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Abstract

Electric-Arc-Furnace (EAF)-based process route in modern steelmaking for the production 
of plates and special quality bars requires a series of stations for the secondary metal-
lurgy treatment (Ladle-Furnace, and potentially Vacuum-Degasser), till the final casting 
for the production of slabs and blooms in the corresponding continuous casting machines. 
However, since every steel grade has its own melting characteristics, the melting (liqui-
dus) temperature per grade is generally different and plays an important role in the final 
casting temperature, which has to exceed by somewhat the melting temperature by an 
amount called superheat. The superheat is adjusted at the ladle-furnace (LF) station by the 
operator who decides mostly on personal experience but, since the ladle has to pass from 
downstream processes, the liquid steel loses temperature not only due to the duration of 
the processes till casting but also due to the ladle refractory history. Simulation software 
was developed in order to reproduce the phenomena involved in a meltshop and influence 
downstream superheats. Data science models were deployed in order to check the poten-
tial of controlling casting temperatures by adjusting liquid-steel exit temperatures at LF.

Keywords: continuous casting, superheat, billet, slab, grade, supervised model, 
simulation

1. Introduction

The effect of superheat (SPH) on the potential of surface and sub-surface defects generation 
in the continuous cast products is known for many years. Ayata et al. [1] have pointed out the 

advantage of low SPH teeming upon product quality since 1995, and in the same year Thomas 
[2] has discussed the need to include SPH in thermal-mechanical models for  continuous 
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 casting. Guyot et al. [3] have discussed the effect of SPH on surface quality issues in peritec-

tic slabs. Jansto [4] has pointed out the effect of SPH on quality issues for Nb-based micro-
alloyed steels. Jacobi and Schwerdtfeger [5] talking about ripple marks on cast steel surfaces 

have notified the importance of keeping SPH values low at casting; furthermore, if the super-

heat is too high for a grade, it may give rise to defects in the product. As 10°C increase per 

ton of liquid steel requires theoretically 2.2 kWh of electrical energy [6], one may realize the 

energy lost annually at casting if superheat is much larger than required. It is understood that 

a system that will notify the LF operator to adjust the liquid steel SPH in order to match the 
required casting temperature later on at the continuous caster is of paramount importance 

and is under research for a long time. Offline models based on heat transfer and thermody-

namics have been developed in the past, but the focus is mostly appropriate to online statisti-

cal models which are faster to be generated and can be tuned. Nevertheless, due to the nature 
of liquid steel processing there is still a great deal of work on the subject to be carried out to 

reach this milestone. Gupta and Chandra [7] have developed a coupled heat transfer and a 

simple regression model in order to manage to control SPH at the caster floor; great attention 
was given to the holding time of liquid steel in the ladle, as well as the ladle turnaround time, 

that is, the time from teeming till next tapping for a ladle; a fourth-degree polynomial was 
derived as a regression formula simulating the initial temperature at the tundish (T

tun1
) as a 

function of the holding time (t), ladle life (LL), ladle turnaround time (TAT), exit temperature 

at the LF (T
LF

), and previous liquid-steel in the tundish temperature (T
past

):

   T  
tun1

   = f + 0.019LL − 0.012TAT + 0.358 T  
past

   + 0.631 T  
LF

    (1)

Where:

  f = 180.912 − 40.428t + 3.173 t   2  − 0.107 t   3  + 0.001 t   4   (2)

Based on plant data the regression coefficient R2 was found to be 0.73. Addes et al. [8] tried 

to control the casting superheat temperature by specific factors depending upon the heat 
sequence in the tundish, steel residence in the ladle, grade, ladle condition, tundish preheat 

time, and casting speed. On the other hand, Fredman et al. [9] applied the solution of the 

heat transfer equation in 2D in order to simulate the thermal state of the ladles. Tian et al. 

