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Abstract

The interphotoreceptor retinoid-binding protein (IRBP) is the most abundant protein in the 
interphotoreceptor matrix (IPM) and its levels decrease beginning in the early stages of dia-
betes. IRBP participates in the delivery of retinoids between retinal cells to carry out the 
visual cycle and also protects those retinoids against degradation in the IPM. IRBP deficiency 
is related to several conditions such as retinitis pigmentosa, cone-rod dystrophy, increased 
oxidative stress in the photoreceptors, and myopia. Decreased IRBP levels in diabetes could 
be due to the secretion of inflammatory cytokines and a direct effect of hyperglycemia on 
the photoreceptors. It is known that prior to the occurrence of vascular changes in diabetic 
retina, electrophysiological alterations occur on early potentials. Alterations on the photore-
ceptor outer segments and increased oxidative stress indicate an important affliction of the 
photoreceptors from early stages. Due to the importance of IRBP in photoreceptor wellness, 
its decreased levels may be linked to early photoreceptor affection. More studies are required 
to describe in detail the whole impact that decreased levels of IRBP in diabetes may have.

Keywords: interphotoreceptor retinoid-binding protein, IRBP, visual cycle, oxidative 
stress, ER-stress, light damage, retinitis pigmentosa, cone-rod dystrophy, photoreceptor 
damage, photoreceptor, S-cones, M-cones, outer segment, diabetes, neurodegeneration

1. Introduction

Typically, the pathological changes described in diabetic retina involve neovascularization 

and increased blood vessel permeability, a condition known as diabetic retinopathy (DR). 
Early changes that occur prior to the vascular affection have been acquiring more interest by 
the scientific community. Retinal proteomic analysis, functional and histopathological studies 
have revealed alteration in the levels of some proteins and a neurodegeneration state mainly 

involving ganglion and photoreceptor cells accompanied by reactive gliosis [1–5].
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The interphotoreceptor retinoid-binding protein (IRBP), which is the most abundant protein 

in the interphotoreceptor matrix (IPM) [6–10], is one of the principal elements altered in early 

stages of diabetes. This protein is expressed mainly by the cone and rod photoreceptor cells 

[11–13]. It binds to the retinoids in the interphotoreceptor matrix and facilitates their exchange 

between the IPM and the cells that carry out the visual cycle [14–16].

Aside from the retinoid delivery, IRBP protects retinoids against degradation [17], the retinal cells 

from oxidative stress and light-induced injury [18, 19], and is important for eye development [20].

2. Pathologies associated with IRBP deficiency

In pathological conditions in which a deficiency of IRBP exists, an important anomaly of the 
photoreceptor cells and the visual cycle can be detected which leads in some cases to the devel-

opment of retinitis pigmentosa, accumulation of the cytotoxic bis-retinoid A2E, cone-rod pho-

toreceptor dystrophy and an elongated myopic eye shape [20–25].

IRBP is linked to an autosomal recessive form of retinitis pigmentosa. A heterozygous T-C tran-

sition at the position 3024 [26] and a missense mutation of D1080N [22] have been identified. In 

vitro studies of this mutation have shown that it produces a non-secreted protein that induces 

endoplasmic reticular (ER) stress [27].

Other studies correlate the presence of IRBP gene mutations and the occurrence of high myopia 

in humans. This myopia was accompanied with retinal dystrophy observed by ocular coherence 

tomography (OCT) and electroretinography (ERG). The ERG showed a delay and reduction in 
the amplitude of the waves corresponding to the cone response. The IRPB gene mutations were 

c.3454G > T;p.E1152 and c.1530 T > A;p.Y510 which were predicted to lead to a nonsense medi-
ated decay with a complete loss of IRBP function [21]. These findings correlate with animal 
studies in which IRBP−/− mice have shown ERG alterations and histological findings affecting 
cones [25]. This animal model has also shown alterations in eye shape and visual acuity [20].

The relationship between IRBP deficiency and accumulation of the lipofuscin precursor A2E has 
only be demonstrated experimentally on two different animal models. IRBP−/− mice have been 
shown by HPLC a retinal A2E increase of 2.7-fold [25]. Another study using an animal model 

with Müller cell dysfunction found a decreased expression of IRBP which was also accompanied 

with accumulation of A2E [24].

3. Diabetes and IRBP levels

Considering visual cycle components, decreased IRBP expression is one of the most charac-

teristic changes in diabetes. Many studies have evaluated the changes in protein levels and 

IRBP expression and also attempted to explain the reasons for its depletion.

