition system with a small number of vocalizations. 
Because two of the prerequisites for operating within a site such as an engine room where 
noise exists are both "hands-free" and "eyes-free" operations, we also investigated the effects 
of making such a system wireless. 

2. Dialogue-type marine engine operation support system using body-
conducted speech 

Since the number of Japanese sailors has decreased dramatically in recent years, there is a 
shortage of skilled maritime engineers. Therefore, a database which stores the knowledge 
used by skilled engineers has been constructed (Matsushita & Nagao,2001).  
In this study, this knowledge database is accessed by speech recognition. The system can be 
used to educate sailors and make it possible to check the ship's engines. O
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Figure 1 shows a conceptual diagram of a dialogue-type marine engine operation support 

system using body-conducted speech. The signals are detected with a body-conducted 

microphone and then wirelessly transmitted, and commands or questions from the speech-

recognition system located in the engine control room are interpreted. A search is made for 

a response to these commands or questions speech recognition results and confirmation on 

the suitability of entering such commnads into the control system is made. Commands 

suitable for entry into the control system are speech-synthesized and output to a monitor. 

The speech-synthesized sounds are replayed in an ear protector/speaker unit, and while 

continuing communication, work can be performed while safety is continuously confirmed. 

The present research is concerned with the development of the body-conducted speech 

recognition portion of this system. In this portion of the study, a system was created based 

on a recognition engine that is itself based on a Hidden Markov Model (HMM) incidental to 

a database (Itabashi, 1991). With this system, multivariate normal distribution is used as the 

output probability density function, and a mean vector μ that takes an n-dimensional vector 

as the frame unit of speech feature quantities and a covariance matrix Σ are used; these are 

expressed as follows: (Baum,1970) 
 

 

Fig. 1. Dialogue-type marine engine operation support system using body-conducted 
speech. 

 
1

/2 1/2

1
( ) ( )

2
1

( , , )
(2 ) | |

t

n

o o

b o e
μ μ

μ
π

−− − Σ −
∑ =

Σ
 (1) 

HMM parameters are shown using the two parameters of this output probability and the 

state transition probability. To update these parameters using conventional methods, 

utterances repeated at least 10-20 times would be required. To perform learning with only a 

few utterances, we focused on the relearning of the mean vector μ within the output 

probability, and thus created a user-friendly system for performing adaptive processing. 
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3. Investigation into identifying sampling locations for body-conducted 
speech 

3.1 Investigation through frequency characteristics 

Figure 2 shows candidate locations for body-conducted speech during this experiment. 
Three locations - the lower part of the pharynx, the upper left part of the upper lip and the 
front part of the zygomatic arch - were selected as signal sampling locations. The lower part 
of the pharynx is an effective location for extracting the fundamental frequency of a voice 
and is often selected by electroglottograph (EGG). Since the front part of the zygomatic arch 
is where a ship's chief engineer has his helmet strapped to his chin, it is a meaningful 
location for sound-transmitting equipment. The upper left part of the upper lip is the 
location that was chosen by Pioneer Co., Ltd. for application of a telecommunication system 
in a noisy environment. This location is confirmed to have very high voice clarity (Saito et 
al., 2001). Figure 3 indicates the amplitude characteristics of body-conducted speech signals 
at each location, and also shows the difference between a body-conducted signal on the 
upper lip and the voice when a 20-year-old male reads "Denshikyo Chimei 100" (this is the 
Japan Electronics and Information Technology Industries Association (JEITA) Data Base 
selection of 100 locality names). Tiny accelerometers were mounted on the above-mentioned 
locations with medical tape. Figure 3 indicates that the amplitudes of body-conducted 
speech at the zygomatic arch and the pharynx are 10-20 dB lower than body-conducted 
speech at the upper left part of the upper lip. 
 

 

Fig. 2. Sampling location for body-conducted speech. 

The clarity of vibration signals from body-conducted speech was poorer using signals from 
all sites except the upper left part of the upper lip in the listening experiment. Some 
consonant sounds that were not captured at other locations were extracted at the upper left 
part of the upper lip. However, compared to the speech signals shown in Figure 4, the 
amplitude characteristics at the upper left part of the upper lip appear to be about 10 dB 
lower than those of the voice.  
Based on frequency characteristics, we believe that recognition of a body-conducted signal 
will be difficult utilizing an acoustic model built using acoustic speech signals. However, by 
using the upper left part of the upper lip, the site with the highest clarity signals, we think it 
will be possible to recognize body-conducted speech with an acoustic model built from 
acoustic speech using adaptive signal processing or speaker adaptation. 
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Fig. 3. Frequency characteristics of body-conducted speech. 