[10, 11] developed a hybrid model based on the energy transfer at the LF and by deploying 

the ensemble ELM algorithm using the modified AdaBoost.RT method to train and validate 
the model by plant data that were collected from a 300 t LF. Chen et al. [12, 13] have devel-

oped a model that recommends the liquid-steel exit temperature at LF in order to achieve the 

proper casting SPH; the model follows the input and output liquid steel energy in a ladle; 
it has been applied in a steelmaking plant. Sonoda et al. [14] have also developed a statisti-

cal model for predicting the liquid steel temperature at the casting floor. In the recent years, 
ladle-tracking systems [15, 16] have been developed that follow the route of each ladle and 

in this way the refractory history can be recorded; consequently, a more reliable statistical 
model can be developed that will predict the casting floor superheat temperatures by time. A 
Monte-Carlo resembling simulation software was developed for this study in order to repro-

duce the phenomena involved in a meltshop with respect to process times, ladle-refractory 

history, vacuum degasser (VD) or not treatment, and 30 different grades for blooms and slabs 
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 produced in the Stomana plant, Pernik, Bulgaria. The purpose of this study was to illustrate 
the potential benefits of the installation of a ladle tracking system giving online data to a 
supervising data-science model that will ultimately notify the proper superheat adjustment 

to the LF operator. On this basis, two data-science models (a distributed random forest, DRF, 
and a gradient boosting machine, GBM) were deduced to analyze the reproduced data. DRF 
and GBM models were also deduced from existing plant data and even though these data 

did not come from a ladle tracking system, the analysis of variance exhibited an important 

statistical significance. Furthermore, a GBM model was derived for the prediction of the first 
liquid-steel SPH at the tundish following the problem formulation of Gupta et al. [7].

2. Preparation of tests

2.1. Simulation tests

The approach to come up with a solution to the problem consisted of two procedures: at first, 
a Monte-Carlo type of simulation [17] was developed in order to quantify the effect of various 
parameters upon the required superheat (SPH) correction at the ladle-furnace (LF) station, as 
well as the final attained SPH at the continuous casters; second, the generated results were 
fed into machine-learning systems in order to identify the degree of correlation of predicted 

superheat values at the casting machines with respect to the reproduced corrected SPH values 
at the LF. Table 1 presents the selected times for the processes involved in the computations:

Although two different casters were involved in the computations, the same transfer-time val-
ues from LF or VD were used. The simulation software was developed exclusively in R [18], as 

it has unique programming instructions for simulation purposes. For example, the following 

two commands generate 10,000 EAF process-time values derived from a normal distribution 

with an average value of μ = 60.0 and a standard deviation value of σ = 10.0:

   
HeatNr < − 1 : 10000

   
 EAF _ Pr oc < − rnorm (  HeatNr, 60.0, 10.0 )   

   (3)

The greatest advantage R has is the very fast execution of instructions that are written in a 
form compatible for vectorization. Commands similar to (3) were written for the generation 
of process-time values for the rest of the processes illustrated in Table 1.

Twenty percent from heats produced by the EAF pass through VD treatment; furthermore, 
97.5% from the VD-treated steels were selected to be billets (or blooms) and the rest slabs. The 
thermal history of a ladle refractory-insulation is of paramount importance for the amount of 

heat the contained liquid steel will absorb during reheating at the LF. Every time a ladle is 

placed in the position for tapping from the furnace, it may come from previous heat (almost 

immediately after casting) or from a refractory maintenance process that has taken some ade-

quate time to resist the liquid-steel temperature increase at LF by absorbing some heat. The 

refractory insulation has also some life cycle so a new ladle may come into the production 

cycle at some point. Table 2 presents some plant data related to ladle refractory maintenance 

that were taken under consideration in the development of the simulation program together 

with the need for extra liquid-steel temperature (SPH).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

165



Figure 1 presents the process times that were taken under consideration in the simulation 

part; the total process time is the sum of (1) the actual process time, that is, the total time spent 
at EAF, LF, VD (if the grade is VD-treated), and CCM time (which is either the bloom caster, 

BCCM, and slab caster, SCCM, depending upon the nature of the cast product which may be 

billet/bloom or slab, respectively) and (2) the transfer time, that is, the time required for the 

liquid steel movement between the process stations.