One study revealed decreased expression of IRBP determined by both qPCR and protein 
quantification on post-mortem samples of diabetic patients [28]. Another study showed that 
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this decreased expression directly correlated with the evolution of the DR, and also tested the 

effect of glucose and inflammatory cytokines on IRBP expression in vitro. They found that high 

glucose, TNF-α and IL-1β were able to reduce IRBP’s expression [29]. A recent study found 

decreased IRBP levels in diabetic rats and this finding was accompanied by decreased levels of 
11-cRAL and rhodopsin synthesis [30].

The precise mechanisms responsible for the decreased IRBP levels remain unclear. It is known 
that high glucose and some circulating fatty acids can induce the secretion of inflammatory 
cytokines by Müller cells [31, 32]. Despite evidence that high levels of glucose and inflamma-

tory cytokines are able to decrease the expression of IRBP [24, 29], other mechanisms may be 

involved. With the early onset of diabetes, photoreceptors undergo oxidative stress resulting 

in increased nitrosative-oxidative stress [33, 34]. This biochemical stress can induce damage 

to proteins promoting their degradation [35]. The unfolded protein response (UPR) has been 

detected to be active in photoreceptor cells in animal studies [36]; however no studies have 
linked this process to decreased IRBP levels.

Disruption of the external limiting membrane (ELM) and the outer retinal barrier (ORB) may 

play a role in leaking of IRBP into the outer nuclear layer or Bruch’s membrane. Studies of 
animals in diabetic conditions have shown decreased occluding abilities in the Müller cell 

tight junctions compromising the external limiting membrane [37]. Also retinal pigment epi-

thelium (RPE) dysfunction in early stage diabetes has been described in animal models [38]. 

It is still unclear the impact of these mechanisms over the IRBP levels.

4. Outcomes of IRBP’s decreased levels in diabetes

Due to its importance on the visual cycle, it is expected that decreased levels of IRBP produce 

electrophysiological and morphological changes that manifest itself in the damage to the pho-

toreceptors and the impaired visual cycle.

Deficit of blue-flicker discrimination has been observed in the early stages of diabetes [39]. 

ERGs have revealed lower oscillatory potential amplitudes suggesting alterations in the photo-

receptors and the vision cycle [40–42]. Additionally, color vision has been shown to be altered 

in these early diabetes stages. Adaptometry studies have also shown alteration in diabetes; 
even with transient hyperglycemia a patient can have a delay in dark adaptation [43–45].

One study in Meriones shawi, an animal model with a human-like macula, after streptozotocin-
induced diabetes showed alterations in the morphology of the photoreceptor outer segments. 

Interestingly, the foveal cones appear to be mostly affected revealing a loss of approximately 
30% of the M-cones 7 weeks after type 2 diabetes was induced in the animals [46]. Studies in 

rats also have shown alterations in the photoreceptor outer segments with the S-cones and the 

M-cones most severely affected [47].

It has been found that glucose levels can influence the vision cycle rhodopsin regeneration ratio 
[48, 49]. Recently, one research group found depletion of rhodopsin regeneration with an accom-

panying decrease in STRA6, IRBP, and 11-cis retinal (11-cRAL) in a diabetic animal model [30].
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5. Future directions

IRBP deficiency in diabetes could importantly impact DR progression although the relation-

ship between its levels and the complications in diabetes remain unclear. Previous evidence 

suggest that it potentially impacts DR outcomes. In addition, some retinoid analogues have 

shown to be beneficial in the prevention of early stage DR due to their antioxidant properties 
[50, 51]. IRBP has been shown to have these anti-oxidant properties against some vision cycle 

retinoid sub-products [18].

IRBP deficiency can promote the accumulation of the cytotoxic bis-retinoid A2E. This molecule 
has been described to be involved in the pathogenesis of age-related macular degeneration (AMD) 

[52, 53] and Stargardt disease [54]. A2E is known to be able to produce cytotoxicity by destabi-
lizing membranes, generating reactive oxygen species and producing photo-oxidation [55–58]. 

Since A2E is a lipofuscin precursor, fundus autofluorescence can be clinically used to detect its 
presence [59, 60]. However, hard exudates can decrease autofluorescence interfering with the 
evaluation of lipofuscin [61]. It would be expected that this accumulation of lipofuscin precursors 

in diabetes would increase the risk for developing AMD. Many studies have shown contradic-

tory results and this relationship has not been established [62–65]. The actual accumulation, as 

well as the role of A2E in diabetes complications, is unclear and require further investigation.

It is important to reveal the mechanisms responsible for decreased IRBP in diabetes and to 

establish its role in DR in order to establish novel approaches for the prevention of these vision 

threatening events.
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