 

Fig. 4. Frequency characteristics of body-conducted speech and speech. 

3.2 Comparison by recognition parameters 

To investigate the effectiveness of a body-conducted signal model, we examined the 
characteristics of feature vectors. We are using LPC (Linear Predictive Coding) mel-
cepstrum as the feature vectors to build an HMM. This system is widely used for parameters 
of speech recognition (Baum,1970). The first to the thirteenth coefficients were used as the 
feature vectors. The analysis conditions were: 12 kHz sampling, analysis frame length 22 
msec, frame period 7 msec, analysis window hamming window. 
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In this study, we examined a word recognition system. To investigate the possibility of 

building a body-conducted speech recognition system with a speech model without 

building an entirely new body-conducted speech model, we compared sampling locations 

for body-conducted speech parameters at each location, and parameter differences amongst 

words. Figure 5 shows the difference on mel-cepstrum between speech and body-conducted 

speech at all frame averages. Body-conducted speech concentrates energy at low frequencies 

so that it converges on energy at lower orders like the lower part of the pharynx and the 

zygomatic arch, while the mel-cepstrum of signals from the upper left part of the upper lip 

shows a resemblance to the mel-cepstrum of speech. They have robust values at the seventh, 

ninth and eleventh orders and exhibit the outward form of the frequency property 

unevenly. 

 

Fig. 5. Mel-cepstrum difference between speech and body-conducted speech. 

Although the upper left part of the upper lip has the closest proximity to voice 
characteristics, it does not capture all of the characteristics of speech. This caused us to 
conclude that it is difficult to build a body-conducted speech model solely with a voice 
model. 
We concluded that it might be possible to build a body-conducted speech recognition 
system by building a model at the upper left part of the upper lip and optimizing speech-
conducted speech signals based on a voice model. 

4. Recognition experiments 

4.1 Selection of the optimal model 

The experimental conditions are shown in Table 1. For system evaluation, we used speech 
extracted in the following four environments: 
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• Speech within an otherwise silent room 

• Body-conducted speech within an otherwise silent room 

• Speech within the engine room of the Oshima-maru while the ship was running  

• Body-conducted speech within the engine room of the Oshima-maru while the ship was 
running 

Noise within the engine room of the Oshima-maru when the ship was running was 98 dB 
SPL (Sound Pressure Level), and the SNR when a microphone was used was -25 dB. This 
data consisted of 100 terms read by a male aged 20, and the terms were read three times in 
each environment. 
 

Valuation method 
Three set utterance of 100 

words 

Vocabulary JEITA 100 locality names 

Microphone position 
From the month to about 

20cm 

Accelerator position 
The upper left part of the 

upper lip 

Table 1. Experimental conditions 

 anchorage cruising 

 Speech Body Speech Body

Anechoic room 45% 14% 2% 45% 

Anechoic room 
+ noise 

64% 10% 0% 49% 

Cabin 35% 9% 1% 42% 

Cabin + noise 62% 4% 0% 48% 

Table 2. The result of preliminary testing 

Extractions from the upper left part of the upper lip were used for the body-conducted 
speech since the effectiveness of these signals was confirmed in previous research (Ishimitsu 
et al, 2001, Haramoto et al, 2001). the effectiveness of which has been confirmed in previous 
research. The initial dictionary model to be used for learning was a model for an unspecified 
speaker created by adding noise to speech extracted within an anechoic room. This model 
for an unspecified speaker was selected through preliminary testing. The result of 
preliminary testing is shown in Table 2. 