Liquid steel is transferred from the EAF to the LF station, then it may be transferred directly 

to the caster or to the VD station if this type of treatment is required, and then finally to the 
CCM (BCCM or SCCM). Figure 2 depicts the time spent in this type of transfer and this is 

generated in the simulation software. Since VD-treated production is limited to 20% of the 
products, the average transfer values from LF to VD, and VD to CCM are small; on the other 
hand, since LF may send the ladle directly to CCM, or via VD, it is realized that two regions 

of points can be accumulated.

Type of maintenance or ladle 

condition

Average number of 

heats

Standard 

deviation

Extra SPH required

Average (°C) Standard deviation

New ladle 85.0 8.0 50.0 15.0

Plates change 28.333 3.0 20.0 5.0

Inner nozzle change 10.625 1.5 30.0 8.0

Porous plug change 6.538 1.5 30.0 8.0

Slag zone repair 1.0 0.5 50.0 15.0

Immediately after previous heat 30.0 5.0 10.0 2.5

Normal preheating 8.0 6.0 10.0 3.0

Idle state 2.0 1.5 40.0 10.0

Table 2. Ladle refractory maintenance data.

Process Average (μ) process time, min Standard deviation (σ), min

EAF 60.0 10.0

EAF to LF transfer time 10.0 2.5

LF 50.0 10.0

LF to VD transfer time 15.0 3.0

LF to CCM transfer time 12.0 3.5

VD 50.0 7.0

VD to CCM transfer time 10.0 3.5

SCCM (slab caster; CCM) 45.0 5.5

BCCM (bloom caster; CCM) 65.0 10.0

Table 1. Process standard times.
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Figure 1. Boxplots representation of the distribution of the process times, actual, transfer, and total.

Figure 2. Violin plots of the total transfer-time distributions between processes.
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Furthermore, Figure 3 illustrates the partial process-time distributions of the five metallurgi-
cal stations: EAF, LF, VD, SCCM, and BCCM. One may notice that in case that the greatest 

percentage (80%) of the products is not VD-treated the related process-times distributions are 
broadly extended. These data sets are also generated during the simulation runs. Based on 

the ladle refractory maintenance data that are presented in Table 2, the simulation program 

generated the refractory history for the ladle just before EAF tapping in a probabilistic fashion 

that is illustrated in Figure 4. Depending upon the ladle refractory condition a SPH correction 
as presented in Table 2 was applied at the LF. Again, here, the great advantage of R upon very 
fast SPH correction computation should be noted:

       
HeatNr  < −  10000

   
SPH _ Corr  < −  replicate(HeatNr,  get _ Ladle _ SPH _ Correction())   (4)

As described by (4), the vectorization potential of instructions like replicate can perform a 

computing set of commands—in a function like get_Ladle_SPH_Correction—for a large num-

ber of repetitions within a very short period of time. At Stomana meltshop, a great number of 

grades are produced. In this study, a total of 24 grades for blooms and 6 grades for slabs have 

been selected. Figure 5 depicts the average liquidus temperatures based on results that were 

gathered in the last 17 months. As seen on the graph, the grades are designated in the range 

of 1–24 for blooms and 51–56 for slabs (Figure 6).

Figure 3. Process-time distributions for the processes: EAF, LF, VD, SCCM, and BCCM.
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2.2. Deploying the DRF and GBM models

The present chapter was based upon data provided from the Stomana meltshop which 

is hosted in a steelmaking plant located in Pernik, Bulgaria, and belongs to the SIDENOR/
VIOHALCO group of companies; furthermore, another set of data was reproduced by a Monte-
Carlo simulation as explained in the previous section. The main task was to generate at least 

one supervised model that will identify critical parameters that affect the casting floor SPH 
by adjusting the liquid steel SPH at the LF. The H2O Flow package [19] was deployed for 

this type of work. This package is available for free from the web, and it is extensively used 

by many companies and scientific institutions worldwide. Two machine-learning algorithms 
(models) were used from this package: the distributed random forest (DRF) [20] and the gradi-

ent boosting method (GBM) [21]. A GBM is an ensemble of either regression or classification 
tree models. Both are forward-learning ensemble methods that obtain predictive results using 

gradually improved estimations. Boosting is a flexible nonlinear regression procedure that 
helps improve the accuracy of trees. Weak classification algorithms are sequentially applied to 
the incrementally changed data to create a series of decision trees, producing an ensemble of 

weak prediction models. While boosting trees increases their accuracy, it also decreases speed 

and user interpretability. The gradient boosting method generalizes tree boosting to minimize 

these drawbacks. Finally, the distributed random forest (DRF) is a variation of a general tech-

nique called ensemble learning. An ensemble model is composed of the combination of sev-

eral smaller simple models (often small decision trees). The random forest approach tries to 

de-correlate the trees by randomizing the set of variables that each tree is allowed to use. The 

Figure 4. History of ladle refractory just before EAF tapping.
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Figure 5. Liquidus temperatures for the selected grades of blooms and slabs.

final ensemble of trees is then bagged to make the random forest predictions [22]. In total, up 

to 100,000 cases (rows) of data were collected by the simulation software; each case included 
a heat produced at the EAF, processed at LF, and then directly transferred to the CCM, or 

after an extra treatment at the VD. The software was run in a DELL Alienware laptop with the 

Intel i7-6700HQ CPU (8 cores) @2.6 GHz, 16 GB RAM, running under a 64-bit Windows 10  
Professional OS. At first, a cluster was generated by Java-Virtual-Machine 64-bit-software 
called by a program developed for this purpose in R in which the memory size, the number of 
CPU-cores, and the H2O Flow connection was initialized and established. Then the set of data 
(data frame) was imported into the cluster. Each time the data frame was split in two frames, in 

a random fashion: the training data frame consisted of the 75% of the data and the validation 
data frame consisted of the rest 25%. The models (algorithms) were trained from the 75% of the 
data and tested (validated) on the rest 25%, generating supervised models that are valid within 
a measurable statistical error. Two types of running programs were executed per algorithm: in 
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the first part, a grid search was performed in order to deduce the proper tuning parameters that 
potentially minimized the validation error, and in the second part, the execution of the tuned 

model resulted in the derivation of the final supervised model. The grid search is time consum-

ing as it requires a trial-and-error procedure. One final remark concerning the deployment of 
the H2O Flow package: it may be initiated by R and run in a stand-alone program in R, or run 
in a web-based framework (e.g., Mozilla Firefox); the latter was extensively used in this study.

3. Results and discussion

Preliminary investigations showed that from the initial set of parameters that were repro-

duced by the simulation runs, only a few were found critical enough to be included in this 

Figure 6. Average SPH values for the selected grades of blooms and slabs based on the current practice; together are 
presented the limits of plus/minus one standard deviation (μ ± σ).
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type of study. Although, in data-science modeling, all parameters are included in the compu-

tations and the algorithms are allowed to select the most critical ones, in this analysis it was 

considered to decrease the number of most important parameters in order to have the ability 

to appraise better the phenomena involved. Table 3 presents the parameters that were finally 
selected in this part.

The parameter SPH_Overall_ESt was computed based on some assumptions for the tem-

perature loss at the casting floor. Table 4 presents the values used for the calculation of 

this term.

The values Cte1, Cte2, etc., used in every simulated test were picked up randomly from a nor-

mal distribution with the corresponding (μ, σ) values as shown in Table 4; the formula used 
for parameter SPH_Overall_Est was:

   

SPH _ Overall _ ESt  < −  SPH _ Corr3 − Cte1 * Holding _ Time−
          Cte2 * SPH _ HtInSeq _ CORR − Cte3 * VD _ Pr oc _ tot _ Time−      

    Cte4 * Tund _ Temp _ Drop

    (5)

The SPH_HtInSeq_CORR term is randomly drafted from a normal distribution of (μ, σ) equal 
to (15.0, 2.0) for the heats that are cast first in a tundish casting sequence. From practice experi-
ence, an extra 15°C temperature is generally required for the first heat in a casting sequence as 

Name Description

SPH_Corr3 The liquid steel SPH at the LF exit

Holding_Time The time liquid steel is contained in a ladle

VD_Proc_tot_Time Total processing time of VD process (if any for a heat)

SPH_HtInSeq_CORR SPH correction if the heat is supposed to be first in a sequence of castings in a 
tundish

VAR_Grade_Sel The 30 selected grades for analysis

VAR_Grade_SPH_CCM The casting floor SPH for the 30 selected grades as experienced in the current 
actual meltshop practice

SPH_Overall_ESt The simulated expected/estimated SPH at the casting floor

Table 3. Critical parameters selected for data-science modeling.