4.2 Examination of the body-conducted speech recognition system using a voice 
model with pretreatment 

We have shown that noise-robust speech recognition is possible using body-conducted 
speech which spreads through the inside of the body. However, the rate of speech 
recognition for body-conducted speech under the same calm conditions is slightly poorer 
than the rate of recognition for acoustic speech.  
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As a result, it was determined desirable to use a dictionary that had not been through an 
adaptation processing to the environment with a speaker. To that end, we examined how 
body-conducted speech quality could be improved to that of acoustic speech quality as the 
next step in our experiments. Specifically, the transfer function between speech and body-
conducted speech was computed with adaptation signal processing and a cross-spectral 
method with the aim of raising the quality of body-conducted speech to that of speech by 
collapsing the body-conducted speech input during the transfer function. By using this 
filtering as a pretreatment, we hoped to improve the articulation score and recognition rate 
of body-conducted speech.  

 

Fig. 6. The frequency characteristics of each method. 

First, ten words were selected from the list of 100 place names, and then we analyzed the 
results using an adaptation filter and a cross-spectral method. The adaptation filter length 
was set to 1024, and the convergence coefficient was set to 0.01. In the cross-spectral method, 
the filter length was set to 1024 and 16384.  
The frequency characteristics of a speech sound, a body-conducted speech sound, and the 
results generated by the use of an adaptation filter and a cross-spectral method are shown in 
Fig. 6. The characteristics of the pretreatment filter when each technique was used are 
shown in Fig. 7. This pretreatment filter was calculated with an adaptation algorithm using 
a reverse filter. The characteristics best approached the sound the speech when cross-
spectral compensation was applied, and the transfer function took the form of a highpass 
filter. With an adaptation filter, a LMS algorithm was not able to lapse into a partial solution 
and the optimal solution could not be calculated this time. 
Next, we describe the articulation score on reproduction; applying this pretreatment filter to 
body-conducted speech. With the adaptation filter, the processing result became a blurred 
sound. Although it seldom faded in the cross-spectral method, an echo occurred. When the 
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adaptation filter was applied to body-conducted speech, the results were closer when the 
filter length approached 16834 than when the filter length approached 1024. However, the 
echo also became stronger. For this reason (as a result of the speech recognition experiment 
by the free speech recognition software Julius) we were not able to check the predominance 
difference. In addition, adaptation to a speaker and environment were not taken into 
account in this application. 

 

Fig. 7. The characteristics of the pretreatment filter. 

Speech Body Filtered body 

71% 57% 61% 

Table 3. The result of preliminary testing with Julius 

The highpass filter was designed based on the transfer function calculated with the cross- 
spectral method. The 16 tap FIR filter (Finite Impulse Response Filter) has a short filter 
length of a grade that does not generate the echo realized by the highpass filter. The 
recognition rate of filtered body-conducted speech is shown in Table 3. The recognition rate 
of body-conducted speech improved by 4% after filtering. Although the sound quality was 
clear and easy to hear when speech was filtered with the highpass filter, the noise in the 
high-frequency region was emphasized. For this reason, we concluded that the effect of the 
filter on the speech recognition rate was inadequate. 

4.3 The effect of adaptation processing 

The speech recognition test results in the cases where adaptive processing (Ishimitsu & 
Fujita, 1998) was performed for room interior speech and engine-room interior speech are 
shown in Table 4, and in Figures 8 and 9. The underlined portions show the results of the 
tests performed in each stated environment. In tests of recognition and signal adaptation via 
speech within the machine room, there was almost no operation whatsoever. That result is 
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shown in Figure 8, and it is thought that extraction of speech features failed because the 
engine room noise was louder than the speech sounds. Conversely, with room interior 
speech, signal adaptation was achieved. When environments for performing signal 
adaptation and recognition were equivalent, an improvement in the recognition rate of 
27.66% was achieved, as shown in Figure 9. There was also a 12.99% improvement in the 
recognition rate for body-conducted speech within the room interior. However, since that 
recognition rate was around 20% it would be unable to withstand practical use. 
Nevertheless, based on these results, we found that using this method enabled recognition 
rates exceeding 90% with just one iteration of the learning samples. 
The results of cases where adaptive processing was performed for room-interior body-

conducted speech and engine-room interior body-conducted speech are shown in Table 5, 

and in Figures 10 and 11. Similar to the case where adaptive processing was performed 

using speech, when the environment where adaptive processing and the environment 

where recognition  was  performed  were  equivalent,  high recognition rates of around 90% 

were obtained, as shown in Figure 10. In Figure 11. It can be observed that signal adaptation 

using engine-room interior body-conducted speech and speech recognition results were 95% 

and above, with 50% and above improvements, and that we had attained the level needed 

for practical usage. 
 