Description Average (μ) Standard deviation (σ)

Cte1 (Holding_Time, °C/hr) 0.50 0.25

Cte2 (SPH_HtInSeq_CORR) 0.80 0.07

Cte3 (VD_Proc_tot_Time, °C/hr) 1.417 0.133

Cte4 (Tund_Temp_Drop) 0.85 0.05

Table 4. Values used for the calculation of the expected casting floor SPH.
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tundish comes from a preheating station at about 1100°C and absorbs some heat from liquid 

steel. Normally, the ladle-to-tundish liquid-steel transfer operation absorbs some heat; the 
Tund_Temp_Drop term corresponds to that effect and is also randomly chosen from a normal 
distribution with (μ, σ) equal to (35.0, 5.0) for all heats. Figures 7 and 8 illustrate the DRF and 
GBM results with respect to predicting the SPH_Overall_ESt term.

For both cases, the ANOVA (analysis of variance) [23] gave some good statistical figures; simpli-
fying results for the GBM model only, the residual standard error was 3.159 on 99,998 degrees of 
freedom, the multiple R-squared was 0.9484, and the F-statistic gave 1.838·106 on 1 and 99,998 DF,  
with a p value <2.2·10−16. Normally, the GBM algorithm suffices to come up with a reasonable 
supervised model; however, the DRF algorithm was added for comparison purposes.

Figure 7. DRF results for the prediction of the casting floor SPH (term SPH_Overall_ESt); top graph presents grid 
sensitivity analysis in order to select the proper tuning parameters and the bottom graph presents the degree of 
approximation.
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Figure 8. GBM results for the prediction of the casting floor SPH (term SPH_Overall_ESt); top graph presents grid 
sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents the degree of 
approximation.

Order Parameter

1 SPH_Corr3

2 VD_Proc_tot_Time

3 SPH_HtInSeq_CORR

4 Holding_Time

5 VAR_Grade_SPH_CCM

6 VAR_Grade_Sel

Table 5. Relative importance of variables for the prediction of SPH_Overall_ESt (GBM model).
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Table 5 shows the relative importance of the considered parameters for the prediction of 

SPH_Overall_ESt given by the GBM model; the recommended LF-exit SPH (SPH_Corr3) 
plays a great role, indeed. Ignoring the SPH_Overall_ESt term, one interesting analysis 
could be the prediction of the current practice superheats (actual SPH, term VAR_Grade_
SPH_CCM) at the casting floor for the selected grades; it should be pointed out that the 
selection of these grades is completely at random, that is, the simulated heats do not follow 

at all the SPH data from the current meltshop practice. Nevertheless, the deduced DRF 
and GBM supervised models exhibited a remarkable statistical significance: again, sim-

plifying results for the GBM model only, the residual standard error was 4.988 on 99,998 
degrees of freedom, the multiple R-squared was 0.5352, and the F-statistic was 1.152·105 on 

Figure 9. DRF results for the prediction of the current practice casting floor SPH (term VAR_Grade_SPH_CCM); top 
graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents 
the degree of approximation.
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1 and 99,998 DF, with a p-value <2.2·10−16. Figures 9 and 10 illustrate these findings for the 
prediction of the important term VAR_Grade_SPH_CCM by excluding the computed term 
SPH_Overall_ESt.