 Candidate for adaptation 

Valuation Room Engine Room
No 

adaptation 

Speech(Room) 90.66 1.33 63.00 

Body(Room) 22.66 1.33 9.67 

Speech(Engine) 1.00 1.50 0.67 

Body(Engine) 46.50 1.50 45.00 

Table 4. Result of adaptation processing with speech ( % ) 
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Fig. 8. Signal adaptation with speech (crusing). 
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 Candidate for adaptation 

Valuation Room Engine Room
No 

adaptation 

Speech(Room) 40.67 46.17 63.00 

Body(Room) 86.83 26.83 9.67 

Speech(Engine) 1.50 1.00 0.67 

Body(Engine) 49.00 95.50 45.00 
 

Table 5. Result of adaptation processing with body-conducted speech ( % ) 
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Fig. 9. Signal adaptation with speech (room). 
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Fig. 10. Signal adaptation with body-conducted speech (room). 
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Fig. 11. Signal adaptation with body-conducted speech (crusing). 

4.4 Investigation of the effects of making the system wireless 

We next investigated the effects of making the system wireless. The specification of the 

wireless system used for this experiment is shown in Table 6. This data consisted of 100 

terms read by a male aged 20 (a different man from the person who read the terms in the 

earlier experiment), and the terms were spoken three times in each one environment. The 

man who read the terms wore a helmet during analysis of body-conducted speech and the 

terms were extracted from the top of his head (calvaria). The effectiveness of this position 

has been confirmed in documentation (Saito et al. 2001). The initial dictionary model to be 

used for learning was, as in the previous tests, a model for an unspecified speaker. Here, 

the noise was white noise generated by a speaker, and was set in the vicinity of 0 dB SNR. 

The results for this experiment are shown in Table 7. From these results we concluded 

that if adaptive processing is performed when wired, the recognition rate becomes high, 

and thus the usefulness is confirmed. However, for speech transmitted wirelessly, the 

recognition rate was lower. This is thought to be becuase when the wireless type system 

was used, the noise was in the same frequency bandwidth as speech. The spectrogram 

analysis results of speech /hachinohe/ using cable and wireless are shown in Figures 12 

and 13, respectively. From these figures it can be seen that although speech remained at 

less than 4000 Hz, noise overlap on the whole zone could be observed. This result 

suggests that it is necessary to test another method such as wireless LAN instead of a 

walkie-talkie.  

 

Manufacturer MOTOROLA 

Part number GL2000 

Frequency 154.45-154.61MHz 

Transmitting output 1W/5W 

Table 6. Specifications for a wireless system 
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Conditions 
No 

adaptation 
adaptation

speech 53.33 98.33 
Cable Quiet 

body 43.66 97.00 

speech 3.33 77.00 
wireless Quiet 

body 5.00 79.33 

speech 1.60 57.66 
wireless Noisy

body 2.00 62.00 

Table 7. Results of a wireless vs. a cable system (%) 

 

Fig. 12.  /hachinohe/ with cable. 

 
Fig. 13.  /hachinohe/ with wireless. 
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7. Conclusion 

We investigated a body-conducted speech recognition system for the establishment of a 

usable dialogue-type marine engine operation support system that is robust in noisy 

conditions, even in a low SNR environment such as an engine room. By bringing body-

conducted speech close to audio quality, we were able to examine ways to raise the 

speech recognition rate. However, in an examination by pretreatment, we could not 

obtain optimal results when using an adaptation filter and a cross-spectral method. We 

introduced an adaptive processing method and confirmed the effectiveness of adaptive 

processing via small repetitions of utterances. In an environment of 98 dB SPL, 

improvements of 50% or above of recognition rates were successfully achieved within one 

utterance of the learning data and speech recognition rates of 95% or higher were 

attained. From these results, it was confirmed that this method will be effective for 

establishment of the present system. 

In a wireless version of the system, the results showed a worsening of recognition rates 

because of noise in the speech bandwidth. Even when adaptive processing was performed, a 

sufficient speech recognition rate could not be obtained. Although more testing of this  

wireless system within the actual environment of the Oshima-maru will be necessary, it will 

also be necessary to investigate other wireless methods.  
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