Table 6 illustrates the relative importance of the parameters that were considered for the pre-

diction of the current practice superheats (VAR_Grade_SPH_CCM) given by the GBM model. 
The great importance of the selected grade parameter (VAR_Grade_Sel) seems as expected 
due to the nature of this supervised model; however, SPH_Corr3 still appears to be very 
important. Apart from the analysis so far, one extra step was taken in order to test whether the 

derived results may be attributed to pure coincidence. In the position of the SPH_Overall_ESt 

Figure 10. GBM results for the prediction of the current practice casting floor SPH (term VAR_Grade_SPH_CCM); top 
graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents 
the degree of approximation.
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term, the term SPH_tun1 was placed. This resembles more to the initial tundish temperature 
(1) of the Gupta et al [7] work, that exhibited a correlation coefficient R2 = 0.73; indeed, after 
some manipulation the following equation was derived:

  SPH _ tun1 = f + 0.019LL − 0.012TAT − 0.011 T  
liq

   + 0.358SP H  
past

   + 0.631SP H  
LF

    (6)

One should recall that for the term SPH
LF

 the known term SPH_Corr3 can be used. T
liq

 is the 

liquidus temperature of the selected grades, and f is a function of the Holding_Time. The T
liq

 

and SPH
past

 terms were randomly gathered from normal distributions with (μ, σ) equal to 
(1490.0, 10.0) and (40.0, 5.0), respectively. Figure 11 illustrates the derived GBM supervised 

model for the prediction of the SPH_tun1 term as computed in (6).

The ANOVA for the model results presented in Figure 11 exhibited the following statistical 

significance: the residual standard error was 2.446 on 56,189 degrees of freedom, the multiple 
R-squared was 0.9659, and the F-statistic was 1.589·106 on 1 and 56,189 DF, with a p-value 
<2.2·10−16. In Table 7, the recommended LF-exit superheat (SPH_Corr3) still appears to be of 
great importance.

Although 100,000 heats were simulated, a number of data had to be excluded from the 

data-science analysis in case that some SPH_tun1 predictions were outside the (10.0, 70.0) 
range. The statistical significance appears to be more than satisfactory, realizing that the 
parameters presented in Table 3 were taken under consideration with the only substitu-

tion of term SPH_tun1 in the place of term SPH_Overall_ESt. One final thing has to be 
mentioned: normally, Monte-Carlo type simulations converge to an average value (μ) and 

a standard deviation (σ) that tends to decrease as the number of repetitions (number of 
heats in this case) increases. Figure 12 describes these findings by simulating meltshop 
production from 1000 till 250,000 heats. The computed SPH values for μ + 3*σ exhibit a 
tendency to decrease as the number of heats increases. At the same time, the reduction of 

the expected SPH values, as the number of heats increases, seems to point out that there is 
a tendency for improvement once some logic is involved in the recommendation of LF exit 

SPH temperatures.

Order Parameter

1 VAR_Grade_Sel

2 VD_Proc_tot_Time

3 SPH_Corr3

4 Holding_Time

5 SPH_HtInSeq_CORR

Table 6. Relative importance of variables for the prediction of VAR_Grade_SPH_CCM (GBM model).
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Order Parameter

1 Holding_Time

2 SPH_Corr3

3 VD_Proc_tot_Time

4 SPH_HtInSeq_CORR

5 VAR_Grade_SPH_CCM

6 VAR_Grade_Sel

Table 7. Relative importance of variables for the prediction of SPH_tun1 (GBM model).

Figure 11. GBM results for the prediction of the first SPH at the casting floor based on Gupta et al. [7] (term SPH_tun1); 
top graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph 
presents the degree of approximation.
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4. Conclusions

A Monte-Carlo simulation software was developed in order to reproduce meltshop data con-

cerning process times, ladle refractory history, and effect on liquid-steel temperature loss at 
the casting floor. Data-science modeling was applied in order to deduce supervised algo-

rithms for the prediction of casting floor superheats based on critical parameters from repro-

duced and plant data. The results were also related with findings from a published work. 
In most cases, the derived supervised models exhibited a remarkable statistical significance, 
which seems to be too difficult to occur due to pure coincidence. It is very likely that a ladle 
tracking system will greatly result in a better achievement of desired casting floor superheats, 
and therefore, important economic savings.

Figure 12. Potential of improvement on the SPH per grade. Top graph: maximum values (μ + 3*σ) of SPH (term SPH_
Overall_ESt) with respect to simulated number of heats; 1000 heats (1), 10000 heats (2), 100000 heats (3, dotted), 250000 
heats (4, dashed), current SPH practice (5, solid). Bottom graph: current average SPH values (solid), expected SPH (SPH_
Overall_ESt) values (dashed).
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